An Ensemble Method for Incremental
Classification in Stationary and Non-stationary
Environments*

Ricardo Nanculef, Erick Lépez, Héctor Allende, and Héctor Allende-Cid

Department of Informatics,
Federico Santa Maria University, Chile
{jnancu, elopez,hallende, vector}@inf.utfsm.cl

Abstract. We present a model based on ensemble of base classifiers,
that are combined using weighted majority voting, for the task of in-
cremental classification. Definition of such voting weights becomes even
more critical in non-stationary environments where the patterns under-
lying the observations change over time. Given an instance to classify, we
propose to define each voting weight as a function that will take into ac-
count the location of an instance to classify in the different class-specific
feature spaces and also the prior probability of such classes given the
knowledge represented by the classifier as well as its overall performance
in learning its training examples. This approach can improve the general-
ization performance and ability to control the stability/plasticity trade-
off, in stationary and non-stationary environments. Experiments were
carried out using several real classification problems already introduced
to test incremental algorithms in stationary as well as non-stationary
environments.

Keywords: Incremental Learning, Dynamic Environments, Ensemble
Methods, Concept Drift.

1 Introduction

It is important that machine learning systems be capable of dealing with new
observations. Moreover, for large scale applications, it is unrealistic to think that
a complete set of representative examples is available from the start, and hence
algorithms able to learn from the observation of a sequence of examples delayed
in time is crucial. A simple approach consists in using past and current observa-
tions to build a new model every time that new observations become available.
However this solution is usually impractical or infeasible. An additional problem
appears when the patterns underlying the observations change over time, that is
the environment is not stationary. For example, in a document filtering problem,
it is possible that the features defining a category are no longer valid because
the preferences of user have changed. Ensemble methods are based on the idea

* This work was supported in part Research Grant DGIP-UTFSM (Chile).

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 541-p48, 2011.
© Springer-Verlag Berlin Heidelberg 2011

542 R. Nanculef et al.

of combining a set of simple predictors instead of using only one [I7/I6]. An
interesting point is that with an appropriate design, the expected performance
of the combined predictor can be better than the average performance of the in-
dividual predictors. This flexibility makes them particularly suitable for learning
in changing environments. There are ensemble methods that have been proposed
to address the problem of incremental learning such as in [2I5JTOJTTIT3I15]. Orig-
inally these methods were proposed for stationary environments, but today have
been extended for non-stationary ones. In this paper, we propose a strategy
(based on [QBIT2/15]) for incremental learning in non-stationary environments
that consist in using a set of base classifiers, combined using weighted majority
voting, where voting weights of each hypothesis h will be a function that depends
on the sample used to train classifier A.

2 Problem Definition

To obtain a formal definition of the incremental learning problem we follow a
statistical approach. Throughout this work we suppose that observations z live
in a space Z and are all drawn according to a probability measure P(z). The
observations are of the form z = (z,y) where x represents some information
about z and y a desired response or action. Given a sample of the form § =
Z1...Zn, Obtained sampling the distribution P, we are asked to recover a model
h representing the relation between x and y. The problem in learning from
examples is that instead of the measure P, we only have a finite sample of
examples S. We select h such that it minimizes the so called empirical risk:

Rs(h) = | 3 Q(htro),) (1)
=1

Instead of a single sample, in incremental scenarios, we have to deal with a
sequence of samples or batches of observations Sy, S9,...,.5; which arrive con-
tinuously over time and possibly have different size. An exact definition of the
learning task in such incremental scenarios is hence not straightforward.

A learning algorithm is called incremental if it is capable to generate hypothe-
ses in steps, where each step starts with certain working hypothesis and a set of
new data and ends with an appropriate updated hypothesis. Given a sequence of
training sets S, ..., St such algorithm is hence capable to generate a sequence of
hypotheses hq, ..., hy, where h; is obtained from h;_; and S;. We distinguish two
possible objectives for the learning tasks: (a) Stationary Environments, the
goal at time t is to obtain a hypothesis as close as the one obtained by training
with a sample S = S ... S:. If Sq, ..., St were drawn according to a distribu-
tion P, future cases (Siy1) also appear according to the distribution given by P,
so we can measure the performance of the algorithm by using a test set and also
any of the partial samples Sy, ..., S;. (b) Non-Stationary Environments, the
underlying distribution of the new examples changes over time. The goal at time
t is to obtain a hypothesis capable to decide well the next batch of observations,
that is St+1.

An Ensemble Method for Incremental Classification 543

3 An Ensemble Based System for Learning in Dynamic
Environments

The overall structure of Ensemble Methods consist in generating a new hypoth-
esis h; when a new set of observations S; becomes available. An updated model
is obtained combining the individual hypotheses using majority voting.

The Learn++ algorithm proposed in [13] is based on AdaBoost [3]. The main
steps of Learn-++ (modified in [I0] and [5]), are sketched as algorithm (). When
a new set S; of observations becomes available, a training sample X, is generated
from S; , sampling with weights given by a distribution d. A new set of classifiers
is then created to learn X; and stacked with the classifiers generated previously
to update the current ensemble H;.

Algorithm 1. Structure of the Learn++ Algorithm

1: Initialize T =0
2: for each batch of observations S; of size m; do

3 Initialize the sampling weights do(%) of each example i = 1,...,m;
4 fort=T+1,...,T+T; do
5 Set the sampling distribution to D¢ = d¢(3)/ X272, de(j)-
6: Generate a set of examples X sampling S; according to D;.
7 while ¢; < 1/2 do
8 Train a base classifier with X; to obtain hy.
9: Compute the weighted error of hy on Sj, €, = Zt!ht(«%‘)#% Dy (7).
10: end while
11: Compute the ensemble hypothesis H¢(z) using an aggregation algorithm @ over the set
of classifiers h1, ha,..., ht.
12: Compute the weighted error of H; on Sj, E; = ZthWU#M Dy (3)
13: Compute the confidence of Hy, ay = log((1 — E¢)/E:)
14: Update the sampling weights
N . et [if Hy(xi) = y;
deg (i) = de(3) ¥ { 1 , otherwise @)

15: end for)
16: Recall the current number of classifiers T =) 7_ T;.

17: end for
18: For any x, compute the final ensemble decision Hr(z) applying an aggregation algorithm @
over the complete set of classifiers hi, ha, ..., hr.

The KBS-Stream algorithm proposed in [I5] is similar to Learn4++ but it
is based on a sampling strategy named KBS (Knowledge-Based Sampling) [14].
Instead of using the error on the new observations to define the sampling weights
dy, KBS defines the concept of Lift, which measures the correlation (according
to a given distribution) between a specific prediction and a specified true label.

4 An Aggregation Framework of Classifiers for Dynamic
Environments

We define a majority voting aggregation mechanism appropriate for incremental
classification based on algorithm (). In these approach each classifier h; votes

544 R. Nanculef et al.

with a weight w; on the class it predicts for a given instance x. The final decision
is the class that cumulates the highest total weight from all the classifiers [§].
Defining wy; as 1 if the prediction of h; corresponds to class j and 0 otherwise,
the final decision can be expressed as

Ja;(x) = arg max Z wywy; () (3)
T

The preservation of previous knowledge and the accommodation of novel infor-
mation, strongly depends on the relative importance of each classifier. In [I3],
Polikar et al. proposed the AdaBoost aggregation strategy [3] for algorithm ().
Voting weights are computed as w; = log((1 — n:)/n:) where 1, is the training
error of h; . In incremental environments this rule becomes not optimal, since
classifiers corresponding to different batches might be model different patterns
and hence the performances of these classifiers are not directly comparable. For
example, it is possible that the batch S; contains only instances of one class, say
1, so it is not difficult for a classifier to achieve a high accuracy, let say n; ~ 0. If
new classes appear in the next batch, the accuracy of the corresponding classifier
could be significantly lower than say 7, > 0. The first classifier however is really
not better than the second because it represents an incomplete knowledge of the
environment.

An idea to overcome this problem is to use instance-dependent weights. In
[5], Gangardiwala et al. proposed to obtain w¢(x) as ming 1/d¢ (), where dy, is
the class-specific Mahalanobis distance of the test instance to the data used to
train the classifier. If X; is the set of input instances used to train the classifier
h: and Xy is the subset of X corresponding to the instances of class k, with
k = 1,..., K, the k-th class-specific distance of an input instance x to Xy is
computed as

Ser(x) = (x —) - Cp - (2 — piae) (4)

where p; is the mean and Cy the covariance matrix of Xyg.

We propose to define the voting weight w; (z) of the classifier h¢, for predicting
label z, as a function that depends on the Mahalanobis distance between the
instance x and each class-specific subset X;;. If Mahalanobis distance between
x and class-specific subset is zero, hypothesis should have greater weighting,
otherwise, the weight decreases, penalizing divergence:

K K
@(x) =Y exp(—(z — par) - Cpt - (@ — par)) = Y exp(—0i) (5)
k=1 k=1

In addition, the coverage that the classifier for each class has, is considered.
Suppose that classifier h; has been trained with instances X;; of a given class k
very similar to the instance to classify xtes; but this has not been trained with
enough examples of the class k to generalize well. Consider the event Ay = “x
is of class k”, then P(k|h;) corresponds to the prior probability of the event
Ay, given the classifier h;. Since the knowledge acquired depends on the data,

An Ensemble Method for Incremental Classification 545

it seems reasonable to use as the prior P(k|h:) the fraction of such data that
belongs to the class k.

K K
~ X
Wy(x) = exp(—0u) x P(klhe) = exp(—d) x ||xftk|| (6)
k=1 k=1
where | - | denotes cardinality, X; is set of input used to train h; and Xy the

subset of X corresponding to the instances of class k.

Finally, it should be mentioned that knowledge represented by a classifier
depends on the classes it was able to learn, that is, the proposed framework
should consider how reliable is the knowledge it represents. Then we will use
P(h¢) as the probability how much good is the classifier h;.

_ = | Xk
() = | D_exp(=du) x 1| x Ph) (7)
k=1

The determination of this probability may be through the classifier accuracy,
even in literature, the accuracy is used for determining the weight of h;, but it
is not the only strategy possible. If suppose, we take a uniform distribution for
P(hy), weight w(x) is equal (@). If we consider P(h;) proportional to accuracy,
P(hy) can be defined as P(hy) = log((1 — n¢)/m) where 7, is the training error
of hy with S;. It should be noted that the whole set of classifiers originated after
a new batch of observations that arrive to the system are generated to learn
the new information contained in these observations. Resampling steps after the
first one, make that different classifiers work with partially different data sets.

Hence it makes sense to compute the weight w;(z) only once per batch, imme-
diately after the first resampling of the data, that has the task of identifying the
observations that presumably contain new information. In this approach, which
we call Global Probabilistic, all the classifiers created for a given batch of data
Sk receive the same weight, that is computed using the equation () with the
set of observations X; obtained after step 14 of algorithm (Il) has been applied
for the first time with the current batch.

In non-stationary environments, Scholz [I5] used an aggregation strategy ca-
pable to follow the dynamic of the drifting observations. Just like the instance
selection methods based on sliding windows or example weighting [6II8], where
aggregation strategy is biased towards the last observations, our voting strategy
can be adapted similarly. Instead of computing the accuracy of the classifier h;
in S;, we can use the last batch of observations as a better approximation of
the distribution of future observations. Then, P(h;) is recomputed immediately
after a new batch of observations become available as log((1 — n:)/n:), but now
7 is the training error of h; on the most recent sample of examples.

Since a particular batch of observations could be an incomplete description
of a stationary frame in the dynamics of the environment, this strategy could
be improved if we were able to detect the step in which a drift takes place
and if we use the performance of the classifiers in the set of batches after the
drift to compute the prior P(h;). The effect however is attenuated because our

546 R. Nanculef et al.

aggregation strategy remains sensitive to the location of the instances to classify
in the feature space.

5 Experiments

In [T'7] we provided comparative results, for problems already studied in [I0] and
[5] for incremental learning, between our algorithm and the Learn++ algorithm
as defined in [5]. Here, we study the behavior of our algorithm in non-stationary
environments using one classification problem and three different concept drift
scenarios proposed in [15].

The benchmark used to test our algorithm in non-stationary environments
consist in the Satellite Image Data obtained from the UCI library [I]. Since it
does not contain a known concept drift and in order to allow a comparison, we
used the experimental setup proposed in [15]: the data was randomly ordered
into a stream and split in 20 batches of equal size (321 examples per batch). Since
the KBS-Stream algorithm [I5] is designed to deal with binary classification, 2
of the original 6 classes were marked as relevant (class 1) and the other as non-
relevant (class 2). The same three concept drift scenarios proposed in [I5] were
simulated:

1. Scenario A corresponds to an abrupt drift from the first to the second class
in batch 10. That is, after the batch 10 examples marked as relevant become
not-relevant and viceversa.

2. Scenario B corresponds to a gradual drift from the first to the second class
between batches 8 and 12. That is, a linearly increasing fraction of the ex-
amples of class 1 becomes of class 2 and viceversa, beginning with 0 in batch
8 and finishing with 1 in batch 12.

3. In Scenario C, an abrupt drift occurs in batch 9, as in scenario A, but it is
abruptly reversed in batch 11.

Table ([0) shows the best results obtained in the scenarios A, B and C' with
our framework (7)) using accuracy of the classifier without considering concept
drift (named Static Priors) and using the framework designed for concept drift
(named Adaptive Priors). The base classifier used is the same on [I7]. Tables
include the mean and variance of the classification error computed after 20 ex-
perimental runs with different random permutations of the examples. Rows of
the table correspond to different parameter configurations: number of classifiers
per batch (C') and number of neurons (N).

From the results reported above we can conclude that the voting strategy
defined to deal with concept drift introduces significant improvements with re-
spect to our original static accuracy based strategy to define the priors over
the classifiers. In Scenario A we reduce the misclassification error around 4%, in
Scenario B around 3% and in Scenario C, which represents a more complex type
of drift, around 2%. Improvements seem independent of the parameter configu-
ration of the algorithms, that is number of classifiers and the number of neurons
in the base learners. Moreover, an important reduction of variance is observed

An Ensemble Method for Incremental Classification 547

Table 1. Best Results in Non-Stationary Environments

Results in Scenario A

Static Priors Adaptive Priors
Combinations Mean Error Variance Mean Error Variance
20N-2C 14.819315 5.788040 9.581776 3.440245
20N-6C 13.628505 5.689071 9.853583 3.193592
Results in Scenario B
Static Priors Adaptive Priors
Combinations Mean Error Variance Mean Error Variance
10N-2C 15.162773 4.416926 11.483645 3.030324
20N-6C 14.123832 3.654565 11.693925 2.787356
Results in Scenario C
Static Priors Adaptive Priors
Combinations Mean Error Variance Mean Error Variance
10N-2C 11.746885 4.834248 9.409657 6.536859
20N-4C 12.666667 4.659173 9.326324 6.640003

in scenarios A and B (around the half of the original variance). The curves rep-
resenting the behavior of the algorithm as new batches of observations become
available, also show that the algorithm designed for changing environments has a
stronger ability to recover for an abrupt or gradual drift. This occurs because the
static algorithm can only recover from a drift creating more classifiers represent-
ing the new knowledge than the classifiers representing the old knowledge. The
dynamic algorithm, on the other hand, is capable to rapidly and selectively reuse
old knowledge structures and hence can respond more quickly. This observation,
in fact, explains the closer difference between the algorithms in Scenario C.

6 Conclusions

In this paper we have introduced a new voting strategy to incremental learning
using an ensemble of classifiers. This strategy identifies a voting weight with two
fundamental pieces: (1) a function which depends on the instance to classify and
the knowledge represented by the classifier and (2) a prior which represents an
instance-independent belief about the ability of the classifier to deal with the
environment. By defining both pieces we can obtain an aggregation mechanism
with different properties. This paper has examined a model which explores the
knowledge cumulated by the classifier in the different class-specific feature spaces
and different types of priors. Using priors depending on the overall performance
of the classifier in its training set we have obtained an algorithm capable to
accommodate new knowledge without compromising previously acquired knowl-
edge and capable to detect the most suitable knowledge substructures to predict
a given instance. Experiments in well-known benchmarks show that this algo-
rithm can introduce important improvements or at least competitive results with
respect to similar algorithms. Introducing a simple modification on the priors
again, we can obtain a new version of the algorithm capable to deal with non-
stationary environments. Further improvements could probably be obtained if
we were able to detect the specific step in which a drift takes place, and if we

548 R. Nanculef et al.

use the performance of the classifiers in the set of batches after the drift to
recompute the prior.

References

1. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

2. Fern, A., Givan, R.: Online ensemble learning: An empirical study. Machine Learn-
ing 53(1-2), 71-109 (2003)

3. Freud, Y., Schapire, R.: A short introduction to boosting. Journal of Japanese
Society for Artificial Intelligence 14(5), 771-780 (1999)

4. Fumera, G., Roli, F.: A theoretical and experimental analysis of linear combiners
for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(6), 942-956 (2005)

5. Gangardiwala, A., Polikar, R.: Dynamically weighted majority voting for incremen-
tal learning and comparison of three boosting based approaches. In: Joint Conf.
on Neural Networks (IJCNN 2005), pp. 1131-1136 (2005)

6. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weight-
ing. Intelligent Data Analysis 8(3), 281-300 (2004)

7. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple clas-
sifier fusion: An experimental comparison. Pattern Recognition 34(2), 299-314
(2001)

8. Kuncheva, L.: Combining pattern classifiers: Methods and algorithms. Wiley In-
terScience (2004)

9. Littlestone, N., Warmuth, M.: The weighted majority algorithm. Information and
Computation 108(2), 212-261 (1994)

10. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++.MT: A new approach to incre-
mental learning. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS,
vol. 3077, pp. 52-61. Springer, Heidelberg (2004)

11. Oza, N.C.: Online bagging and boosting. In: IEEE International Conference on
Systems, Man and Cybernetics, vol. 3, pp. 2340-2345 (2005)

12. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Sys-
tems 24(4), 21-45 (2006)

13. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning
algorithm for supervised neural networks. IEEE Transactions on Systems, Man,
and Cybernetics Part C: Applications and Reviews 31(4), 497-508 (2001)

14. Scholz, M.: Knowledge-based sampling for subgroup discovery. In: Morik, K., Bouli-
caut, J.-F., Siebes, A. (eds.) Local Pattern Detection. LNCS (LNAI), vol. 3539,
pp. 171-189. Springer, Heidelberg (2005)

15. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting concepts. Intelligent
Data Analysis, Special Issue on Knowledge Discovery from Data Streams 11(1),
3-28 (2007)

16. Todorovski, L., Dzeroski, L.: Combining classifiers with meta decision trees. Ma-
chine Learning 50(223), 249 (2003)

17. Trejo, P., Nanculef, R., Allende, H., Moraga, C.: Probabilistic aggregation of classi-
fiers for incremental learning. In: Sandoval, F., Prieto, A.G., Cabestany, J., Grana,
M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 135-143. Springer, Heidelberg (2007)

18. Widmer, K., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23, 69-101 (1996)

	An Ensemble Method for Incremental Classification in Stationary and Non-stationary Environments

	Introduction
	Problem Definition
	An Ensemble Based System for Learning in Dynamic Environments
	An Aggregation Framework of Classifiers for Dynamic Environments
	Experiments
	Conclusions
	References

