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Abstract. The quantitative evaluation of disparity maps is based on
error measures. Among the existing measures, the percentage of Bad
Matched Pixels (BMP) is widely adopted. Nevertheless, the BMP does
not consider the magnitude of the errors and the inherent error of stereo
systems, in regard to the inverse relation between depth and disparity.
Consequently, different disparity maps, with quite similar percentages
of BMP, may produce 3D reconstructions of largely different qualities.
In this paper, a ground-truth based measure of errors in estimated dis-
parity maps is presented. It offers advantages over the BMP, since it
takes into account the magnitude of the errors and the inverse relation
between depth and disparity. Experimental validations of the proposed
measure are conducted by using two state-of-the-art quantitative evalua-
tion methodologies. Obtained results show that the proposed measure is
more suited than BMP to evaluate the depth accuracy of the estimated
disparity map.
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1 Introduction

A stereo image set captures a 3D scene from slightly different viewpoints. A
disparity estimation algorithm takes as input a stereo image set, and produces
a set of disparity maps (DM) as output. Disparity is the shift between stereo
corresponding points. The 3D structure of the captured scene can be recovered
based on estimated disparities. The estimation of DM is a fundamental problem
in computer vision, which has to be addressed in several applications domains,
such as: robotics, unmanned vehicles, entertainment and telecommunications,
among others [0], [12], [16]. The evaluation of DM, in terms of estimation ac-
curacy, is quite important since small inaccuracies may have a large impact on
the results of the 3D final reconstruction. Moreover, the objective comparison of
different disparity estimation algorithms is based on the quantitative evaluation
of DM [10], [15]. This evaluation allows also for the tuning of parameters of an
algorithm within a particular context [7], determining the impact of specific com-
ponents and procedures [B], and decision taking for researchers and practitioners
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among others. In fact, a quantitative evaluation approach must be supported by
a quantitative evaluation methodology [2]. Among the different components that
a quantitative evaluation methodology may involve, the set of error measures is
a fundamental one.

In some scenarios, the quantitative evaluation of DM has to be conducted in
the absence of ground-truth data. In this case, a prediction error approach can
be used to perform the evaluation [I4]. This approach consists in comparing a
set of third views of the scene, against a set of rendered views computed from
reference images and their associated DM.

Image quality measures such as the Mean Squared Error (MSE), the Root
Median Squared Error (RMSE), the Peak Signal-to-Noise Ratio (PSNR), and
the Structural Similarity Index Measure (SSIM) [I9] can be used for quantita-
tive evaluation under a prediction error approach [I5]. Although, the MSE, the
RMSE, and the PSNR are widely adopted and have a clear physical meaning,
they are not closely related to the perceived visual quality by the human visual
system [18], [19].

The disparity gradient and the disparity acceleration indices are presented
in [20] to measure the smoothness of the DM. These indices require the use of
thresholds. However, no information is provided about how the threshold can
be fixed. Moreover, the capability of these indices to distinguish between an
inaccurate estimation and a true depth discontinuity is not discussed. On the
other hand, the fact that the DM may vary smoothly but, at the same time,
they may be totally inaccurate is ignored.

The comparison of results using the SSIM and the PSNR measures on noisy
DM by adding salt and pepper is addressed in [13]. Although it is concluded
in [13] that obtained PSNR values are closer to the scores assigned by subjective
evaluation, this conclusion does not coincide with the well-known drawback of
the PSNR [I8], [19]. Additionally, there is not a clear relation between the type
and the level of noise introduced, and the artifacts that a disparity estimation
algorithm may produce. Consequently, the considered evaluation scenario lacks
of realism.

Ground-truth based error measures can be computed by comparing estimated
DM against disparity ground-truth data. Measures such as, the Mean Absolute
Error (MAE), the MSE, and the RMSE are considered in [10], [I6] for ground-
truth based evaluation. A modification of SSIM, termed R-SSIM, and designed
for range images, is proposed in [8]. The modification consists in the introduction
of the capability to handle missing data in both, the ground-truth disparity map,
and in the estimated DM. It is shown in [8] that there exists a strong linear
association between the BMP and the R-SSIM.

A modification of the Mean Absolute Percentage Error (MAPE) is presented
n [16]. The modification consists in the capability to handle the absence of
estimations in the evaluated DM. Although MAPE considers the inverse relation
between depth and disparity, it is designed in the context of forecasting [3].
Additionally, the use of the mean, which is sensitive to outliers, may introduce
bias in the evaluation.
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The BMP, was introduced in [I0] as a component of the Middlebury’s evalu-
ation methodology [9], [11]. It is formulated in Equation (TI).

{ 1 if |Dtrue(x; y) - Destimated(x7y)| >0 (1)

1
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where, Dy, is the disparity ground-truth data, Destimated i the disparity map
under evaluation, and ¢ is the error tolerance threshold (commonly, 6 = 1).

The error tolerance threshold ¢ is considered by the BMP in order to determine
if there is a disparity estimation error. The BMP can be gathered on different
image regions, related to different image phenomena, such as occluded, near to
depth discontinuities, and areas lacking of texture, among others [10].

Among the existing quantitative measures, the BMP is widely used. However,
it is a measure of the quantity of errors occurring in DM. Moreover, such a
quantity may do not indicate how accurately a particular disparity map fulfils
the task for which it was estimated: to recover the depth of the scene captured
in the stereo image set [4]. In fact, the BMP can be seen as a binary function by
the using of a threshold, which selection may impact on the evaluation results.

In this paper, a ground-truth based measure is presented. The proposed
measure is supported by the inverse relation between depth and disparity. It
computes a global error measure with a physical interpretation and without
thresholds intervention.

2 Problem Statement

The BMP is commonly used as a measure of disparity errors evaluation. Nev-
ertheless, in practice, the estimation of the DM is an intermediate step on a
process, which the ultimate goal is to achieve depth accuracy. In fact, the BMP
has drawbacks such as: it may be sensitive to the selection of §, since small
changes on this value, may lead to obtain significantly different percentages.
Moreover, the magnitude of the difference between the estimated disparity and
the ground-truth value is ignored. Thus, the BMP may conceal disparity estima-
tion errors of large magnitude, and at the same time, it may penalise errors of
low impact on the final 3D reconstruction. On the other hand, disparity estima-
tion errors of the same magnitude may cause depth errors of different magnitude.
However, the BMP does not consider this fact. Consequently, the BMP measure
is not suited to measure the depth accuracy of a disparity estimation process.
The DM of the Tsukuba, Venus, Teddy and Cones stereo images [10], [I1]
are used in Fig. [l for illustrating the stated problem. These maps are varying
smoothly, and their percentages of BMP are equals to zero. However, Table [
shows that the values of other ground-truth based measures, as well as image
quality values of rendered views, computed from the DM, are contradicting to
the values reported by the BMP. It can be observed, that although the BMP is
reporting a perfect accuracy on the entire image, the other ground-truth based
error measures, the MSE and the MAPE, are indicating error presence. Addi-
tionally, the MSSIM, the MSE and the PSNR of rendered views are indicating
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones

Fig. 1. DM, varying smoothly but being totally wrong

Table 1. Obtained values of the BMP (§ = 1), the MSE, the MAPE, based on ground-
truth; and obtained values of the MSSIM, the MSE and the PSNR, based on rendered
views, by using the DM in Fig. [l

BMP MSE MAPE

Disparity Map MSSIM  MSE PSNR
all all all

Fig. 1(a) 0.000  1.000 16.474 0.758 187.091  25.410

Fig. 1(b) 0.000  1.000 14.316 0.792 173.636  25.734

Fig. 1(c) 0.000 1.000 4.117 0.831 128.543  27.040

Fig. 1(d) 0.000  1.000  3.380 0.744 184.313  25.475

a low quality. This exemplifies the sensitivity of the BMP to the selection of 9,
and the fact that obtaining a low percentage of BMP does not imply, necessarily,
that the DM under evaluation are accurate in terms of 3D scene reconstruction.

3 The Sigma-Z-Error

The proposed measure in this paper is termed Sigma-Z-Error (SZE). It is based
on the inverse relation between depth and disparity using the error magnitude.
In this sense, it aims to measure the final impact of a disparity estimation error,
which depends on the true distance between the stereo camera system and the
captured point, and on the disparity error magnitude. The SZE is described as
follows.

The distance between a point of the captured scene and the camera system
can be computed, without loss of generality, based on the information of the
stereo rig and the estimated disparity as is formulated in Equation (2I).

f*B

dt’r‘ue

Ltrue = 3 (2)
where f is the focal length in pixels, B is the baseline in meters (i.e. the distance
between optical centres), diqe is the true disparity value in pixels, and Zi.qe is
the distance along the camera 7 axis in meters.
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However, in practice, an inaccurate Z distance is generated due to a disparity
estimation error, as is formulated in Equation ().

f*xB
dfalse ’

Zfalse = (3)
where Zfq1sc is the inaccurate distance estimation, and dgqse is the falsely esti-
mated disparity.

The proposed SZE measure consists in summing the difference between Z;.ye
and Zfqise, over the entire estimated disparity map (or in a particular image
region) based on the information provided by disparity ground-truth data. The
SZE is formulated in Equation ().

S7E — Z f*xB _ f*xB 7 (@)
(.9) Dtrue(xa y) +u Destimated (x7 y) +u

where, p is a small constant which avoids the instability caused by missing
disparity estimations. The SZE fulfils the properties of a metric. However, it is
unbounded.

Table 2] shows the values of the SZE and the BMP, as well as the PSNR and
the MSSIM of the rendered views using different DM (i.e. the ground-truth,
an inaccurate map varying smoothly, and a map containing streaking artefacts)
of the Cones stereo image. It can be observed that despite of the low values
of the MSSIM and the PSNR, the BMP values are indicating that there is no
estimation error.

Table [3 shows obtained values of the BMP, the MAE, the MSE, and the
MAPE, based on disparity ground-truth data by three different disparity esti-
mation algorithms [9], and using the Venus stereo image. It can be observed that
the values of the BMP are quite similar. On the other hand, the values of the
SZE and the MAPE are indicating that there exists a difference in the accuracy
of the considered algorithms.

Fig. [ illustrates estimated DM calculated using the Tsukuba stereo image,
and four disparity estimation algorithms [9], which have similar results of the
percentage of the BMP on the non-occluded region. Table M shows obtained
values on the non-occluded region, in relation to DM in Fig. 2 of the SZE,
the BMP, the MAE, the MSE, and the MAPE, as well as the MSSIM using
rendered views. In this case, the obtained values of the SZE are consistent with

Table 2. Obtained ground-truth based error measures and rendered image quality
measures considering DM of the Cones stereo image

SZE SZE SZE BMP BMP BMP

Disparity Map . . PSNR MSSIM
nonocc all disc  nonocc  all disc

Ground-truth 0.000  0.000 0.000 0.000 0.000 0.000 29.948 0.903

Inaccurate 193.703 218.905 66.945 0.000 0.000 0.000 25.475 0.774

Artefacts 11.088 11.800 3.524 0.000 0.000 0.000 24.639 0.729
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Table 3. Obtained values of the SZE, the BMP, the MAE, the MSE and the MAPE,
considering different algorithms, and using the Venus image

SZE BMP MAE MSE MAPE

Algorithm all all all all all
CoopRegion 552.274  0.206  0.106  0.076  1.849
Undr+OvrSeg 735384 0224 0199  0.097 2815
AdaptingBP 929.368 0212 0.165 0.104  3.069

(a) (b) (c) (d)
Fig.2. Disparity maps of the Tsukuba image, estimated by: (a) DoubleBP, (b)
CoopRegion, (¢) GlobalGCP, (d) OutlierConf

Table 4. Obtained ground-truth based error measures and rendered image quality
measures for disparity maps in Fig.

Algorithm SZE BMP MAE MSE MAPE MSSIM
NONOCC NONOCC NONOCC NONOCC NOonocc
DoubleBP  658.867 0.880 0.223 0.475 3.764  0.908
CoopRegion 662.485 0.872 0.228 0.507 3.780  0.905
GlobalGCP 817.656 0.868 0.263 0.530 4.560  0.908

OutlierConf 915.254 0.879 0.284 0.550 4.921 0.908

the obtained values of the MAE, the MSE, and the MAPE, and contradictories
with the percentage of the BMP. On the other hand, the MSSIM values may be
indicating that the quality of the rendered views may appear quite similar for a
human observer.

4 Experimental Evaluation

In order to assess the impact of the proposal on evaluation results, the SZE and
the BMP are considered as the error measures during an evaluation process.
The top fifteen ranked algorithms in [9] (May, 2011) are selected as the algo-
rithms under evaluation, and Tsukuba, Venus, Teddy and Cones stereo images
are selected as the test-bed [T1].

Two evaluation methodologies are used: the Middlebury methodology [9], [10],
[11], and the A* methodology [2]. The A* methodology is a non-linear evaluation
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Table 5. Quantitative evaluation of algorithms considering the SZE and the BMP as
error measures, using the Middlebury and the A™* evaluation methodologies, respectively

SZE SZE BMP BMP
Algorithm Avg. SZEIL Algorithm € Avg. BMP Algorithm €

Rank an AfSZE) Rank an A?BMP)
GC+SegmBorder 1.17 1 Yes 9.58 11 Yes
SubPixDoubleBP 5.25 2 No 8.50 9 Yes
CoopRegion 5.92 3 No 5.33 3 Yes
SurfaceStereo 7.00 4 No 8.00 8 Yes
FeatureGC 7.67 5 Yes 8.75 10 Yes
CostFilter 7.83 6 No 11.25 15 No
ObjectStereo 8.08 7 No 7.92 7 Yes
AdaptingBP 8.42 8 No 4.83 2 Yes
Undr+OvrSeg 8.50 9 No 10.08 13 Yes
DoubleBP 8.83 10 Yes 6.33 4 Yes
WarpMat 9.75 11 No 9.75 12 Yes
GlobalGCP 9.83 12 No 10.92 14 Yes
OutlierConf 10.00 13 No 7.25 5 Yes
RDP 10.42 14 No 7.42 6 Yes
ADCensus 11.33 15 No 4.08 1 Yes

methodology. It computes the Pareto optimal set (denoted as A*) from the set
of algorithms under evaluation (denoted as A), by considering vectors of error
measures [I], [I7]. In this way, the set A* contains those algorithms of comparable
performance among them, and at the same time, of superior performance to
A\A*.

Table Bl shows evaluation results of the error measures and the evaluation
methodologies considered. It can be observed that using the SZE the evaluation
results are significantly different, in both methodologies, to the results obtained
by using the BMP as the error measure. Moreover, the smaller cardinality of the
set A*, when the SZE measure is used, can be attributed to a larger uniformity
in the error measurements.

5 Conclusions

In this paper, the SZE is introduced as a measure for evaluating quantitatively
estimated DM. It is based on the inverse relation between depth and disparity.
The SZE offers advantages over the BMP, since it is focused on the impact
of disparity estimation errors in terms of distance along the Z axis. In this
way, it is related to an error value with a physical interpretation and meaning.
Moreover, the SZE does not require the use of thresholds, which may introduce
bias to the evaluation results. The analysis of different estimated DM shows that,
under different circumstances, the BMP may not reflect properly the accuracy,
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in terms of depth, of the estimated disparity map. On the other hand, the SZE
is consistent with other measures.

Innovative results in relation to algorithms evaluation were obtained when
the SZE was used to support the quantitative evaluation, since it leads to a
different ranking, by using the Middlebury evaluation methodology and a differ-
ent composition of the set A* by using the A* evaluation methodology. Thus,
the algorithms that are reported as achieving the most accurate DM, based on
the BMP measure, may not necessarily correspond to those allowing the most
accurate 3D reconstruction.
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