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Abstract. We propose a novel privacy preserving learning algorithm
that achieves semi-supervised learning in graphs. In real world networks,
such as disease infection over individuals, links (contact) and labels (in-
fection) are often highly sensitive information. Although traditional semi-
supervised learning methods play an important role in network data
analysis, they fail to protect such sensitive information. Our solutions
enable to predict labels of partially labeled graphs without disclosure
of labels and links, by incorporating cryptographic techniques into the
label propagation algorithm. Even when labels included in the graph are
kept private, the accuracy of our PPLP is equivalent to that of label
propagation which is allowed to observe all labels in the graph. Empiri-
cal analysis showed that our solution is scalable compared with existing
privacy preserving methods. The results with human contact networks
showed that our protocol takes only about 10 seconds for computation
and no sensitive information is disclosed through the protocol execution.

Keywords: privacy preserving data mining, semi-supervised learning.

1 Introduction

Label prediction of partially labeled graphs is one of the major machine learning
problems. Graph-based semi-supervised learning is useful when link information
is obtainable with lower cost than label information. Prediction of protein func-
tions is one familiar example [12]. In this problem, the functions and similarities
of proteins correspond to the labels and node similarities, respectively. Amassing
information about the protein functions requires expensive experimental analy-
ses, while protein similarities are often obtained computationally, with a lower
cost. Taking advantage of this gap, the semi-supervised approach successfully
achieves better classification accuracy, even when only a limited number of la-
beled examples is obtainable.

The key observation of this study is that the difficulty of preparing label
information is not only its cost, but also its privacy. Even when a large number
of labels have already been collected, the labels might not be observed or may
require extreme caution in handling. In this paper, we consider label prediction
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in a situation where the entire graph cannot be observed by any entities, due to
privacy reasons. Such a situation is often found in networks among social entities,
such as individuals or enterprises, in the real world. The following scenarios pose
intuitive examples where privacy preservation is required in label prediction.

Consider a physical contact network of individuals, in which individuals and
their contacts correspond to nodes and links, respectively. Suppose an infectious
disease is transmitted by contact. Some of the individuals have tested their infec-
tion states. Regarding infection states as node labels, semi-supervised learning is
expected to predict the infection states of untested individuals, by exploiting the
existing test results and the contact network. However, the contact information
between individuals and their infection states can be too sensitive to disclose.

In this scenario, both the labels and the links must be kept private. In order
to formulate such situations, we consider three types of typical privacy models.
The first model, referred to as the public model, assumes that each node discloses
its label and links to all other nodes. One example of this model is social network
services such as facebook or LinkedIn, when the privacy policy is set as “everyone
can see everything”. Users (nodes) disclose their friends (links) and status (node
labels), such as their education or occupations, to every user.

The second model, referred to as the label-aware model, assumes each node
discloses its label and links only to the nodes that it is linked to. Let the node
labels correspond to the flu infection states in the contact network. We can
naturally assume that each individual (node) is aware of the individuals with
whom he/she had contact before (links) and whether or not they had the flu
(labels of the nodes it is linking to), but he/she would never know the contact
information or the infection states of individuals he/she has never met.

The third model, referred to as the label-unaware model, assumes that each
node does not disclose any links or labels to others. Consider the contact net-
work again. Let links and labels correspond to sexual relationships and sexually
transmitted infections, respectively. In such a case, no one would disclose their
links and label to others; the label may not be disclosed even to individuals with
whom he/she had a relationship.

In addition, asymmetries of relationships need to be considered. For example,
in a business network whose links correspond to the ratio of the stock holdings,
a directed graph should be used to represent the scope of observation. Thus, the
privacy model to be employed depends on the nature and the sensitivity of the
information in the graphs.

Related Works. Existing label prediction methods are designed with the im-
plicit assumption that a supervisor exists who can view anything in the graph
(the public model). If we could introduce a trusted third party (TTP)1 as a
supervisor, then any label prediction algorithms, such as TSVM [8] or Clus-
ter kernel [12], would immediately work in the label-(un)aware model; however,
facilitating such a party is unrealistic in general (Table 1, the first line).

1 TTP is a party which never deviates from the specified protocol and does not reveal
any auxiliary information.
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Table 1. Comparison of label prediction methods. Δ: the maximum number of links
of a node, T : the number of iterations of each algorithm.

method privacy model comp. cost

TSVM , Cluster kernel public —
k-NN label-aware O(Δ log Δ)
LP label-aware O(ΔT )

LP/SFE label-unaware O(poly)

PPLP (proposal) label-unaware O(ΔT )

The k-nearest neighbor (kNN) method predicts labels from the labels of the
k-nearest nodes; kNN works in the label-aware model (Table 1, the second line).
Label propagation (LP) [15] achieves label prediction in the label-aware model,
when algorithms are appropriately decentralized (Table 1, the third line, see
Sect. 3.2 for details). Note that even if it is decentralized, each node has to
disclose its labels to the neighboring nodes. That is, kNN and LP do not work
in the label-unaware model.

Secure function evaluation (SFE) [13], also referred to as Yao’s garbled cir-
cuits, is a methodology for secure multiparty computation. Using SFE, any func-
tion, including label prediction methods, can be carried out without revealing
any information except for the output value. That is, SFE allows execution of
label prediction in the label-unaware model (Table 1, the fourth line). Although
the computational cost of SFE is polynomially bounded, it can be too inefficient
for practical use. We implemented label prediction on SFE (LP/SFE), and the
efficiency of SFE is discussed with experiments in Sect. 6.

Privacy-preserving computations for graph mining are discussed in [4,10].
Both of them calculate HITS and PageRank from networks containing private
information. They compute the principal eigenvector of the probability transi-
tion matrix of networks without learning the link structure of the network. Our
solution for label prediction is similar to above link analyses in the sense that
both of them consider computation over graphs containing private graph struc-
tures. However, the target of their protocols and ours are different; their protocol
computes node ranking while our protocol aims at node label prediction.

Our Contribution. As discussed above, no label prediction methods that work
efficiently in the label unaware model have been presented. We propose a novel
solution for privacy preserving label prediction in the label-unaware model. Com-
parisons between our proposal and existing solutions are summarized in Table
1. First, we formulate typical privacy models for labeled graphs (Sect. 2). Then,
a label propagation algorithm that preserves the privacy in the label-unaware
model is presented (Sect. 5). Our proposal theoretically guarantees that (1) no
information about links and labels is leaked through the entire process, (2) the
predicted labels as the final output are disclosed only to the node itself, and
(3) the final output is exactly equivalent to that of label propagation. Con-
nections to our protocol and differential privacy are also discussed in Sect. 5.3.
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The experiments show that the computational time of our proposal is more than
100 times shorter than that of LP/SFE. We also examined our proposal using
the real social network data (Sect. 6).

2 Privacy in Labeled Graphs

In this section, we first formulate the label prediction problems with graphs.
Then we define privacy models of graphs; the secure label prediction problem is
formulated using these models.

2.1 Labeled Graph

In a network of social entities, the links and labels can be private. In order to
formulate the privacy in graphs, we introduce graph privacy models, assuming
that each node in the graph is an independent node whose computational power
is polynomially bounded.

Let G = (V, E) be a graph where V = {1, . . . , n} is a set of nodes and
E = {eij} is a set of links. Link eij has nonnegative weight wij ; the weight
matrix is W = (wij). If eij �∈ E, wij = 0. In directed graphs, we denote the
nodes linked from node i as Nout(i) = {j|j ∈ V, eij ∈ E}; the nodes linking to
node i are denoted as Nin(i) = {j|j ∈ V, eji ∈ E}. In undirected graphs, the
nodes linking to node i and the nodes linked from node i are identical. So we
denote N(i) = Nin(i) = Nout(i).

In this study we consider wegited labeled graphs without disconnected sin-
gleton nodes. Typically, the node label is represented as an element of a finite
set {1, . . . , h}. To facilitate the computations introduced later, we introduce the
label matrix F = (fik) ∈ R

n×h to represent the node labels. The i-th row of F
represents the label of node i. The node is labeled as s, if s = arg max1≤k≤h fik.

Thus, links, link weights, and labels of graphs are represented as matrices. In
order to define which part of a matrix is observable from a node and which is
not, three different matrix partitioning models are introduced. Then, the graph
privacy models are defined, based on the matrix partitioning models.

2.2 Matrix Partitioning Model

Let there be a set of n nodes V and a matrix M ∈ R
n×r. Let the ith row of M

by mi∗; the ith column by m∗i. Suppose M is partitioned into n parts, and each
node in V is allowed to observe a different part of the matrix privately. We used
the following typical patterns of partitioning [10].

Definition 1. (row private) Let there be a matrix M ∈ R
n×r and n nodes. For

all i, if the ith node knows the ith row vector mi∗, but does not know other row
vectors mp∗ where p �= i, then M is row private.

Definition 2. (symmetrically private) Let there be a square matrix M ∈ R
n×n

and n nodes. For all i, if the ith node knows the i-th row vector mi∗ and the
i-th column vector m∗i, but does not know other elements mpq where p or q �= i,
then M is symmetrically private.
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Label-aware undir. PWG Label-unaware undir. PWG

Label-aware dir. PWG Label-unaware dir. PWG

Fig. 1. Graph privacy models. Links, link weights wij , and label fik that are private
from node i are depicted as gray.

We define an expansion of row private, in which node i is allowed to observe
specified rows of M.

Definition 3. (U(i)-row private) Let there be a matrix M ∈ R
n×r and n nodes.

Let U(i) ⊆ V . For all i, if the ith node knows the jth row vector mj∗ where
j ∈ U(i) ∪ {i}, but does not know other row vectors mp∗ where p �∈ U(i) ∪ {i},
then M is U(i)-row private.

2.3 Graph Privacy Model

Graph privacy models define the restriction of the observation of link weights W
and labels F from each node, based on these matrix partitioning models.

Definition 4. (label-aware undirected PWG) Let G = (V, E) be an undirected
graph with weight matrix W and label matrix F. If W is symmetrically private
and F is N(i)-row private, then G is a label-aware undirected private weighted
graph (PWG).

In this model, W is symmetrically private. It follows that node i is allowed to
learn the nodes that node i is linking to/linked to from and the link weights
thereof. Besides, label matrix F is row-N(i) private. It follows that node i is
allowed to learn the labels of the nodes that node i is linking to/linked to from.
Fig 1 gives the schematic description of this graph privacy model.
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Table 2. Matrix partitioning of graph privacy models

graph privacy model W F

label-aware undirected PWG symmetry private N(i)-row private
label-unaware undirected PWG symmetry private row private

label-aware directed PWG row private Nout(i)-row private
label-unaware directed PWG row private row private

Definition 5. (label-unaware undirected PWG) In Definition 4, if F is row pri-
vate, then G is a label-unaware undirected private weighted graph.

The difference in the above two models is in the matrix partitioning model of label
matrix F. Node i is allowed to learn its neighbors’ labels in label-aware undirected
PWGs, while node i is allowed to learn only its own node label in label-unaware
undirected PWGs. Recall the contact network whose nodes are labeled with in-
fection states. If the labels correspond to the flu state, then the label-aware undi-
rected PWG would be appropriate. On the other hand, if the labels correspond to
disease state of sexually transmitted infection, then the label information should
be handled in the label-unaware undirected PWG.

Table 2 summarizes the definitions of graph privacy models. In the following,
we consider undirected graphs, unless specifically mentioned. The treatment of
label-(un)aware directed PWGs is revisited in Sect. 5.4.

3 Our Approach

Our aim is to develop label prediction that securely works under given graph
privacy models. First, we state the problem, based on graph privacy models and
label propagation [15]. Then, we show that a decentralization of label propa-
gation makes the computation secure in label-aware PWGs, but not secure in
label-unaware PWGs. At the end of this section, we clarify the issues to be
addressed to achieve secure label prediction in label-unaware PWGs.

3.1 Problem Statement

We consider the label prediction problem of node labeled graphs. Suppose some
of the nodes are labeled (initial labels), while the remaining nodes are unlabeled.
Then, the problem of label prediction is to predict the labels of the unlabeled
nodes, using the initial labels and the weight matrix as input.

Let P = D−1W, which corresponds to the probability transition matrix of
the random walk on graph G with weight matrix W. D is the degree matrix,
where D = diag(d1, . . . , dn) and di =

∑
j∈V wij . Let Y = (yij) ∈ R

n×c be an
initial label matrix, where yip = 1 if the label of node i is p; otherwise yip = 0.

Label propagation predicts the labels of unlabeled nodes by propagating the
label information of labeled nodes through links following the transition proba-
bilities. The label matrix is repeatedly updated by

F(t+1) = αPF(t) + (1 − α)Y (1)
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where α (0 ≤ α < 1). If α is closer to 1, then more label information is propagated
from its neighbors (the first term). If α is closer to 0, then the prediction is
affected more by its initial labels (the second term). With the condition 0 ≤ α <
1, the following lemma shows the convergence property of label propagation [14].

Lemma 1. Let F∗ = (1 − α)(I − αP)−1Y. When an arbitrary matrix F(0) is
updated iteratively by eq. 1, limt→∞ F(t) = F∗ holds.

The convergent matrix F∗ gives the prediction for unlabeled nodes. F∗ can be
viewed as a certain type of quantity that refers to the probabilities of a node
belonging to a label. This label propagation follows neither label-aware PWGs
nor label-unaware PWGs because W and Y need to be observable from a node
to execute eq. 1.

Suppose a partially labeled graph has to follow the label-(un)aware PWG,
and the nodes in the graph wish to perform label prediction. In this study,
we define the security of label prediction in the manner of secure multiparty
computation [6], using the graph privacy models defined previously.

Statement 1. Secure label prediction: Let there be a label-(un)aware PWG,
where W and Y are private link weights and labels, respectively. After the exe-
cution of secure label prediction among the nodes, the final output F∗ is correctly
evaluated and distributed such that F∗ is row private. Each node learns nothing
but the number of iterations; the graph is still kept as a label-(un)aware PWG.

For label prediction to be secure in the sense of Statement 1, the graph privacy
models cannot be changed before and after label prediction.

3.2 Decentralized Label Propagation

Before considering our approach, we first review a decentralization of eq. 1, in
terms of privacy. Looking at an element of F, the update of fik is described as:

f
(t)
ik ← α

( ∑

j∈N(i)

pijf
(t−1)
jk

)
+ (1− α)yik. (2)

In order for node i to update eq. 2, node i needs fjk for j ∈ N(i), yik for all
k, and pij for all j. Noting that pij = wij/

∑
j∈N(i) wij , node i can have pij

for all j, even if W is row private. yik is also obtained if Y is row private. On
the other hand, f

(t−1)
jk has to be obtained from the neighbor nodes N(i); thus

F has to be N(i)-row private. It follows that node i can securely update eq. 2
in label-aware PWGs. Consequently, decentralized label propagation is secure in
the label-aware PWGs, while it is not secure in the label-unaware PWGs, in the
sense of Statement 1.

In order to perform label prediction securely in the label-unaware PWG, node
i needs to evaluate eq. 2 with F keeping row private. In other words, node i needs
to compute the first term of eq. 2 without observing fjk, where j ∈ N(i). This
is seemingly impossible, but it can be achieved by introducing a cryptographic
tool, homomorphic encryption. This enables to evaluate addition of encrypted
values without decryption. In next section, we review homomorphic encryption.
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4 Cryptographic Tools

In a public key cryptosystem, encryption uses a public key that can be known
to everyone, while decryption requires knowledge of the corresponding private
key. Given a corresponding pair of (sk, pk) of private and public keys and a
message m, then c = Encpk(m; r) denotes the random encryption of m, and m =
Decsk(c) denotes the decryption. The encrypted value c uniformly distributes
over ZN ={0, ..., N−1}, if r is taken from ZN randomly. An additive homomorphic
cryptosystem allows the addition of encrypted values, without knowledge of the
private key. There is some operation · such that for any plaintexts m1 and m2,

Encpk(m1 + m2 mod N ; r) = Encpk(m1; r1) · Encpk(m2; r2),

where r is uniformly random, provided that at least one of r1 and r2 is uniformly
random. Based on this property, it also follows that given a constant k and the
encryption epk(m1; r), we can compute multiplications by k via repeated ap-
plications of ·, denoted as Encpk(km mod N ; kr) = Encpk(m; r)k. The random
encryption prevents inference of intermediate computation from messages pass-
ing in our solution. In non-probabilistic public cryptosystem, m corresponds to
one-to-one with its cipher c. Therefore, when the size of message space is small,
as in label prediction, regular public cryptosystem is not adequate for privacy
preserving protocol including label prediction. In the probabilistic encryption,
encryption of message m is randomized so that the encryption does not released
information about m. This random number is not required for decryption or
addition of the message, so in the following, we omit the random number r from
our encryptions, for simplicity.

In an (n, θ)-threshold cryptosystem, n nodes share a common public key pk,
while each node holds a private key sk1, ..., skn. Each node can encrypt any mes-
sage with the common public key. Decryption cannot be performed by fewer
than θ nodes, and can be performed by any group of at least θ nodes, us-
ing a recovery algorithm based on the public key and their decryption shares
Decsk1(c), ..., Decskn(c). Our solution makes use of (n, θ)-threshold additively ho-
momorphic cryptosystem, such as the generalized Paillier cryptosystem [2].

5 The Main Protocol

As discussed in Sect. 3.2, the decentralized label prediction algorithm is not
secure in the label-unaware undirected PWG. We show privacy preserving la-
bel propagation (PPLP) for label-unaware undirected PWGs, by incorporating
homomorphic encryption into the decentralized label propagation.

The main body of our protocol is presented in Fig. 2. In principle, our protocol
behaves almost equivalently to the decentralized label propagation, except that
every message is encrypted so that it outputs the identical result to the regular
label propagation. In what follows, we explain the details of our protocol and
the security in label-unaware undirected PWGs.
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5.1 Privacy Preserving Label Propagation

The protocol is presented in Fig. 2.

Setup. All nodes jointly prepare a key set, so that pk is commonly known to
all nodes and ski is held only by the ith node. The key set is securely prepared
by means of distributed key generation schemes. See [3] for examples. In this
protocol, we assume all nodes can refer a global clock so that they can execute
iteration synchronously.

Recall that W is symmetrically private, and F and Y are row private in
the label-unaware undirected PWG. Private inputs of node i are wi∗ and yi∗.
With these, node i can compute pij locally in Step 1 (a). αpij can be rational.
Considering the homomorphic encryption takes only integers as inputs, a large
integer L is multiplied so that p̃ij ∈ ZN . αf

(0)
ik and (1 − α)yik are similarly

magnified so that f̃
(0)
ik , ỹik ∈ ZN in Step 1 (b), and then encrypted in Step 1 (c).

Iteration and Convergence. Step 2 updates the label vectors on the homo-
morphic encryption. In Step 2 (a), node i sends its encrypted label vector c

(t−1)
ik

to its neighboring nodes N(i); in Step 2 (b), node i receives the encrypted label
vectors c

(t−1)
jk from the nodes it is linked to. Then, the label vectors are updated

by the following equation:

Encpk(f̃
(t)
ik )←

∏

j∈N(i)

(
(c

(t−1)
jk )p̃ij

)
· Encpk

(
Lt−1ỹik

)
. (3)

Let F̃(t) = (f̃ (t)
ij ). The convergence of iterations of eq. 3 is shown as follows;

Lemma 2. Let F∗ = (1 − α)(I − αP)−1Y. When an arbitrary matrix F̃(0) is
updated iteratively by eq. 3, limt→∞ F̃(t)/Lt = F∗ holds.

Proof. From the homomorphic property of cryptosystem, eq. 3 is:

Encpk(f̃
(t)
ik )←

( ∏

j∈N(i)

Encpk(f̃
(t−1)
jk )p̃ij

)
· Encpk

(
Lt−1ỹik

)

=
( ∏

j∈N(i)

Encpk(p̃ij f̃
(t−1)
jk )

)
· Encpk

(
Lt−1ỹik

)
= Encpk

( ∑

j∈N(i)

p̃ij f̃
(t−1)
jk + Lt−1ỹik

)
.(4)

Although eq. 4 cannot be decrypted by any nodes in the actual protocol, here
we assume that a node could decrypt both terms of eq. 4. Then, we have

f̃
(t)
ik ←

∑

j∈N(i)

p̃ij f̃
(t−1)
jk + Lt−1ỹik = L(

∑

j∈N(i)

αpij f̃
(t−1)
jk + Lt−1(1− α)yik). (5)

We prove f̃
(t)
ik = Ltf

(t)
ik holds by the inductive method. When t = 1, f̃

(1)
ik = Lf

(1)
ik

obviously holds. Assuming f̃
(u)
ik = Luf

(u)
ik for any u ∈ Z, f̃

(u+1)
ik = Lu+1f

(u+1)
ik

is readily derived using eq. 5 and the assumption. Thus, f̃
(t)
ik = Ltf

(t)
ik holds.

Consequently, F̃(t)/Lt = F(t) holds and the lemma is proved by Lemma 1.
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Privacy-preserving label propagation

– Public input: α and L ∈ ZN s.t αLpij ∈ ZN and (1− α)Lyik ∈ ZN for all i, j, k.

– Private input of node i: link weights wi∗ and label vector yi∗ (W and Y are row
private).

– Key setup: All nodes share public key pk; node i holds secret key ski for threshold
decryption.

1. (Initialization) For all j ∈ N(i), node i computes:
(a) pij ← wij/

∑
j∈N(i) wij , p̃ij ← αLpij ,

(b) For k = 1, ..., c, f̃
(0)
ik ← yik, ỹik ← (1− α)Lyik,

(c) c
(0)
ik ← Encpk(f̃

(0)
ik ) for all k ∈ {1, ..., h} and t← 1.

2. (Iteration) For all k ∈ {1, ..., h}:
(a) Node i sends c

(t−1)
ik to all j ∈ N(i),

(b) Node i receives c
(t−1)
jk from all j ∈ N(i) and updates c

(t−1)
ik by eq. 3,

(c) All nodes jointly perform the convergence detection and normalization using
SFE if needed. If convergence is detected, go to step 3. Else, t ← t + 1 and
go to step 2 (a).

3. (Decryption) Node i and arbitrary (θ−1) nodes jointly perform recovery scheme
and output f∗i∗ = (f∗

i1, . . . , f
∗
ih).

Fig. 2. Privacy-preserving label propagation

In the protocol, two computations that are not executable on homomorphic
encryption are not mentioned. One is convergence detection [11]. From Lemma 2,
the convergent value F∗ is identical to that of label prediction. The convergence
of eq. 3 has to be determined by having

∣
∣f̃

(t)
ik /Lt − f̃

(t−1)
ik /Lt−1

∣
∣ < ε for all i

and k in Step 2 (c). The other is normalization [11]. As shown in Lemma 2, f̃
(t)
ik

is multiplied by L at each iteration (although no node can observe this). Since
the addition of homomorphic encryption is modulo N arithmetic, f̃

(t)
ik has to be

normalized so as not to exceed N after addition. The normalization does not
have to be invoked so often since typically parameter is set to a big integer, such
as N = 21024. To realize this normalization, we use private division to divide
encryption without spilling the value of f̃

(t)
ik .

Values exchanged in the protocol are all encrypted, while SFE requires un-
encrypted values as inputs. To securely evaluate normalization and convergence
detection with encrypted values, we used the following scheme:

1. Encrypted values are randomly partitioned by means of the homomorphic
property of encryption so that these form random shares if decrypted,

2. Shares are independently decrypted and are taken as inputs of SFE,
3. SFE for normalization or convergence detection is executed with recovering

the values in execution of SFE.
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Note that the computation time of SFE is usually large; however, both compu-
tations are not necessarily required at every update, the cost per iteration can
be small, which will not create a bottleneck. We discuss this further in Sect. 6.

5.2 Security of the protocol

The security of privacy preserving label prediction is proved as follows:

Lemma 3. Let there be a label-unaware undirected PWG whose nodes behave
semi-honestly2. Assuming that more than θ nodes do not collude, node i learns
the ith row of F∗ and the number of iterations but nothing else, after the execu-
tion of privacy preserving label prediction. Furthermore, the graph is kept as the
label-unaware undirected PWG.

The proof should show the indistinguishability of the simulation view and nodes’
views as in [6]. However, due to space limitations, we will explain the security
of our protocol in an intuitive way. All of the messages exchanged among nodes
throughout the execution of the PPLP protocol are:

1. Step 2(a): c
(t)
jk = Encpk(f̃

(t)
jk )

2. Step 2(c): random shares of f̃
(t)
jk for inputs of SFE

3. Step 2(c) and 3: decryption shares of Encpk(f̃∗
jk) for j = 1, . . . , n, k =

1, . . . , h.

If nothing can be learned from these messages, other than the output, we can
conclude that the protocol is privacy preserving. The messages exchanged in
Step 2(a) are all encrypted; these cannot be decrypted without the collusion of
more than θ parties. Random shares of Step 2(c) do not leak anything obviously.
In Step 3 or Step 2(c), node i receives (θ− 1) decryption shares of Encpk(f̃∗

jk). If
i = j, then node i can recover Encpk(f̃∗

jk), but this is the final output of node i

itself. If i �= j, then Encpk(f̃∗
jk) cannot be decrypted by node i, unless more than

θ nodes collude.
Based on the above discussion, node i can learn nothing but its final output

and the number of iterations throughout the execution of the PPLP protocol.
From Lemma 2 and Lemma 3, the following theorem is readily proved.

Theorem 1. Assuming all nodes behave semi-honestly and there is no collu-
sion of more than θ nodes, PPLP executes label propagation in label-unaware
undirected PWG, in the sense of Statement 1.

5.3 Output Privacy of Label Propagation

Our protocol enables computation of label prediction without sharing links and
labels while the output of our protocol might leak information about links or
2 This assumes that the nodes follow their protocol properly, but might also use their

records of intermediate computations in order to attempt to learn other nodes’ pri-
vate information.



Privacy Preserving Semi-supervised Learning for Labeled Graphs 135

labels of neighboring nodes, especially when the neighboring nodes have only
small a number of links. Differential privacy provides a theoretical privacy def-
inition in terms of outputs. Output perturbation using Laplace mechanism can
guarantee the differential privacy for a specified function under some conditions.

Each node can guess only a limited amount of information if such a mech-
anism is applied to the output, even when each node has strong background
knowledge about the private information. The security of the computation and
secure disclosure of outputs are mutually independent in label prediction. There-
fore, output perturbation can be readily combined with our protocol while the
design of perturbation for label propagation is not straightforward. We do not
pursue this topic in this paper any further and this problem is remained for our
future works.

5.4 Expansion to Directed Graphs

Let us expand PPLP protocol so that it can be applied to directed graphs. In
the label-unaware directed PWGs, the labels are propagated only to the node it
links to. Then, the following update is used, instead of eq. 3.

Encpk(f̃
(t)
ik )←

∏

j∈Nout(i)

(
(c

(t−1)
jk )p̃ij

)
· Encpk

(
Lt−1ỹik

)
.

In order to update the above, note that: (1) node i has to send c
(t−1)
ik to Nout(i)

in Step 2 (a), and (2) node i has to receive c
(t−1)
jk from j ∈ Nin(j) in Step 2 (b).

In the directed graph, since W is row-private, node i can know to whom it is
linking to (Nout(i)), but cannot know from whom it is linked to (Nin(i)). Each
node in Nin(i) can send a request for connection to node i. However, the request
itself violates the given privacy model. Thus, in directed graphs, the problem is
not only in the secrecy of messages but also in the anonymity of connections. For
this, we make use of the onion routing [7], which provides anonymous connection
over a public network. By replacing every message passing that occurs in the
protocol with the onion routing, we obtain the PPLP protocol for label-unaware
directed PWGs (PPLP-D). Techniques to convert the protcool in the label-aware
model to that in the label-unaware model can be found in [10], too.

6 Experimental Analysis

We compared the label prediction methods in terms of the accuracy, privacy
loss, and computation cost.

Datasets. Two labeled graphs were taken from the real-world examples. Roman-
tic Network (ROMN) is a network in which students and their sexual contacts
correspond to the nodes and links, respectively [1]. We used the largest com-
ponent (288 nodes) of the original network. 5 randomly selected nodes and the
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nodes within 5 steps of them were labeled as “infected” (total 80 nodes); other
nodes were labeled as “not-infected” (208 nodes)3. ROMN is undirected; the
weight matrix wij = 1 if there is a link between i and j, and wij = 0 otherwise.

MITN is a network in which the mobile phone users, their physical proximities,
and their affiliations correspond to the nodes, links, and node labels, respectively.
The proximity is measured by Bluetooth devices of the mobile phones, in MIT
Reality Mining Project [5]. 43 nodes are labeled as “Media Lab” and 24 nodes
are labeled as “Sloan” (total 67 nodes). MITN is a directed graph; the weight
wij is set as the time length of user i detecting user j.

Settings. Three types of label propagation were implemented, decentralized
label propagation (LP), label propagation implemented by SFE (LP/SFE), and
our proposal, PPLP and PPLP-D. For comparison, kNN was also tested. In
PPLP and PPLP-D, we set the parameters as L = 103 and α = 0.05 and
normalization was performed once per 100 updates of eq. 3. For kNN, we set
k = 1, 3, 5. Results were averaged over 10 trials.

In Sect. 6.1, we evaluated trade-off between prediction accuracy and privacy
loss. In Section 6.2, we evaluated computational efficiency of PPLP, PPLP-D,
and LP/SFE with complexity analysis. The generalized Paillier cryptosystem [2]
with 1024-bit keys was used in PPLP and PPLP-D. For SFE implementation,
FairPlay [9] was used. Experiments were performed using Linux with 2.80GHz
(CPU), 2GB (RAM).

We empirically compared computational cost of our solutions because com-
plexity analysis of computations implemented by SFE is difficult. Furthermore,
implementation details are as follows. In PPLP and PPLP-D, all computational
procedure including normalization using SFE is implemented. In a computa-
tional cost of an update, one percent of normalization cost is accounted because
normalization is executed once per 100 times. If LP/SFE is implemented in a
naive manner, the computational time can be so large that computational analy-
sis is unrealistic. Instead, we decomposed LP/SFE into single summation of the
decentralized label propagation (eq. 2) and implemented each summation using
SFE. This implementation allows the nodes to leak elements of the label matrix
computed in the middle of label propagation, while the required computation
time can be largely reduced. We regarded the computation time of this relaxed
LP/SFE as the lower bound of the computation time of LP/SFE in experiments.

6.1 Privacy-Accuracy Trade-Off

As discussed, PPLP securely works in the label-unaware model. In other words,
PPLP does not require observation of the labels of the neighbor nodes N(i) for
label prediction. On the other hand, both kNN and LP require the labels of
neighbor nodes N(i) for label prediction. Although it is impossible to run kNN
and LP in label-unaware model, these can be executed if not all but some of the
nodes in N(i) dare to disclose their labels to node i. Considering this, we also

3 Although this setting might not appropriate in terms of epidemiology, we employed
this setting in order to examine the efficiency and practicality of our solution.
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Fig. 3. Accuracies and computational costs of PPLP and PPLP-D vs. other methods.
(a) and (b) are the accuracy changes with respect to the number of label disclosure �.
(c) shows the scalability with respect to the maximum number of links per node Δ.
(d) is the scalability of PPLP-D with respect to Δ and network size n.

tested intermediate models between the label-aware and label-unaware models.
Let �ini be the number of nodes initially labeled. In these intermediate models,
� (0 ≤ � ≤ �ini) nodes disclose their labels to neighbor nodes. If � = �ini, it
corresponds to the label-aware model because all initially labeled nodes disclose
their labels. If � = 0, it corresponds to the label-unaware model because all nodes
keep there labels secret.

Fig. 3 (a) and (b) show the change of the prediction errors in ROMN and
MITN with respect to �, respectively. kNN and LP require larger � for better
prediction, and cannot be executed when �=0. kNN shows the higher error rate
as compared to the other methods for all k. kNN cannot predict labels for nodes
that connected to nodes which disclose their labels. Since we treated this as
misclassification, the error rate of kNN can be large. The results of 3NN and
5NN are not shown in Fig. 3 (a) because they cannot predict labels for most of
nodes. Error rates of 3NN and 5NN in Fig. 3 (b) increase with � when � is large.
The reason for these results is considered as follows. Large k accounts for more
distant data points than small k. Therefore kNN of large k may not perform
well with unbalanced data.

Thus, if label information could be partially disclosed and its running time
is crucial, LP could be a good choice. In contrast, when privacy preservation of
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Table 3. The computation time until convergence (10 itr.) in ROMN (Δ = 9) and
disclosed information

Method disclosed info. comp. time

kNN yjk (j ∈ N(i)) 7.4× 10−5(ms)

LP f
(t)
jk (j ∈ N(i)) 3.0× 10−4(ms)

LP/SFE (relaxed) pijf
(t)
jk (j ∈ N(i)) 88.4 (min.)

LP/SFE (strict) none >88.4 (min.)

PPLP none 10.7 (sec.)

labels and links is essential, PPLP or LP/SFE could be a good choice, because
the accuracies of PPLP and LP/SFE which observe no labels are always equiv-
alent to that of LP which is allowed to observe all labels.

6.2 Computational Efficiency

Complexity and Scalability. We evaluated the computation times of LP/SFE,
PPLP, and PPLP-D with artificially generated networks where the maximum
number of links is Δ. In PPLP, the computational complexity of a single update
of eq. 3 is O(Δ). In PPLP-D, the computational cost of onion routing O(log n)
is additionally required (in total O(Δ + log n)).

Fig. 3 (c) shows the change of the computational times for a 2 class classifi-
cation of artificially generated labeled graphs, with respect to Δ. We evaluated
PPLP and PPLP-D including normalization and convergence detection. The re-
sults show that the computational cost of LP/SFE is large; at least a few hours
are required for a single update when Δ = 210. On the other hand, the compu-
tation time of PPLP is a few seconds even when Δ = 210. Fig. 3 (d) shows the
change of the computational times of PPLP-D with respect to network size n.
The single update of PPLP-D needs a few minutes when Δ = 23, but a few hours
when the Δ = 29. This fact indicates that PPLP-D can work efficiently even in
large-scale networks if networks are sparse. Computational cost of LP/SFE in
directed graphs become larger than that in undirected graphs because of onion
routing. In addition, onion routing for LP/SFE have to be executed by SFE.
The computational cost of this will become unrealistically large, so LP/SFE for
directed graphs is not evaluated. We can see that computational cost of PPLP-D
is even smaller than that of LP/SFE for undirected graph in Fig.3 (c) and (d).

Completion Time in the Real World Network Data. Table 3 summarizes
the computational costs and the information disclosure until convergence of label
prediction methods in ROMN. In the experiments, all labels of initially labeled
30 nodes are disclosed to other nodes for execution of LP and kNN. The results
showed that PPLP achieved both efficient computations and privacy preserva-
tion, while the others did not. Recall that computational cost of PPLP does not
increase drastically with the maximum number of links as shown in Fig 3 (a). In
addition, the maximum number of links is not often very large, typically in the
networks containing private information, such as sexual contacts. From above,
we can conclude that PPLP is practical even for large-scale networks.
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7 Conclusion

In this paper, we introduced novel privacy models for labeled graphs, and then
stated secure label prediction problems with these models. We proposed solu-
tions for secure label prediction, PPLP and PPLP-D, which allow us to execute
label prediction without sharing private links and node labels. Our methods are
scalable compared to existing privacy preserving methods. We experimentally
showed that our protocol completed the label prediction of a graph with 288
nodes in about 10 seconds. In undirected graphs, the complexity is proportional
to the maximum number of links, rather than the network size. We can con-
clude that our protocol achieves both privacy preservation and scalability, even
in large-scale networks. Scalability in directed graphs is relatively larger than
that in undirected graphs. Our future work will involve the implementation of
our proposal in real social problems.
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