
Recyclable PUFs: Logically Reconfigurable PUFs

Stefan Katzenbeisser1, Ünal Koçabas1, Vincent van der Leest2,
Ahmad-Reza Sadeghi3, Geert-Jan Schrijen2, Heike Schröder1,

and Christian Wachsmann1

1 Technische Universität Darmstadt (CASED), Germany
{katzenbeisser,busch}@seceng.informatik.tu-darmstadt.de,

{unal.kocabas,christian.wachsmann}@trust.cased.de
2 Intrinsic-ID, Eindhoven, The Netherlands

{vincent.van.der.leest,geert.jan.schrijen}@intrinsic-id.com
3 Technische Universität Darmstadt and Fraunhofer SIT Darmstadt, Germany

ahmad.sadeghi@trust.cased.de

Abstract. We introduce the concept of Logically Reconfigurable
Physical Unclonable Functions (LR-PUFs). In contrast to classical Physi-
cally Unclonable Functions (PUFs) LR-PUFs can be dynamically ‘recon-
figured’ after deployment such that their challenge/response behavior
changes in a random manner. To this end, we amend a conventional
PUF with a stateful control logic that transforms challenges and re-
sponses of the PUF. We present and evaluate two different constructions
for LR-PUFs that are simple, efficient and can easily be implemented.
Moreover, we introduce a formal security model for LR-PUFs and prove
that both constructions are secure under reasonable assumptions. Fi-
nally, we demonstrate that LR-PUFs enable the construction of securely
recyclable access tokens, such as electronic tickets: LR-PUFs enhance
security against manipulation and forgery, while reconfiguration allows
secure re-use of tokens for subsequent transactions.

1 Introduction

In the last decades we are witnessing a rapid development and enhancement as
well as an evolution of information technologies: On the one hand, computing
and communication devices tend to become increasingly smaller and physically
highly integrated. On the other hand, the growing usage and interconnection of
millions of devices processing sensitive information raises many new trust and
security challenges. Hence enabling technologies that can uniquely identify an
(embedded) device and use the corresponding identity as a trust anchor in higher
level security architectures are highly desirable. Although modern cryptography
provides many useful tools for authentication and secure channels, it cannot
guarantee the device’s integrity, in particular in presence of hardware attacks.

In this context, Physically Unclonable Functions (PUFs) seem to be promis-
ing primitives that aim to exploit (random) physical variations to extract unique
features of the underlying hardware to uniquely identify a device. The assumed
properties of PUFs such as unclonability, unpredictability and tamper-evidence

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 374–389, 2011.
c© International Association for Cryptologic Research 2011



Recyclable PUFs: Logically Reconfigurable PUFs 375

make them very appealing for deployment in cryptographic applications. Since
their introduction by Pappu [38,39], PUFs have been proposed for secure gener-
ation and storage of strong cryptographic keys (see, e.g., [52,26]), and for emerg-
ing hardware-entangled cryptography [3], where the security of the cryptographic
scheme is based on the physical properties of PUFs instead of mathematical prob-
lems. Moreover, today, there are already PUF-based security products aimed for
the market (e.g., RFID, IP-protection, anti-counterfeiting solutions) [51,16].

So far, most existing PUFs exhibit a static behavior while a variety of ap-
plications greatly benefits from the availability of PUFs whose characteristics
can be changed dynamically, i.e., reconfigured, after deployment: For instance,
PUF-based key storage [52,26] and PUF-based cryptographic primitives [3] may
require that previous secrets derived from the PUF cannot be retrieved any more.
Another example are solutions to prevent downgrading of software [20] by bind-
ing the software to a certain hardware configuration, e.g., a PUF, which require
the PUF behavior to be irreversibly altered upon installation of a software up-
date. Moreover, when PUF-based wireless access tokens1 (e.g., [40,49,37,42,51])
are re-used/recycled, the new users of the token shall not be able to retrieve ac-
cess rights and/or to obtain privacy-sensitive information of the previous users
of the token (see, e.g., [53,17,4]).

Unfortunately, all known implementations of physically reconfigurable PUFs
rely on optical mechanisms, reconfigurable hardware (i.e., FPGAs), or novel
memory technologies [20], which all have serious drawbacks in practice. In par-
ticular, optical PUFs cannot easily be integrated into integrated circuits and
require expensive and error-prone evaluation equipment while FPGA-based so-
lutions cannot be realized with non-reconfigurable hardware (e.g., ASICs) that
is commonly used in practice [29].

Our goal and contributions. In this paper, we propose Logically Reconfigurable
PUFs (LR-PUFs), an alternative construction to physically reconfigurable PUFs.
LR-PUFs augment a physical PUF with a stateful control logic that changes the
challenge/response behavior of the LR-PUF according to its internal state.2 In
particular, our contributions are as follows:

– New constructions: We propose two different constructions for logically re-
configurable PUFs (LR-PUFs). Our performance measurements show that
the implementation overhead of the logical reconfiguration on top of a phys-
ical PUF is rather small.

– Security model: We introduce a formal security model for LR-PUFs and prove
that both of our constructions are secure. More precisely, we show that, when
instantiated by an appropriate physical PUF under reasonable assumptions,

1 PUFs provide a lightweight and cost-effective solution to the problem of detecting
counterfeit or cloned access tokens (e.g., RFID-based electronic tickets) by crypto-
graphically binding a user’s access rights to the physical characteristics of the token.

2 A similar concept has been independently proposed by Lao et al. [22]. However, they
do not provide a (formal) security model and do not discuss the adversary model
and assumptions underlying their constructions.



376 S. Katzenbeisser et al.

our LR-PUFs can achieve both forward- and backward-unpredictability: The
former assures that responses measured before the reconfiguration event are
invalid thereafter, while the latter assures that an adversary with access to a
reconfigured PUF cannot estimate the PUF behavior before reconfiguration.

– Applications: We demonstrate how LR-PUFs could be deployed for re-usable
(recyclable) access tokens, such as electronic transit tickets, and discuss other
envisaged applications of LR-PUFs.

Note that, although the constructions of LR-PUFs as proposed in this paper
seem to be similar to Controlled PUFs [11], LR-PUFs and Controlled PUFs
have very different objectives: In contrast to Controlled PUFs, LR-PUFs do
not aim to prevent modeling attacks on PUFs but provide a practical way to
enable reconfigurability for existing, typically static PUF constructions. We will
elaborate on this aspect in Section 3.

Outline. The rest of the paper is structured as follows: After providing back-
ground information on Physically Unclonable Functions (PUFs) in Section 2, we
present the concept of Logically Reconfigurable PUFs (LR-PUFs) in Section 3.
We show two concrete LR-PUF constructions in Section 4, describe their im-
plementation and evaluate their performance in Section 5, and formally prove
their security in Section 6. In Section 7, we show how LR-PUFs could be used
to realize recyclable access tokens and discuss several other potential use cases
of LR-PUFs. Finally, we conclude in Section 8.

2 Background: Physically Unclonable Functions (PUFs)

A Physically Unclonable Function (PUF) is a noisy function that is embedded
into a physical object, e.g., an integrated circuit [39,2]. When queried with a
challenge w, a PUF generates a response y ← PUF(w) that depends on both
w and the unique device-specific intrinsic physical properties of the object con-
taining PUF(). Since PUFs are subject to noise (e.g., environmental variations),
they return slightly different responses when queried with the same challenge
multiple times.

In literature, PUFs are typically assumed to be robust, physically unclon-
able, unpredictable and tamper-evident, and several approaches to heuristically
quantify and formally define their properties have been proposed (see [2] for a
comprehensive overview). Robustness means that, when queried with the same
challenge multiple times, the same PUF will always return the same response.
Physical unclonability means that it is infeasible to produce two PUFs that can-
not be distinguished based on their challenge/response behavior, which cannot
be achieved by (cryptographic) algorithms. Unpredictability requires that it is
infeasible to predict the PUF response to a given unknown challenge, even if the
PUF can be adaptively queried for a certain number of times. Since this is the
most interesting property for cryptographic applications of PUFs [2], we will for-
mally define unpredictability later, when we prove the security of our LR-PUF
constructions. Tamper-evidence means that any attempt to physically access the



Recyclable PUFs: Logically Reconfigurable PUFs 377

PUF irreversibly changes its challenge/response behavior. This is an important
issue for practical deployment since it allows the detection of invasive hardware
attacks, to which embedded devices are typically exposed to in practice.

A broad variety of different PUF constructions exists (see [29] for an overview).
The most appealing ones for integration into electronic circuits are electronic
PUFs. The most prominent examples of electrical PUFs include delay-based
PUFs that exploit race conditions (arbiter PUFs [23,37,27]) and frequency vari-
ations (ring oscillator PUFs [12,48,30]) that can be found in integrated circuits;
memory-based PUFs that are based on the instability of volatile memory cells
like SRAM [14,15], flip-flops [28,24] and latches [47,19]; and coating PUFs [50],
which are based on the capacitance caused by a special dielectric coating applied
to the chip that houses the PUF.

Note that the amount of unique responses of a memory-based PUF is lim-
ited by the number of its memory cells. Moreover, it has been shown that most
delay-based PUFs are subject to model building attacks that allow simulating
the PUF in software (see, e.g., [23,37,27,41]). To counter this problem, additional
primitives must be used: Controlled PUFs [11] use cryptography in hardware to
hide the actual response of the underlying PUF, which prevents model building
attacks. However, this requires the link between the PUF and the crypto com-
ponent as well as the crypto component itself to be protected against invasive
and/or side channel attacks.

3 Logically Reconfigurable PUFs

A logically reconfigurable PUF (LR-PUF) is a PUF whose challenge/response
behavior depends on both the physical properties of the PUF and the logical state
maintained by a control logic, as shown in Figure 1(a). The challenge/response
behavior of the LR-PUF can be dynamically changed after it has been deployed
by updating its state.

3.1 System Model

An LR-PUF combines a conventional physically unclonable function PUF() and
a control logic circuit. As shown in Figure 1(b), the control logic maintains a
S, which is stored in non-volatile memory, provides an algorithm queryS() for
querying, and rcnf() for reconfiguring the LR-PUF. The algorithm queryS()
consists of an input transformation function mapinS() and an output trans-
formation function mapoutS(): queryS(x) computes w ← mapinS(c), evaluates
y ← PUF(w), and returns r ← mapoutS(y). The algorithm implementing rcnf()
reconfigures the LR-PUF by changing the current state S to a new independent
state S′ ← rcnf().

Note that the generic LR-PUF construction depicted in Figure 1(b) can be
seen as a generalization of controlled PUFs [11]. Controlled PUFs aim to hide
the challenge/response behavior of the underlying PUF to the adversary to pre-
vent model building attacks [11,41] by applying an appropriate mapin() and/or



378 S. Katzenbeisser et al.

Control
Logic

(State S)

PUF

Input

Reconfigure

Output

Challenge Response

(a) LR-PUF concept

Reconfiguration
Algorithm rcnf()

(State S)

Input Transformation
mapinS(·)

Output Transformation
mapoutS(·)

Physically Unclonable
Function PUF(·)

Control Logic

rcnf()

queryS(c) r

Challenge w Response y

State S

(b) Generic LR-PUF construction

Fig. 1. Logically Reconfigurable PUFs: Concept and generic construction

mapout() function. In contrast, LR-PUFs aim to enable reconfigurability for con-
ventional non-reconfigurable PUFs after they have been deployed by entangling
an updatable state with the challenges and/or responses of the underlying PUF.

3.2 Assumptions and Adversary Model

We assume that the underlying PUF is physically unclonable and unpredictable
(see Section 2). The algorithms mapin(), mapout(), and rcnf() are publicly
known. Moreover, the adversary A is assumed to know the current and all
previous states S of the LR-PUF, e.g., by performing hardware attacks like
side-channel or invasive attacks. However, we assume that A cannot force the
control logic to set the LR-PUF state to a specific value, i.e., A cannot change
the state S of the LR-PUF to a value of its choice (e.g., an old LR-PUF state).

For this, it must be assured that (1) rcnf() cannot be manipulated such
that it generates predictable states, and that (2) the non-volatile memory cells
storing the LR-PUF state cannot be set to specific values (e.g., by hardware
attacks). The first requirement can be achieved by implementing the reconfigu-
ration function using a fault injection aware design at a reasonable performance



Recyclable PUFs: Logically Reconfigurable PUFs 379

penalty [31,1]. Moreover, although fault injection attacks against non-volatile
memory (e.g., EEPROM or Flash) have been shown [44], it seems to be difficult
in practice to perform invasive attacks that change the content of specific non-
volatile memory cells without affecting the content of the surrounding cells [45].
Hence, in practice it should be infeasible for an adversary to write a specific value
(e.g., an old LR-PUF state) into the non-volatile memory of the LR-PUF. In
particular, due to the increasing complexity of modern embedded systems and
the fact that technology nodes are progressively getting smaller, the amount
of precision and the quality of the equipment required to successfully perform
such attacks renders them uneconomical in most practical applications (e.g.,
electronic ticketing).

3.3 Security Objectives

As pointed out in Section 2, physical unclonability and unpredictability are fun-
damental security requirements for PUF-based applications. Ideally, an LR-PUF
should resemble a physically reconfigurable PUF. This implies that it should be
infeasible for an adversary A to predict the response to a challenge of an LR-
PUF for some state, even if A knows the responses to this challenge of the same
LR-PUF but for other (e.g., old) states. Here, we must distinguish between the
case where A aims to predict the responses of the LR-PUF for the current state
(e.g., to forge a PUF response in an authentication protocol) or for a previous
LR-PUF state (e.g., to recover an old key bound to the previous LR-PUF state).
Moreover, in most applications of reconfigurable PUFs, it must be infeasible to
set the state of the LR-PUF to a specific value, which would allow resetting the
LR-PUF to a previous state and may help the adversary to predict LR-PUF
responses. We first informally summarize the security requirements of LR-PUFs
below and later give formal definitions and proofs for two different LR-PUF
constructions in Section 6.

– Backward unpredictability: The adversary A cannot predict the response
of the LR-PUF for a previous state S (i.e., before reconfiguration) to a
challenge that has not been queried for the previous state, even if A knows
an adaptively chosen set of challenge/response pairs of the LR-PUF for the
previous state and can adaptively obtain challenge/response pairs of the
LR-PUF for the current state.

– Forward unpredictability: The adversary A cannot predict the response of
an LR-PUF for the current state S to a challenge that has not yet been
queried for the current state, even if A knows an adaptively chosen set
of challenge/response pairs of the LR-PUF for the previous state and can
adaptively obtain challenge/response pairs of the LR-PUF for the current
state (except for the challenge in question).

– Non-resettability: The adversary cannot set the state of the LR-PUF to a
specific value.



380 S. Katzenbeisser et al.

Alg. 1 Speed-optimized LR-PUF
queryS(c)

w ← Hash(S‖c)
y ← PUF(w)

rcnf()

S ← Hash(S)

r ← y

// mapinS(c)

// mapoutS(y)

Return r

Alg. 2 Area-optimized LR-PUF
queryS(c)

rcnf()

S ← Hash(S)

// mapoutS(y)

Return r

wj ← Hash(S‖c‖j)
for j = 0 to n do

yj ← PUF(wj)

r ← (y0‖ . . . ‖yn)
endfor

// mapinS(c)

// mapinS(c)

4 Constructions

In this section, we present two instantiations of our generic LR-PUF construction
described in Section 3. The first construction is optimized for the fast genera-
tion of responses, while the second construction aims for the area constraints
of low-cost devices (e.g., RFID chips) and provides a tradeoff between response
generation time and the amount of area required.

4.1 Speed-Optimized LR-PUF Construction

Our first construction uses a PUF with a large challenge and a large response
space and implements the control logic based on a single collision-resistant hash
function. The challenge space must be large since otherwise it may be possible to
create a complete challenge/response pair (CRP) database, which allows simu-
lating the PUF. A large response space is a fundamental security requirement in
many applications such as PUF-based identification/authentication [52,26] and
hardware-entangled cryptography [3], where it is crucial that the PUF response
to a formerly unknown challenge can be guessed with negligible probability only.

Our first construction is specified in Algorithm 1 and works as follows: When
challenged with queryS(c), the control logic computes w ← Hash(S‖c) and re-
turns y ← PUF(w), i.e., mapinS(c) := Hash(S‖c) and mapoutS(y) := y. To recon-
figure the LR-PUF, rcnf() sets the LR-PUF state to S ← Hash(S).

Since most PUF constructions that support a large challenge space (e.g., ar-
biter PUFs [23,37,27]) typically have only a small response space, several of these
PUFs can be evaluated in parallel on the same challenge, which, however, sig-
nificantly increases the amount of area required for their implementation. The
collision-resistance property of the hash function assures the unpredictability
property of the LR-PUF (see Section 2), as we will show later in the formal
security analysis. Note that the LR-PUF state is just used to parameterize the
hash function and thus needs not to be secret. Hence, to reconfigure the LR-
PUF it is sufficient to hash the previous LR-PUF state to obtain a new and
independent state (assuming the hash function implements a random oracle).



Recyclable PUFs: Logically Reconfigurable PUFs 381

4.2 Area-Optimized LR-PUF Construction.

Our first LR-PUF construction described in Section 4.1 typically requires multi-
ple parallel PUFs. Hence, we propose a second construction using just one single
PUF that is evaluated sequentially n times to generate an n bit LR-PUF re-
sponse, providing a tradeoff between area consumption and response generation
speed. The intuition of this second construction is very similar as for the speed-
optimized construction described in Section 4.1. Note that the underlying PUF
must be queried with different challenges to generate a large response consist-
ing of different (ideally) independent bits. This can be achieved by including a
counter j as additional input to the hash function that now generates a sequence
of PUF challenges wj from the LR-PUF challenge c and the current LR-PUF
state S. The corresponding PUF responses yj are then concatenated to form the
response r of the LR-PUF.

Our second construction is specified in Algorithm 2 and works as follows:
On queryS(c), the control logic computes mapinS(c) as wj ← Hash(S‖w‖j) for
j ∈ {0, . . . , n}, evaluates yj ← PUF(wj), and mapoutS() returns r ← (y0‖ . . . ‖yn).
To reconfigure the LR-PUF, rcnf() sets the LR-PUF state to S ← Hash(S).

5 Implementation and Performance Evaluation

Both constructions presented in Section 4 are based on PUFs with a large chal-
lenge space. The only existing electronic PUFs that provide this feature seem
to be arbiter PUFs [23,13]. The hash function of the control logic can be imple-
mented efficiently by using a lightweight block cipher.

We implemented a prototype of both of our LR-PUF constructions on a Xilinx
Spartan-6 FPGA board. We instantiated the underlying PUF based on arbiter
PUFs that support 64 bit challenges and generate 1 bit responses, following
the approach in [46]. The hash function of the control logic is based on the
PRESENT block cipher [5] in Davies-Meyer mode [21]. Both resulting LR-PUF
implementations use 80 bit challenges and generate 64 bit responses.

Table 1. Performance results of the LR-PUF constructions presented in Section 4

Optimization Response time Area consumption in slices (gate equivalents)
in clock cycles Control logic Arbiter PUF Total

Speed 1069 166 (1162 GE) 4288 (29056 GE) 4454 (30218 GE)
Area 64165 358 (2506 GE) 67 (454 GE) 425 (2960 GE)

We evaluated our implementation with regard to response generation speed
and area consumption. Our results are summarized in Table 1. The second col-
umn shows the time in number of clock cycles required to compute an LR-PUF
response r. The remaining columns show the number of slices and gate equiv-
alents (GE) required to implement the control logic, the PUF, and the overall
construction. The area estimation does not include the non-volatile memory for



382 S. Katzenbeisser et al.

storing the LR-PUF state, which cannot be implemented on FPGA. Our results
show that the area-optimized construction requires only about 10% of the area
of the speed-optimized construction but is 60 times slower.

Note that our implementation is meant to demonstrate the feasibility of our
approach and to obtain performance results. Due to the technical constraints of
FPGAs, our implementation does not cover the non-volatile memory for storing
the LR-PUF state, which is emulated by providing the state as an input to the
FPGA. Moreover, our implementation is based on arbiter PUFs, which do not
have the unpredictability property [41] that is required for the security of our
constructions. To securely implement our LR-PUF constructions, the underlying
PUF must be unpredictable (e.g., a Controlled PUF [11] can be used) and the
non-volatile memory and control logic should be protected against fault-injection
attacks, e.g., by applying the techniques described in [31,1].

6 Security Definitions and Evaluation

In this section we formally define the LR-PUF security properties of forward- and
backward-unpredictability and show that both are fulfilled by the constructions
proposed in Section 4. To this end, we first formalize the security property of
unpredictability of a standard PUF.

Unpredictability of a PUF. Along the lines of [2] we define unpredictability of
a PUF in terms of an unpredictability game between an adversary A and a
challenger C. A is first given a PUF and is allowed to query it at most q times.
This step allows to model adversaries that are able to “learn” challenge/response
pairs (CRPs) either by direct physical access to the interface of the PUF or by
eavesdropping on messages containing PUF challenges and responses. At the end
of the game, A is required to output a (non-trivial) valid pair of a PUF challenge
and response.

Unpredictability Game of a PUF
Setup: The challenger C issues the PUF to the adversary A.
Queries: Proceeding adaptively,A queries the PUF at most q times on challenges

wi (for 1 ≤ i ≤ q). For each query, yi ← PUF(wi) is given to A.
Output: Eventually, A outputs a challenge/response pair (w∗, y∗).

Let Q denote the set of all challenges issued by A. We say that A wins the
game, if y∗ is a valid PUF response to PUF(w∗) and w∗ �∈ Q. Conversely, a
PUF is unpredictable, if no efficient adversary A is able to win the game with
significant success probability:

Definition 1. A PUF is (q, ε)-unpredictable, if no probabilistic polynomial ad-
versary A that makes at most q queries to the LR-PUF is able to win the un-
predictability game with a probability greater than ε.



Recyclable PUFs: Logically Reconfigurable PUFs 383

Backward- and Forward-Unpredictability of an LR-PUF. We define backward-
and forward-unpredictability in terms of a two-stage game between an adver-
sary A and a challenger C. In the first stage, A is given oracle access (i.e., access
to the interface) of the LR-PUF, from which A can obtain challenge/response
pairs (CRPs) at will. This stage models the ability of A to obtain challenges and
responses (with respect to a fixed internal LR-PUF state) by passive eavesdrop-
ping. We also give A access to the internal LR-PUF state S in order to model
hardware attacks against the LR-PUF implementation. Once A has learned
enough CRPs, the challenger performs the reconfiguration operation and finally
gives A oracle access to the reconfigured LR-PUF such that A can obtain CRPs
of the reconfigured LR-PUF. At the end of the game, A outputs a prediction
(c∗, r∗) of an LR-PUF challenge/response pair.

More formally, A = (AL,AC) consists of two probabilistic polynomial time
algorithms, where AL interacts with the LR-PUF before reconfiguration and AC

thereafter. A engages in the following experiment:

Backward- and Forward-Unpredictability Game of an LR-PUF
Setup: The challenger C sets up an LR-PUF by choosing a random state S,

which is given to the adversary A = (AL,AC).
Phase I: AL is allowed to call queryS() of the LR-PUF up to qL times. At the

end of phase I, AL stops and outputs a log file st that is used as input to
AC . We denote with QL the set of challenges issued by AL during phase I.

Reconfiguration: C reconfigures the LR-PUF by calling rcnf(), which updates
the internal LR-PUF state to S′.

Phase II: AC is initialized with log file st from AL and the LR-PUF state S′.
AC is allowed to query the reconfigured LR-PUF queryS′() up to qC times
on arbitrary challenges. We denote with QC the set of challenges issued by
AC during phase II.

Output: AC outputs a challenge/response pair (c∗, r∗) of the LR-PUF.

Depending on whether we consider backward- or forward-unpredictability, we
can state different conditions of an adversary being successful: A wins the back-
ward-unpredictability game if r∗ is a valid LR-PUF response to queryS′(c∗)
and c∗ �∈ QC . Thus, once the LR-PUF has been reconfigured, the adversary
cannot output a (non-trivial) challenge/response pair for the reconfigured LR-
PUF. Conversely, A wins the forward-unpredictability game if r∗ is a valid LR-
PUF response to queryS(c∗) and c∗ �∈ QL. Thus, an adversary, who has access
to a reconfigured LR-PUF cannot predict (non-trivial) responses of the LR-PUF
before reconfiguration happened. We say that an LR-PUF is backward- (resp.
forward-) unpredictable, if no efficient adversary A is able to win the game with
significant success probability:
Definition 2 (Backward- and Forward-Unpredictability). An LR-PUF
is (qL, qC , ε)-backward unpredictable (resp. forward-unpredictable), if no proba-
bilistic polynomial adversary A that makes at most qL queries in phase I and at
most qC queries in phase II, is able to win the backward-unpredictability (resp.
forward-unpredictability) game with a probability greater than ε.



384 S. Katzenbeisser et al.

Both constructions of Section 4 achieve backward- and forward- unpredictability:

Proposition 1. The speed-optimized LR-PUF construction shown in Section 4.1
is (qL, qC , ε)-backward unpredictable (resp. forward-unpredictable), if Hash() is
collision-resistant and the underlying PUF is (qL + qC , ε)-unpredictable.

Proposition 2. The area-optimized LR-PUF construction shown in Section 4.2
is (qL, qC , ε)-backward unpredictable (resp. forward-unpredictable), if Hash() is
collision-resistant and the underlying PUF is (n(qL + qC) , ε)-unpredictable.

The proofs of both propositions follow from the standard reductionist approach
and can be found in the full version of this paper [18]. In particular, we show that
any adversary A against the LR-PUF can be converted into an adversary B that
either breaks the collision resistance of the hash function or the unpredictability
of the underlying physical PUF. To this end, B simulates A: Whenever A makes
an LR-PUF query, B simulates this query by help of his PUF oracle, i.e., B
transforms the challenges received from A by using the (known) internal LR-
PUF state, queries the physical PUF on the transformed challenge and returns
the obtained response to A. Once the simulation stops, it can easily be seen that
either a hash collision or a valid prediction of a challenge/response pair of the
physical PUF can be extracted from A’s output.

7 Applications

7.1 LR-PUF-Based Authentication Tokens

Electronic payment and ticketing systems have been gradually introduced in
many countries over the past few years (see, e.g., [35,7,33]). Typically, these sys-
tems are using RFID-enabled tokens and provide different types of electronic
transit tickets. Given the typically large number of tickets used in an electronic
transit ticket system and the costs per token (typically between 1-3 Euro), from
an economic perspective it may be worthwhile to consider recycling of RFID-
based tickets. In fact, some systems (e.g., the Dutch transportation system [36])
allow recharging RFID-based tickets with money and to returning used tickets
to the vendor with possible restitution of preloaded money left on the ticket.
Moreover, many U.S. and European governments make manufacturers and im-
porters of electronic products responsible for the disposal of their products when
discarded by the consumer (see, e.g., [6,9]). In this context, recyclable tokens can
help to save waste disposal costs and to reduce the amount of electronic waste.
In this section, we discuss how LR-PUFs could be used to enhance the security
of electronic ticketing and payment systems while at the same time enabling
secure and privacy-preserving recycling of used RFID-tickets.

There are several proprietary solutions for electronic tickets in practice. Most
of them are based on widely used RFID tokens, where the most prominent exam-
ple is the MiFare family produced by NXP Semiconductors [34]. There are several
hard- and software attacks against MiFare Classic tokens [32,43,10], which use a



Recyclable PUFs: Logically Reconfigurable PUFs 385

proprietary encryption algorithm that has been completely broken [8]. However,
other MiFare products are claimed not to be affected. A recent attack on MiFare
Classic 4K chipcards concerns the Dutch electronic payment and transit ticket
system [36]: Using a MiFare compatible card reader and a software from the
Internet, an average user can add debit to his RFID-based transit ticket without
being detected [54,25].

In this context, PUFs could provide a cost-effective security mechanism:
Authentication based on PUFs can prevent copying and manipulating the in-
formation (i.e., the debit of the RFID-based ticket and/or the user’s rights) by
cryptographically binding this data to the physical characteristics of the underly-
ing RFID chip. Existing PUF-based authentication schemes (see, e.g.,
[40,15,37,42,51]) typically assume each device, i.e., each RFID-based token T ,
to be equipped with a PUF, whereas the verifier V maintains a database D, i.e.,
a set if challenge/response pairs (CRPs) of each ticket. In the authentication
protocol, V chooses a random challenge from D and sends it to T , which then
returns some response. V accepts if the response of T matches the one in D.

Using LR-PUFs instead of non-reconfigurable PUFs would allow for
cost-effective, secure and privacy-preserving recycling of RFID-based tickets:
By reconfiguring the LR-PUF all information and access rights bound to T
are securely “erased”, which cannot be achieved with non-reconfigurable PUFs.
However, reconfiguring the LR-PUF invalidates the CRP database D of V , which
means that after each reconfiguration of T a new CRP database must be estab-
lished. To counter this problem, V could know the LR-PUF state S of each token
and maintain a CRP database D′ of the PUF underlying the LR-PUF, which can
be seen as the “authentication secrets” of the token. This is common in ticketing
applications because usually the verifier is the ticket issuer who typically knows
the authentication secrets of all tokens. Since the algorithms of the control unit,
i.e., the input and output transition functions mapin() and mapout(), respec-
tively, and the state update algorithm rcnf(), are publicly known, V could use
D′ to recompute the LR-PUF response for any state of T and compare it to the
response sent by T . V accepts if the response of T matches the one recomputed
based on D′ and S.

7.2 Other Applications Envisaged

Many airlines have started to move from paper-based tickets to electronic tick-
ets. However, they still print luggage tags, which are increasingly equipped with
disposable RFID chips. The purpose of these chips is to ease the tracking of in-
dividual luggage in the process of loading. However, RFID-enabled labels could
be read out even without visual contact. This may allow several attacks rang-
ing from copying luggage tags to smuggle in additional luggage in the name
of another passenger. Moreover, RFID-enabled luggage tags may disclose per-
sonal information on their owner (e.g., name, number of luggage pieces, luggage
weight), which could be used to track the user on the airport or provide useful
information to luggage thieves. To solve these problems, travellers could pur-
chase or rent a more powerful LR-PUF-enabled RFID token that is put into the



386 S. Katzenbeisser et al.

luggage or that could even be embedded into new generations of suitcases. Each
time the traveller checks in, his RFID-based tag is reconfigured by the airline
attendant, which securely erases the previous information stored on it. This pre-
vents tracking the traveler for more than one flight and impedes misrouting of
luggage due to old travel information. Further, to avoid illegitimate tracking of
travellers, the RFID-enabled luggage tag could be reconfigured or temporarily
disabled once the passenger leaves the baggage claim area.

One can find many other applications that could take advantage of LR-PUFs.
Examples include, secure deletion and/or update of cryptographic secrets in
PUF-based key storage [52,26] and hardware-entangled cryptography [3], where
the reconfiguration of the PUF ensures that old secrets cannot be retrieved any
more. Another example are solutions to prevent downgrading of software [20] by
binding the software to the PUF, where reconfiguring the PUF invalidates the
old software version such that only the latest version can be used.

8 Conclusion

In this paper, we have proposed the concept of logically reconfigurable PUFs,
which utilize a control logic to enable dynamic reconfigurability for existing,
typically static PUFs. We introduced two different constructions to realize LR-
PUFs: Our first construction is optimized for response generation speed, while
our second construction aims for resource-constrained embedded devices (like
RFID tags). Furthermore, we have shown that both constructions achieve the
security properties of backward- and forward unpredictability, which are two
desirable properties in the context of PUF-based cryptographic applications like
key storage, device identification, and hardware-entangled cryptography. Finally,
we showed how LR-PUFs could be applied in the context of recyclable (access)
tokens to enhance the security properties of existing solutions while providing a
means for secure recycling of PUF-based access tokens.

Acknowledgements. We thank our anonymous reviewers for their helpful com-
ments, Patrick Koeberl and Jérôme Quevremont for several useful discussions
on hardware attacks and use cases, and Timm Korte for providing us his imple-
mentation of PRESENT. This work has been supported in part by the European
Commission under grant agreement ICT-2007-238811 UNIQUE.

References

1. Akdemir, K.D., Wang, Z., Karpovsky, M.G., Sunar, B.: Design of cryptographic
devices resilient to fault injection attacks using nonlinear robust codes. In: Fault
Analysis in Cryptography (2011)

2. Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A formal
foundation for the security features of physical functions. In: IEEE Symposium on
Security and Privacy, pp. 397–412. IEEE Computer Society, Los Alamitos (2011)



Recyclable PUFs: Logically Reconfigurable PUFs 387

3. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)

4. Armknecht, F., Sadeghi, A.R., Visconti, I., Wachsmann, C.: On RFID privacy with
mutual authentication and tag corruption. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 493–510. Springer, Heidelberg (2010)

5. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

6. Californians Against Waste: E-waste laws in other states (April 2011),
http://www.cawrecycles.org/issues/ca_e-waste/other_states

7. Calypso Networks Association: Website (April 2011),
http://www.calypsonet-asso.org/

8. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream
cipher in MiFare Classic and Oyster Cards. Cryptology ePrint Archive, Report
2008/166 (2008)

9. European Commission: Waste electrical and electronic equipment website (April
2011), http://ec.europa.eu/environment/waste/weee/index_en.htm

10. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

11. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random
functions. In: Computer Security Applications Conference, pp. 149–160. IEEE
Computer Society, Los Alamitos (2002)

12. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: ACM Conference on Computer and Communications Security
(ACM CCS), pp. 148–160 (2002)

13. Gassend, B., Lim, D., Clarke, D., van Dijk, M., Devadas, S.: Identification and
authentication of integrated circuits. Concurrency and Computation: Practice and
Experience 16(11), 1077–1098 (2004)

14. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

15. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Conference on RFID Security
(RFIDSec) (2007)

16. Intrinsic ID: Product webpage (April 2011),
http://www.intrinsic-id.com/products.htm

17. Juels, A.: RFID security and privacy: A research survey. Journal of Selected Areas
in Communication 24(2), 381–395 (2006)

18. Katzenbeisser, S., Ünal Kocabas, van der Leest, V., Sadeghi, A.R., Schrijen, G.J.,
Schröder, H., Wachsmann, C.: Recyclable PUFs: Logically reconfigurable PUFs
(full version) (June 2011), http://www.trust.cased.de/

19. Kumar, S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: Extended ab-
stract: The butterfly PUF protecting IP on every FPGA. In: IEEE Workshop
on Hardware-Oriented Security and Trust (HOST), pp. 67–70 (2008)

20. Kursawe, K., Sadeghi, A.R., Schellekens, D., Tuyls, P., Scoric, B.: Reconfigurable
physical unclonable functions — Enabling technology for tamper-resistant stor-
age. In: IEEE International Workshop on Hardware-Oriented Security and Trust
(HOST), pp. 22–29. IEEE Computer Society, San Francisco (2009)

http://www.cawrecycles.org/issues/ca_e-waste/other_states
http://www.calypsonet-asso.org/
http://ec.europa.eu/environment/waste/weee/index_en.htm
http://www.intrinsic-id.com/products.htm
http://www.trust.cased.de/


388 S. Katzenbeisser et al.

21. Lai, X., Massey, J.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

22. Lao, Y., Parhi, K.K.: Novel reconfigurable silicon unclonable functions. In: Work-
shop on Foundations of Dependable and Secure Cyber-Physical Systems (FDSCPS)
(April 11, 2011)

23. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
application. In: Symposium on VLSI Circuits, pp. 176–179 (2004)

24. van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing
(ACM STC), pp. 53–62 (2010)

25. Letter from Dutch minister on OV-chipkaart,
https://zoek.officielebekendmakingen.nl/dossier/32440/kst-23645-415.
html

26. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Transactions on VLSI Systems 13(10),
1200–1205 (2005)

27. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power
sub-threshold design of secure physical unclonable functions. In: ACM/IEEE In-
ternational Symposium on Low Power Electronics and Design (ISLPED), pp. 43–48
(2010)

28. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: Workshop on Information and System Security (WISSec), p. 17
(2008)

29. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state
of the art and future research directions. In: Sadeghi, A.R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp.
3–37. Springer, Heidelberg (2010)

30. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characteriza-
tion of RO-PUF. In: IEEE Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 94–99 (2010)

31. Monnet, Y., Renaudin, M., Leveugle, R.: Designing resistant circuits against mali-
cious faults injection using asynchronous logic. IEEE Trans. Comput. 55, 1104–1115
(2006), http://dx.doi.org/10.1109/TC.2006.143

32. Nohl, K., Plötz, H.: MiFare — Little security despite obscurity (2007),
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html

33. NXP Semiconductors: MiFare applications (April 2008),
http://www.mifare.net/applications/

34. NXP Semiconductors: MiFare smartcard ICs (February 2011),
http://www.mifare.net/products/smartcardics/

35. Octopus Holdings: Website (April 2011), http://www.octopus.com.hk/en/
36. OV-Chipkaart: Website (April 2011), http://www.ov-chipkaart.nl/
37. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for

pervasive devices. In: IEEE International Conference on Pervasive Computing and
Communications (PERCOM 2008). IEEE Computer Society, Los Alamitos (2008)

38. Pappu, R.S.: Physical one-way functions. Ph.D. thesis, Massachusetts Institute of
Technology (March 2001)

39. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297, 2026–2030 (2002)

https://zoek.officielebekendmakingen.nl/dossier/32440/kst-23645-415.html 
https://zoek.officielebekendmakingen.nl/dossier/32440/kst-23645-415.html 
http://dx.doi.org/10.1109/TC.2006.143
http://events.ccc.de/congress/2007/Fahrplan/events/2378.en.html
http://www.mifare.net/applications/
http://www.mifare.net/products/smartcardics/
http://www.octopus.com.hk/en/
http://www.ov-chipkaart.nl/


Recyclable PUFs: Logically Reconfigurable PUFs 389

40. Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: Modest propos-
als for low-cost RFID systems. In: Auto-ID Labs Research Workshop (September
2004)

41. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: ACM conference on Computer
and communications security (ACM CCS), pp. 237–249 (2010)

42. Sadeghi, A.R., Visconti, I., Wachsmann, C.: PUF-enhanced RFID security and
privacy. In: Workshop on Secure Component and System Identification, SECSI
(2010)

43. Schreur, R.W., van Rossum, P., Garcia, F., Teepe, W., Hoepman, J.H., Jacobs, B.,
de Koning Gans, G., Verdult, R., Muijrers, R., Kali, R., Kali, V.: Security flaw in
MiFare Classic (March 2008),
http://www.sos.cs.ru.nl/applications/rfid/pressrelease.en.html

44. Skorobogatov, S.: Semi-invasive attacks — A new approach to hardware security
analysis. Technical Report UCAM-CL-TR-630, University of Cambridge, 15 JJ
Thomson Avenue, Cambridge CB03 0FD, UK (April 2005)

45. Skorobogatov, S.: Local heating attacks on Flash memory devices. In: IEEE Inter-
national Workshop on Hardware-Oriented Security and Trust (HOST 2009), pp.
1–6. IEEE, Los Alamitos (July 27, 2009)

46. Soybali, M., Ors, B., Saldamli, G.: Implementation of a PUF circuit on an FPGA.
In: IFIP International Conference on New Technologies Mobility and Security
(2011)

47. Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit 96% stable chip-ID generating circuit
using process variations. In: IEEE International Solid-State Circuits Conference
(ISSCC), pp. 406–611 (2007)

48. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Design Automation Conference, pp. 9–14 (2007)

49. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

50. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

51. Verayo, Inc.: Product webpage (April 2011),
http://www.verayo.com/product/products.html

52. Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

53. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 50–
59. Springer, Heidelberg (2004)

54. Wikipedia: OV-Chipkaart, http://en.wikipedia.org/wiki/OV-chipkaart

http://www.sos.cs.ru.nl/applications/rfid/pressrelease.en.html
http://www.verayo.com/product/products.html
http://en.wikipedia.org/wiki/OV-chipkaart

	Recyclable PUFs: Logically Reconfigurable PUFs
	Introduction
	Background: Physically Unclonable Functions (PUFs)
	Logically Reconfigurable PUFs
	System Model
	Assumptions and Adversary Model
	Security Objectives

	Constructions
	Speed-Optimized LR-PUF Construction
	Area-Optimized LR-PUF Construction.

	Implementation and Performance Evaluation
	Security Definitions and Evaluation
	Applications
	LR-PUF-Based Authentication Tokens
	Other Applications Envisaged

	Conclusion




