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Abstract. Level set methods are effective for image segmentation prob-
lems. However, the methods suffer from limitations such as slow conver-
gence and leaking problems. As such, over the past two decades, the
original level set method has been evolved in many directions, including
integration of prior shape models into the segmentation framework. In
this paper, we introduce a new prior shape model for level set segmen-
tation. With a shape model represented implicitly by a signed distance
function, we incorporate a local shape parameter to the shape model.
This parameter helps to regulate the model fitting process. Based on
this local parameter of the shape model, we define a shape energy to
drive the level set evolution for image segmentation. The shape energy
is coupled with a Gaussian kernel, which acts as a weight distribution on
the shape model. This Gaussian effect not only allows evolution of level
set to deform around the shape model, but also provides a smoothing ef-
fect along the edges. Our approach presents a new dimension to extract
local shape parameter directly from the shape model, which is differ-
ent from previous work that focused on an indirect manner of feature
extractions. Experimental results on synthetic, optical and MR images
demonstrate the feasibility of this new shape model and shape energy.

Keywords: image segmentation, level set method, prior shape model,
shape energy.

1 Introduction

Image segmentation is fundamental to image understanding. Although region
and boundary-based segmentation methods have been implemented successfully
in many physical applications, these classical methods still not fully utilize the
image information to achieve their purposes, for example, in clinical applications.
Since its introduction by Osher and Sethian [I0], the level set methods have been
widely used for image segmentation. For highly challenging segmentation tasks
such as tracking moving objects, segmenting occluded scenes and objects of
interest from medical images, level set methods have achieved promising results
when coupled with prior knowledge or prior shape models [6],[7],[12],[14],[16].
When information such as gradient is missing from images, the prior shape
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helps level set evolve toward the desired region of interest. The segmentation is
determined by a dissimilarity measure between the evolving level set function
and the prior shape. Different shape models and shape representations have
been proposed to couple with the level set methods over the past 10 years. For
example, Leventon et al. [9] suggested the representation of a set of training
shapes by the principal component of their signed distance function; Tsai [16]
proposed to carry out optimization directly within the subspace of the first
few eigenmodes. Other examples of shape models for level set can be found in
Rousson and Paragios [12],[13]. However, these models suffer from shortcomings
such as the predefined statistical data distribution might be invalid because it
differs from the actual data distribution [5], or modeling non-linear variability of
the data with linear methods may not be admissible etc. A more comprehensive
review on statistical approaches on integrating shape for level set segmentation
is discussed by Cremer et al [g].

In this paper, we introduce a new shape model and an associated shape en-
ergy for level set segmentation. Our inspirations come from the work presented
by Rousson and Paragios [14]. While Rousson introduces a confidence map to
identify the reliability of shape fitting process during level set evolution, we focus
on extracting local statistical properties from the shape model to enhance the
level set evolution. Our segmentation framework consists of two new features: a
local shape variance and a kernel weighted functional.

2 The Segmentation Framework
2.1 Level Set Method

The level set technique, also known as the implicit deformable model, is by em-
bedding the interface in a higher dimensional scalar function. The interface is
represented implicitly as a level set (usually the zero-th level set) of the intro-
duced scalar function. The rest of the scalar function is defined as the signed
distance function from the interface, i.e., the level set.

Suppose that the level set ¢(x) is evolving in time, i.e., ¢(x(t),t) = 0. Taking
derivative of the last equation with respect to t yields

o

ot + Vao(z(t),t) - 2'(t) = 0.

As the rate of change of x(t) is in the normal direction of the surface, n = \gil’
one can rewrite the equation as

¢

o T FIVel =0,

where F = 2/(¢) - \gil represents the speed function. In recent development
of level set function, the “variational level set method” is introduced: An en-
ergy E(¢) is defined in relation to the the speed function. The minimization of
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such energy which generates the Euler-Lagrange equation, provides the evolution
equation through the calculus of variation:

06 __OE(6)

ot 0¢

Our purpose is to integrate shape energy into this evolution equation, i.e., to
define a speed function for level set evolution with the introduction of local
parameter from a shape model.

2.2 Prior Shape Model

Inspired by Rousson and Paragios [I4], our prior shape model is constructed
from a set of training samples represented implicitly by signed distance functions
{¢1,02,...,0n}. An initial shape model is obtained by taking the average from
these signed distance functions. A re-initialization algorithm [15] is then applied
to this initial shape model to approximate a signed distance function, ¢,,, which
becomes the shape model. In our case, ¢, forms a global parameter of the shape
model. In order to better represent the local information of the shape model,
we use a locally enhance, neighboring dependent variance to capture the local
shape features:

‘Ti*ml'Q
o = Z Z(fi)m() fi)())’

ze{¢=0} z. €U, |Ue|

where U, C ¢y, is a local window surrounding x. This local shape parameter
not only maintains the smoothness of the shape model, but also incorporates
the local features of the shape. The local variance taken around a pixel-wise
neighborhood in the shape model provides an insight into the localized proper-
ties on the signed distance function: larger variance indicates a larger average
distance difference, i.e., a steeper change in the level set function. This has a bet-
ter physical representation in comparison to the variance obtained for voxel-wise
approach in the training samples.

2.3 The Shape Energy

Global variance and variance for shape model were used in various work in
the past. However, these variances might not reflect the desired shape model
information accurately due to variations such as ill alignment of the training
samples, wide range of scaling etc. Under certain extreme circumstances, such
variations might jeopardize the accuracy of level set evolution. Bear in mind of
these limitations, we propose a regularized factor to accompany the energy that
incorporates local statistical features. This regularized term is extracted from the
prior shape model by taking into account the local average of signed distance
function. To achieve our purpose, we use a pixel-wise local statistical variance
from the shape model, 012. This is in line with the localization of the shape model
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whereby information is integrating from local neighborhood. The localization

along the level set shall enhance the control of the edge based stopping functional.
To formulate the shape energy, we adopt the symmetric dissimilarity measure be-

tweentwoshapesproposed by Chanand Zhu [3], Riklin-Raviv [I1], Charpiat [4]:

D(6.60) = | o (H(6) = H(6,) d.

where H (¢) is the Heaviside function. This is then incorporated with an external
energy that drive the zero level set towards the object boundary [1]:

() =) /Q 98(6)|V e de,

where ¢ is the edge indicator function g = and G, is the Gaussian

1
14|V Go#I|2?
kernel with standard deviation o.

The total energy is thus

B(6) =D(6.6) + Er(0)
= [ @) - H@w dz 2 [ g5(6)]79lde
(9 (9

By taking the Gateaux derivative of E(¢), followed by the gradient decent flow
that minimizes the functional

09 oF

ot 0¢’

we obtain the standard evolution equation

o , Vo
oy == (H(®) = H(gm)) 3(6) = A()div <g|w|> '

Now, to incorporate the regularizing effect from shape model’s local parame-

ter into the level set evolution, we consider a variation of the above evolution
equation by multiplying it with a weighted constraint:

1 —(H —H m 2 2 2
w(e) = 20?6 (H(¢)=H(ém))* /207
where o7 is the local variance along the level set. Note that w(¢) acts as a
“weighing” function giving the evolution term (H(¢) — H(¢y,)) 6(4) higher in-
fluence when the difference between the level set and the shape model is larger.
Hence, our level set evolution equation is

06 _ 1 _(H(6)-H(6m))? /207 < B . < Vo )>
ot 20126 (H(¢) — H(pm)) 6(d) + Ad(o)div g|V¢| .
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3 Experimental Results

We implement the proposed framework on synthetic noisy images and optical
images with partial blurring effect as well as MR images of spine. For synthetic
images, we created five synthetic images of various sizes and aspect ratios as
training samples while for optical and MR images, we use four and six training
samples respectively. The classical edge based [I] and region based methods [2]
are used to compare and to highlight the effectiveness of our approach.

In Fig. 1, we show the shape model and local shape variance of the sample
images. The zero level set or shape contour are outlined from the signed distance
function images to show the shape model used in our experiments. The contour
of training samples are plotted on the extracted local shape parameter images.
Images of voxel-wise variance on the shape models are illustrated here for the
purpose of comparison with our proposed local variance information. Unlike the

(a) (b) (c)

Fig. 1. The shape model is outlined in red while the training samples are outlined in
blue. (a) The shape model and (b) variance local used in our proposed prior shape model
for synthetic image (top), optical image (middle) and MR image of spine (bottom)
respectively. (c) The voxel-wise variance are shown as comparison to our proposed
local shape parameter.



130 P.H. Lim, U. Bagci, and L. Bai

voxel-wise variance, this local shape parameter highlights the local variations
of shape model without creating unwanted excessive variation effects outside
the shape model neighborhoods, which happens to the voxel-wise variance. The
absence of these excessive side effect helps to ensure the stability of this local
shape parameter when applying to level set evolutions.

Fig. 2 demonstrates results obtained from the edge based, region based and
shape based approaches respectively. A well known fact on the edge based ap-
proach is its sensitivity to initial contour placement, this can be observed from
the MR image sample, where part of the image contour is badly located when
the initial contour is placed across the edge of region of interest. In addition,
even when the initial contour is placed inside the region of interest, the segmen-
tation result is still not as accurate comparing to the results from our proposed
shape based approach. Obviously the segmentation for synthetic and optical
images by edge based method are not effective because the method cannot han-
dle blurring edges. Although the region based is not sensitive to initial contour
placement, the inhomogeneity of image intensities has caused the mal perfor-
mance of the method on MR image and it is not accurate on blurring edges, as

(a) (b) () (d)

Fig. 2. (a) The initial contour placement used by all the methods for segmentation.
Results obtained by (b) edge based method, (c) region based method and (d) our
proposed shape prior based method for synthetic image (top), optical image (middle)
and MR image of spine (bottom).
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seen on synthetic and optical images. Whereas results from our shape based ap-
proach clearly highlight the region of interest in all sample images and achieved
an average accuracy of 93% when tested on fifteen sample images.

4 Conclusion

We have proposed a new image segmentation framework encompassing area dis-
similarity, shape model and local variance. Our shape model guides the level set
evolution through the introduction of a local shape parameter, together with a
new shape energy. The shape parameter provides localized information that acts
as a moderator for the shape model and in the level set evolution process. Al-
though our work is inspired by by Rousson and Paragios [14], we take a different
path in our approach. Unlike their work whereby emphasis is on capturing the
shape model reliability and alignment during level set evolution, we look closer
into the local property of shape model and to incorporate it into the segmenta-
tion process. In particular, we focus on integrating the local variance of shape
model into the level set evolution for regularizing purposes. The proposed seg-
mentation framework has been tested on synthetic images with added noise and
blurring effect, as well as on MR images of spine. Experimental results on these
images are promising. We merely use one local feature for this work, i.e., the
local variance of shape model. Future work is to explore and encompass more
information from the shape model, for example, the local geometrical features
and to couple it into the level set segmentation framework. Although similar
work has been carried out in the past, somehow the information is extracted
in an indirect manner, i.e., through the principal component analysis of shape
model, and the extracted information are mostly in global sense. With a more
direct approach in acquiring information from shape model, we anticipate to
obtain better shape parameters for level set segmentation.
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