
A Failure Detector for Wireless Networks with
Unknown Membership

Fabı́ola Greve1,�, Pierre Sens2, Luciana Arantes2, and Véronique Simon2

1 Department of Computer Science,
Federal University of Bahia (UFBA), Bahia - Brazil

2 LIP6, University of Paris 6, CNRS,
INRIA, 4 - Place Jussieu, 75005, Paris, France

Abstract. The distributed computing scenario is rapidly evolving for integrating
self-organizing and dynamic wireless networks. Unreliable failure detectors are
classical mechanisms which provide information about process failures and can
help systems to cope with the high dynamism of these networks. A number of
failure detection algorithms has been proposed so far; nonetheless, most of them
assume a global knowledge about the membership as well as a fully communi-
cation connectivity; additionally, they are timer-based, requiring that eventually
some bound on the message transmission will hold. These assumptions are no
longer appropriate to the new scenario. This paper presents a new failure detector
protocol which implements a new class of detectors, namely ♦SM, which adapts
the properties of the ♦S class to a dynamic network with an unknown member-
ship. It has the interesting feature to be time-free, so that it does not rely on timers
to detect failures; moreover, it tolerates mobility of nodes and message losses.

Keywords: Unreliable failure detector, dynamic distributed systems, wireless
mobile networks, asynchronous systems.

1 Introduction

The distributed computing scenario is rapidly evolving for integrating unstructured,
self-organizing and dynamic systems, like MANETs (mobile ad-hoc networks) [1].
Nonetheless, the issue of designing reliable services which can cope with the high dy-
namism of these systems is a challenge. Failure detector is a fundamental service, able
to help in the development of fault-tolerant distributed systems. Unreliable failure de-
tectors, namely FD, can informally be seen as a per process oracle, which periodically
provides a list of processes suspected of having crashed [2]. In this paper, we are in-
terested in the class of eventually strong FDs, denoted ♦S. Those FDs can make an
arbitrary number of mistakes; yet, there is a time after which some correct process is
never suspected (eventual weak accuracy property). Moreover, eventually, every pro-
cess that crashes is permanently suspected by every correct process (strong complete-
ness property). ♦S is the weakest class allowing to solve consensus in an asynchronous
system (with the additional assumption that a majority of processes are correct) and

� The work of F. Greve is supported by grants from CAPES-Brazil and Paris City Hall, France.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6853, Part II, pp. 27–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 F. Greve et al.

consensus is as the heart of important middleware, e.g., group communication services,
transactions and replication servers.

The nature of wireless mobile networks creates important challenges for the devel-
opment of failure detection protocols. The inherent dynamism of these environments
prevents processes from gathering a global knowledge of the system’s properties. The
network topology is constantly changing and the best that a process can have is a lo-
cal perception of these changes. Global assumptions, such as the knowledge about the
whole membership, the maximum number of crashes, full connectivity or reliable com-
munication, are no more realistic.

This paper proposes a FD algorithm that implements the class ♦SM of failure de-
tectors. This class adapts the properties of the ♦S class to a dynamic system with an
unknown membership. It is suitable for wireless mobile networks and has the following
innovative features that allow for scalability and adaptability: (i) it is conceived for a
network whose membership is unknown and whose communication graph is not com-
plete; (ii) it tolerates node mobility, beyond arbitrary joins and leaves; (iii) the failure
detection uses local information (for the membership of the neighborhood), instead of
traditional global information, such as n (the total number of nodes) and f (the max-
imum number of faults); (iv) the failure detection is time-free, thus the satisfaction of
the properties of the FD does not rely on traditional synchrony assumptions, but on a
message exchange pattern followed by the nodes; (v) the message exchange pattern is
based on local exchanged information among neighbors and not on global exchanges
among nodes in the system. As far as we are aware of, this is the first time-free FD
algorithm for networks with unknown membership that tolerates mobility of nodes.

1.1 Related Work

A number of failure detection algorithms has been proposed so far. Nonetheless, most
of current implementations of FDs are based on an all-to-all communication approach
where each process periodically sends “I am alive” messages to all processes [3]. As
they usually consider a fully connected set of known nodes, these implementations are
not adequate for dynamic environments. Furthermore, they are usually timer-based, as-
suming that eventually some bound of the transmission will permanently hold. Such
an assumption is not suitable for dynamic environments where communication delays
between two nodes can vary due to mobility of nodes. In [4], Mostefaoui et al. have
proposed an asynchronous implementation of FDs which is time-free. It is based on an
exchange of messages which just uses the values of f and n. However, their computa-
tion model consists of a set of fully connected initially known nodes. Some works [5–7]
focus on the heartbeat FD for sparsely connected networks with unknown membership.
The heartbeat FD is a special class of FD which is time-free and is able to implement
quiescent reliable communication. But, instead of lists of suspects, it outputs a vector
of unbounded counters; if a process crashes, its counter eventually stops increasing. It
is worth remarking that none of these works tolerate mobility of nodes.

Few implementations of unreliable FDs focus on wireless mobile networks [8–10].
The fundamental difference between these works and ours is the fact that all of them
are timer-based. Friedman and Tcharny [8] propose a simple gossiping protocol which
exploits the natural broadcast range of wireless networks to delimit the local member-

A Failure Detector for Wireless Networks with Unknown Membership 29

ship of a node in a mobile network. Contrarily to our approach, this work assumes a
known number of nodes and provides probabilistic guarantees for the FD properties.
Tai et al. [9] exploit a cluster-based communication architecture to propose a hierarchi-
cal gossiping FD protocol for a network of non-mobile nodes. The FD is implemented
both via intra-cluster heartbeat diffusion and failure report diffusion across clusters, i.e.,
if a failure is detected in a local cluster, it will be further forwarded across the clusters.
Unlike our solution, this work considers a cluster-based communication architecture
and provides probabilistic guarantees for the accuracy and completeness properties;
moreover, it does not consider mobility. Sridhar [10] adopts a hierarchical design to
propose a deterministic local FD. He introduces the notion of local failure detection
and restraints the scope of detection to the neighborhood of a node and not to the whole
system. While our approach allows the implementation of a ♦SM FD, this work im-
plements an eventually perfect local failure detector of the class ♦P , i.e., it provides
perfect failure detection, but with regard to a node’s neighborhood. As soon as we are
aware of, the only work to follow a time-free detection strategy has been proposed
by [11] in order to implement a leader FD of the Ω class. This class ensures that, each
process will be provided by a unique leader, elected among the set of correct processes,
in spite of crashes. Differently from ours, this work is for a specific infra-structured
network composed of mobile and static nodes. We believe that our FD of class ♦SM

may be successful adopted to implement coordination protocols in a dynamic set, such
as the one proposed by Greve et al.[12], who present a solution for the fault-tolerant
consensus in a network of unknown participants with minimal synchrony assumptions.

The rest of the paper is organized as follows. Section 2 defines the model and speci-
fies the ♦SM FD class. Section 3 identifies assumptions to implement those FDs. Sec-
tion 4 presents a time-free FD of the ♦SM class. Section 5 concludes the paper. In an
extended report [13], one can find complete correctness proofs, a thorough related work
section and performance experiments showing that the proposed FD exhibits a good re-
activity to detect failures and revoke false suspicions, even in presence of mobility.

2 Model and Problem Definition

The wireless mobile network is a dynamic system composed of infinitely many pro-
cesses; but each run consists of a finite set Π of n > 1 mobile nodes, namely, Π =
{p1, . . . , pn}. Contrarily to a static network, the membership is unknown, thus pro-
cesses are not aware about Π and n, because, moreover, these values can vary from run
to run; this coincides with the finite arrival model [14]. This model is suitable for long-
lived or unmanaged applications, as for example, sensor networks deployed to support
crises management or help on dealing with natural disasters. There is one process per
node; each process knows its own identity, but it does not necessarily knows the identi-
ties of the others. Nonetheless, nodes communicate by sending and receiving messages
via a packet radio network and may make use of the broadcast facility of this commu-
nication medium to know one another. There are no assumptions on the relative speed
of processes or on message transfer delays, thus the system is asynchronous; there is no
global clock, but to simplify the presentation, we take the range T of the clock’s tick to
be the set of natural numbers. A process may fail by crashing, i.e., by prematurely or
by deliberately halting (switched off); a crashed process does not recover.

30 F. Greve et al.

The network is represented by a communication graph G = (V, E) in which V = Π
represents the set of mobile nodes and E represents the set of logical links. The topol-
ogy of G is dynamic due to arbitrary joins, leaves, crashes and moves. A bidirectional
link between nodes pi and pj means that pi is within the wireless transmission range
of pj and vice-versa. If this assumption appears to be inappropriate for a mobile envi-
ronment, one can use the strategy proposed in [15] for allowing a protocol originally
designed for bidirectional links to work with unidirectional links. Let Ri be the trans-
mission range of pi, then all the nodes that are at distance at most Ri from pi in the
network are considered 1-hop neighbors, belonging to the same neighborhood. We de-
note Ni to be the set of 1-hop neighbors from pi; thus, (pi, pj) ∈ E iff (pi, pj) ∈ Ni.
Local broadcast between 1-hop neighbors is fair-lossy. This means that messages may
be lost, but, if pi broadcasts m to processes in its neighborhood an infinite number of
times, then every pj in the neighborhood receives m from pi an infinite number of times,
or pj is faulty. This condition is attained if the MAC layer of the underlying wireless
network provides a protocol that reliably delivers broadcast data, even in presence of
unpredictable behaviors, such as fading, collisions, and interference; solutions in this
sense have been proposed in [16–18]. Nodes in Π may be mobile and they can keep
continuously moving and pausing in the system. When a node pm moves, its neighbor-
hood may change. We consider a passive mobility model, i.e., the node that is moving
does not know that it is moving. Hence, the mobile node pm cannot notify its neighbors
about its moving. Then, for the viewpoint of a neighbor, it is not possible to distinguish
between a moving, a leave or a crash of pm. During the neighborhood changing, pm

keeps its state, that is, the values of its variables.

2.1 Stability Assumptions

In order to implement unreliable failure detectors with an unknown membership, pro-
cesses should interact with some others to be known. If there is some process in the
system such that the rest of processes have no knowledge whatsoever of its identity,
there is no algorithm that implements a failure detector with weak completeness, even
if links are reliable and the system is synchronous [19]. In this sense, the characteriza-
tion of the actual membership of the system, that is, the set of processes which might
be considered for the computation is of utmost importance for our study. We consider
then that after have joined the system for some point in time, a mobile process pi must
communicate somehow with the others in order to be known. Afterwards, if pi leaves,
it can re-enter the system with a new identity, thus, it is considered as a new process.
Processes may join and leave the system as they wish, but the number of re-entries is
bounded, due to the finite arrival assumption. One important aspect concerns the time
period and conditions in which processes are connected to the system. During unstable
periods, certain situations, as for example, connections for very short periods, the rapid
movement of nodes, or numerous joins or leaves along the execution (characterizing a
churn) could block the application and prevent any useful computation. Thus, the sys-
tem should present some stability conditions that when satisfied for longtime enough
will be sufficient for the computation to progress and terminate.

Definition 1. Membership Let t, t′ ∈ T . Let UP(t) ⊂ Π be the set of mobile processes
that are in the system at time t, that is, after have joined the system before t, they neither

A Failure Detector for Wireless Networks with Unknown Membership 31

leave it nor crash before t. Let pi, pj be mobile nodes. Let the knownj set denotes the
partial knowledge of pj about the system’s membership. The membership of the system
is the KNOWN set.

STABLE
def
= {pi : ∃t, t′, s.t. ∀t′ ≥ t, pi ∈ UP(t′)}.

FAULTY
def
= {pi : ∃t, t′, t < t′, pi ∈ UP(t) ∧ pi 	∈ UP(t′)}.

KNOWN
def
= {pi : (pi ∈ STABLE ∪ FAULTY) ∧ (pi ∈ knownj , pj ∈ STABLE)}.

The actual membership is in fact defined by the KNOWN set. A process is known if,
after have joined the system, it has been identified by some stable process. A stable
process is thus a mobile process that, after had entered the system for some point in
time, never departs (due to a crash or a leave); otherwise, it is faulty. A process is faulty
after time t, when, after had entered the system at t, it departs at t′ > t. The STABLE

set corresponds to the set of correct processes in the classical model of static systems.

Assumption 1. Connectivity Let G(KNOWN ∩ STABLE) = G(S) ⊆ G be the graph
obtained from the stable known processes. Then, ∃t ∈ T , s.t., in G(S) there is a path
between every pair of processes pi, pj ∈ G(S).

This connectivity assumption states that, in spite of changes in the topology of G, from
some point in time t, the set of known stables forms a strongly connected component in
G. This condition is frequently present in the classical model of static networks and is
indeed mandatory to ensure dissemination of messages to all stable processes and thus
to ensure the global properties of the failure detector [2, 19–21].

2.2 A Failure Detector of Class ♦SM

Unreliable failure detectors provide information about the liveness of processes in the
system [2]. Each process has access to a local failure detector which outputs a list of
processes that it currently suspects of being faulty. The failure detector is unreliable in
the sense that it may erroneously add to its list a process which is actually correct. But
if the detector later believes that suspecting this process is a mistake, it then removes
the process from its list. Failure detectors are formally characterized by two properties:
(i) Completeness characterizes its capability of suspecting every faulty process perma-
nently; (ii) Accuracy characterizes its capability of not suspecting correct processes.
Our work is focused on the class of Eventually Strong detectors, also known as ♦S.
Nonetheless, we adapt the properties of this class in order to implement a FD in a
dynamic set. Then, we define the class of Eventually Strong Failure Detectors with Un-
known Membership, namely ♦SM . This class keeps the same properties of ♦S, except
that they are now valid to known processes, that are stable and faulty.

Definition 2. Eventually Strong FD with Unknown Membership (♦SM) Let t, t′ ∈
T . Let pi, pj be mobile nodes. Let suspj be the list of processes that pj currently sus-
pects of being faulty. The ♦SM class contains all the failure detectors that satisfy:

Strong completeness
def
= {∃t, t′, s.t. ∀t′ ≥ t, ∀pi ∈ KNOWN ∩ FAULTY ⇒ pi ∈

suspj , ∀pj ∈ KNOWN ∩ STABLE}.
Eventual weak accuracy

def
= {∃t, t′, s.t. ∀t′ ≥ t, ∃pi ∈ KNOWN ∩ STABLE ⇒ pi 	∈

suspj , ∀pj ∈ KNOWN ∩ STABLE}.

32 F. Greve et al.

3 Towards a Time-Free Failure Detector for the ♦SM Class

None of the failure detector classes can be implemented in a purely asynchronous sys-
tem [2]. Indeed, while completeness can be realized by using “I am alive” messages and
timeouts, accuracy cannot be safely implemented for all system executions. Thus, some
additional assumptions on the underlying system should be made in order to implement
them. With this aim, two orthogonal approaches can be distinguished: the timer-based
and the time-free failure detection [22]. The timer-based model is the traditional ap-
proach and supposes that channels in the system are eventually timely; this means that,
for every execution, there are bounds on process speeds and on message transmission
delays. However, these bounds are not known and they hold only after some unknown
time [2]. An alternative approach suggested by [4] and developed so far by [11, 20]
considers that the system satisfies a message exchange pattern on the execution of a
query-based communication and is time-free. While the timer-based approach imposes
a constraint on the physical time (to satisfy message transfer delays), the time-free ap-
proach imposes a constraint on the logical time (to satisfy a message delivery order).
These approaches are orthogonal and cannot be compared, but, they can be combined at
the link level in order to implement hybrid protocols with combined assumptions [22].

3.1 Stable Query-Response Communication Mechanism

Our failure detector is time-free and based on a local QUERY-RESPONSE communica-
tion mechanism [20] adapted to a network with unknown membership. At each query-
response round, a node systematically broadcasts a QUERY message to the nodes in
its neighborhood until it possibly crashes or leaves the system. The time between two
consecutive queries is finite but arbitrary. Each couple of QUERY-RESPONSE messages
are uniquely identified in the system. A process pi launches the primitive by sending a
QUERY(m) with a message m. When a process pj delivers this query, it updates its local
state and systematically answers by sending back a RESPONSE() to pi. Then, when pi

has received at least αi responses from different processes, including a stable one, the
current QUERY-RESPONSE terminates. Without loss of generality, the response for pi

itself is among the αi responses. An implementation of a QUERY-RESPONSE communi-
cation over fair-lossy local channels can be done by the repeated broadcast of the query
by the sender pi until it has received at least αi responses from its neighbors. Formally,
the stable QUERY–RESPONSE primitive has the following properties:

(i) QR-Validity: If a QUERY(m) is delivered by process pj , it has been sent by pi;
(ii) QR-Uniformity: A QUERY(m) is delivered at most once by a process;
(iii) QR-Stable-Termination: If a process pi is not faulty (it does not crash nor leave the
system) while it is issuing a query, that query generates at least αi responses.

The value associated to αi should correspond to the expected number of processes
with whom pi can communicate, in spite of moves and faults. Since communication
is local, αi is a local parameter and can be defined as the value of the neighborhood
density of pi (i.e., |Ni|) minus the maximum number of faulty processes in its neigh-
borhood; let fi be this number; that is, αi = |Ni| − fi. This local choice for αi changes
from previous works which consider a global value either proportional to the number

A Failure Detector for Wireless Networks with Unknown Membership 33

of correct processes [4] or the number of stable processes [20] or the global number of
faults [11]. Moreover, it follows recent works on fault tolerant communication in radio
networks which propose a “local” fault model, instead of a “global” fault model, as an
adequate strategy to deal with the dynamism and unreliability of wireless channels in
spite of failures [17]. To reliably delivery data in spite of crashes, the maximum num-
ber of local failures should be fi < |Ni|/2 [23]. From Assumption 1 about the network
connectivity over time, at least one stable known node pj will receive the QUERY and
send a RESPONSE to pi, since moreover channels are fair-lossy. Thus, the following
property holds:

Property 1. Stable Termination Property (SatP). Let pi be a node which issues a
QUERY. Let Xi be the set of processes that issued a RESPONSE to that query. Thus,
∃pj ∈ Xi, pj ∈ KNOWN ∩ STABLE, pj 	= pi.

For the failure detection problem, the stable termination is important for the diffusion
of the information to the whole network and consequent satisfaction of the accuracy and
completeness properties. Moreover, it ensures that the first QUERY issued by pi, when
it joins the network, will be delivered by at least one stable process in such a way that
pi may take part to the membership of the system.

3.2 Behavioral Properties

Node pi can keep continuously moving and pausing, but, infinitively often, pi should
stay within its neighborhood for a sufficient period of time in order to be able to update
its state with recent information regarding suspicions and mistakes; otherwise, it would
not update its state properly and thus completeness and accuracy properties would not
be ensured. Recent information is gathered by pi from its neighbors via the delivery
of a QUERY message. Hence, the following mobility property, namely MobiP , has
been defined and should be satisfied by all nodes. It ensures that, after reaching a new
neighborhood at t′, there will be a time t > t′ at which pi should have received QUERY

messages from at least one stable neighbor pj , beyond itself. Since channels are fair-
lossy, the QUERY sent by pj will be received by pi, except if pi is faulty.

Property 2. Mobility Property (MobiP). Let t′, t ∈ T , t′ < t. Let pi be a node.
Let t′ be the time after which pi has changed of neighborhood. Let SQt

i be the set of
processes from which pi has received a QUERY message after t′ and before or at t.
Process pi satisfies MobiP at time t if:

MobiPt(pi)
def
= ∃pj,j �=i ∈ SQt

i, t > t′ : pj ∈ KNOWN ∩ STABLE ∨ pi is faulty
after t′.

Instead of synchrony assumptions, to ensure the accuracy of the detection, the time-
free model establishes conditions on the logical time the messages are delivered by
processes. These are unified in the stabilized responsiveness property, namely SRP .
Thus, SRP(pi) states that eventually, for any process pj (which had received a response
from piin the past), the set of responses received by pj to its last QUERY always includes
a response from pi, that is, the response of pi is always a winning response [22].

34 F. Greve et al.

Property 3. Stabilized Responsiveness Property (SRP). Let t′′, t′, t ∈ T . Let pi be
a stable known node. Let rec fromt′

j (rec fromt′′
j) be the set of processes from which

pj has received responses to its last QUERY that terminated at or before t′(t′′). Process
pi satisfies SRP at time t if:

SRP t(pi)
def
= ∀t′ ≥ t, ∀t′′ > t′, pi ∈ rec fromt′

j ⇒ pi ∈ rec fromt′′
j ∨

pj is faulty after t.

This property denotes the ability of a stable known node pi to reply, among the first αi

nodes, to a QUERY sent by a node pj , who had received responses from pi before. It
should hold for at least one stable known node pi; thus preventing pi to be permanently
suspected. As a matter of comparison, in the timer-based model, this property would
approximate the following: there is a time t after which the output channels from a
stable process pi to every other process pj that knows pi are eventually timely.

In order to implement a ♦SM FD, the following behaviors should be satisfied:
1) ∀pi ∈ KNOWN : MobiPt(pi) holds after pi moves and changes of neighborhood;
2) ∃pi ∈ KNOWN ∩ STABLE : SRPt(pi) eventually holds.

A discussion about how to satisfy in practice the properties and assumptions of the
model is done in Section 4.2 after the protocol’s explanation.

4 A Failure Detector Algorithm for the ♦SM Class

4.1 Algorithm Description

Algorithm 1 describes our protocol for implementing a FD of class ♦SM for a network
of KNOWN mobile nodes that satisfies the model stated in Sections 2 and 3.

Notations. We use the following notations:
• suspi: denotes the current set of processes suspected of being faulty by pi. Each el-

ement of this set is a tuple of the form 〈id, ct〉, where id is the identifier of the suspected
node and ct is the tag associated to this information.

• misti: denotes the set of nodes which were previously suspected of being faulty
but such suspicions are currently considered to be a mistake. Similar to the suspi set,
the misti is composed of tuples of the form 〈id, ct〉.

• rec fromi: denotes the set of nodes from which pi has received responses to its
last QUERY message.

• knowni: denotes the partial knowledge of pi about the system’s membership, i.e.,
it denotes the current knowledge of pi about its neighborhood.

• Add(set, 〈id, ct〉): is a function that includes 〈id, ct〉 in set. If an 〈id,−〉 already
exists in set, it is replaced by 〈id, ct〉.

Description. The algorithm is composed of two tasks T 1 and T 2.
Task T 1: Generating suspicions. This task is made up of an infinite loop. At each

round, a QUERY(suspi, misti) message is sent to all nodes of pi’s neighborhood (line
5). Node pi waits for at least αi responses, which includes pi’s own response (line
6). Then, pi detects new suspicions (lines 8-13). It starts suspecting each node pj , not
previously suspected (pj 	∈ suspi), which it knows (pj ∈ knowni), but from which

A Failure Detector for Wireless Networks with Unknown Membership 35

it does not receive a RESPONSE to its last QUERY. If a previous mistake information
related to this new suspected node exists in the mistake set misti, it is removed from
it (line 11) and the suspicion information is then included in suspi with a tag which is
greater than the previous mistake tag (line 10). If pj is not in the mist set (i.e., it is the
first time pj is suspected), pi suspected information is tagged with 0 (line 13).

Algorithm 1. Time-Free Implementation of a ♦SM Failure Detector

1 init:
2 suspi ← ∅; misti ← ∅ ; knowni ← ∅

3 Task T1:
4 Repeat forever
5 broadcast QUERY(suspi, misti)
6 wait until RESPONSE received from ≥ αi processes
7 rec fromi ← all pj, a RESPONSE is received in line 6
8 For all pj ∈ knowni \ rec fromi | 〈pj ,−〉 	∈ suspi do
9 If 〈pj , ct〉 ∈ misti

10 Add(suspi, 〈pj , ct + 1〉)
11 misti = misti \ {〈pj ,−〉}
12 Else
13 Add(suspi, 〈pj , 0〉)
14 End repeat
15

16 Task T2:
17 Upon reception of QUERY (suspj,mistj) from pj do
18 knowni ← knowni ∪ {pj}
19 For all 〈px, ctx〉 ∈ suspj do
20 If 〈px,−〉 	∈ suspi ∪misti or (〈px, ct〉 ∈ suspi ∪misti and ct < ctx)
21 If px = pi

22 Add(misti, 〈pi, ctx + 1〉)
23 Else
24 Add(suspi, 〈px, ctx〉)
25 misti = misti \ {〈px,−〉}
26 For all 〈px, ctx〉 ∈ mistj do
27 If 〈px,−〉 	∈ suspi ∪misti or (〈px, ct〉 ∈ suspi ∪misti and ct < ctx)
28 Add(misti, 〈px, ctx〉)
29 suspi = suspi \ {〈px,−〉}
30 If (px 	= pj)
31 knowni ← knowni \ {px}
32 send RESPONSE to pj

Task T 2: Propagating suspicions and mistakes. This task allows a node to handle
the reception of a QUERY message. A QUERY message contains the information about
suspected nodes and mistakes kept by the sending node. However, based on the tag
associated to each piece of information, the receiving node only takes into account the
ones that are more recent than those it already knows or the ones that it does not know
at all. The two loops of task T 2 respectively handle the information received about
suspected nodes (lines 19–25) and about mistaken nodes (lines 26–31). Thus, for each

36 F. Greve et al.

node px included in the suspected (respectively, mistake) set of the QUERY message, pi

includes the node px in its suspi (respectively, misti) set only if the following condition
is satisfied: pi received a more recent information about px status (failed or mistaken)
than the one it has in its suspi and misti sets. Furthermore, in the first loop of task T 2,
a new mistake is detected if the receiving node pi is included in the suspected set of the
QUERY message (line 21) with a greater tag. At the end of the task (line 32), pi sends
to the querying node a RESPONSE message.

Dealing with mobility and generating mistakes. When a node pm moves to another
destination, the nodes of its old destination will start suspecting it, since pm is in their
known set and it cannot reply to QUERY messages from the latter anymore. Hence,
QUERY messages that include pm as a suspected node will be propagated to nodes of
the network. Eventually, when pm reaches its new neighborhood, it will receive such
suspicion messages. Upon receiving them, pm will correct such a mistake by including
itself (pm) in the mistake set of its corresponding QUERY messages with a greater tag
(lines 21-22). Such information will be propagated over the network. On the other hand,
pm will start suspecting the nodes of its old neighborhood since they are in its knownm

set. It then will broadcast this suspicion in its next QUERY message. Eventually, this in-
formation will be corrected by the nodes of its old neighborhood and the corresponding
generated mistakes will spread over the network, following the same principle.

In order to avoid a “ping-pong” effect between information about suspicions and
mistakes, lines 30–31 allow the updating of the known sets of both the node pm and
of those nodes that belong to the original destination of pm. Then, for each mistake
〈px, ctx〉 received from pj , such that pi keeps an old information about px, pi verifies
whether px is the sending node pj (line 30). If they are different, px should belong to
a remote neighborhood, because otherwise, pi would have received the mistake by px

itself. Notice that only the node can generate a new mistake about itself (line 21). Thus,
px is removed from the knowni set (line 31). Notice, however, that this condition is
not sufficient to detect the mobility, because px can be a neighbor of pi and due to an
asynchronous race, the QUERY sent by px with the mistake has not yet arrived at pi. In
fact, the propagated mistake sent by pj has arrived at pi firstly. If that is the case, px has
been unduly removed from knowni. Fortunately, since local broadcast is fair-lossy, the
QUERY from px is going to eventually arrive at pi, if pi is stable, and, as soon as the
QUERY arrives, pi will once again add px to knowi (lines 17–18).

4.2 Practical Issues

The stable termination of the QUERY-RESPONSE primitive and the MobiP property
may be satisfied if the time of pause, between changes in direction and/or speed, is
defined to be greater than the time to transmit the QUERY and receive the RESPONSE

messages. This condition is attained when for example, the most widely used Random
Waypoint Mobility Model [24] is considered. In practice, the value of αi (the number
of responses that a process pi should wait in order to implement a QUERY-RESPONSE)
relates not only with the application density and the expected number of local faults,
but also with the type of network considered (either WMN, WSN, etc.) and the current
topology of the network during execution. Thus, it can be defined on the fly, based on
the current behavior of the network. Wireless Mesh Network (WMN), Wireless Sensor

A Failure Detector for Wireless Networks with Unknown Membership 37

Network (WSN), and infra-structured mobile networks [11, 25] are a good examples
of platforms who would satisfy the assumptions of our model, specially the SRP . In a
WMN, the nodes move around a fixed set of nodes (the core of the network) and each
mobile node eventually connects to a fix node. A WSN is composed of stationary nodes
and can be organized in clusters, so that communication overhead can be reduced; one
node in each cluster is designated the cluster head (CH) and the other nodes, cluster
members (CMs). Communication inter-clusters is always routed through the respective
CHs which act as gateway nodes and are responsible for maintaining the connectivity
among neighboring CHs. An infra-structured mobile network is composed of mobile
hosts (MH) and mobile support stations (MSS). A MH is connected to a MSS if it is
located in its transmission range and two MHs can only communicate through MSSs,
but, due to mobility, an MH can leave and enter the area covered by other MSSs. The
system is composed of N MSSs but infinitely many MHs. However, in each run the
protocol has only finitely many MHs. There are some works to implement a leader
oracle [11] and to solve consensus in this type of network [25].

For all these platforms, special nodes (the fixed node for WMN, CHs for WSN or
MSSs for infra-structured networks) eventually form a strongly connected component
of stable nodes; additionally, they can be regarded as fast, so that they will always an-
swer to a QUERY faster than the other nodes, considered as slow nodes (the mobile
node for WMN, CMs for WSN or MHs for infra-structured networks). Thus, one of
these fast nodes may satisfy the SRP property. The SRP may seem strong, but in
practice it should just hold during the time the application needs the strong complete-
ness and eventual weak accuracy properties of FDs of class ♦SM , as for instance, the
time to execute a consensus algorithm.

5 Conclusion

This paper has presented a new algorithm for an unreliable failure detector suitable for
mobile wireless networks, such as WMNs or WSNs. It implements failure detectors of
class ♦SM (eventually strong with unknown membership) when the exchanged pattern
of messages satisfies some behavioral properties. As a future work, we plan to adapt the
algorithm and properties to implement other classes of failure detectors.

References

1. Conti, M., Giordano, S.: Multihop ad hoc networking: The theory. IEEE Communications
Magazine 45(4), 78–86 (2007)

2. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal
of the ACM 43(2), 225–267 (1996)

3. Devianov, B., Toueg, S.: Failure detector service for dependable computing. In: Proc. of the
1st Int. Conf. on Dependable Systems and Networks, pp. 14–15 (2000)

4. Mostefaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detec-
tors. In: Proc. of Int. Conf. on Dependable Systems and Networks (2003)

5. Aguilera, M.K., Chen, W., Toueg, S.: Heartbeat: A timeout-free failure detector for quies-
cent reliable communication. In: Proc. of the 11th International Workshop on Distributed
Algorithms, pp. 126–140 (1997)

38 F. Greve et al.

6. Hutle, M.: An efficient failure detector for sparsely connected networks. In: Proc. of the
IASTED International Conference on Parallel and Distributed Computing and Networks, pp.
369–374 (2004)

7. Tucci-Piergiovanni, S., Baldoni, R.: Eventual leader election in infinite arrival message-
passing system model with bounded concurrency. In: Dependable Computing Conference
(EDCC), pp. 127–134 (2010)

8. Friedman, R., Tcharny, G.: Evaluating failure detection in mobile ad-hoc networks. Int. Jour-
nal of Wireless and Mobile Computing 1(8) (2005)

9. Tai, A., Tso, K., Sanders, W.: Cluster-based failure detection service for large-scale ad hoc
wireless network applications. In: Int. Conf. on Dependable Systems and Networks, pp. 805–
814 (2004)

10. Sridhar, N.: Decentralized local failure detection in dynamic distributed systems. In: The
25th IEEE Symp. on Reliable Distributed Systems, pp. 143–154 (2006)

11. Cao, J., Raynal, M., Travers, C., Wu, W.: The eventual leadership in dynamic mobile net-
working environments. In: 13th Pacific Rim Intern. Symp. on Dependable Computing, pp.
123–130 (2007)

12. Greve, F., Tixeuil, S.: Knowledge conectivity vs. synchrony requirements for fault-tolerant
agreement in unknown networks. In: Int. Conf. on Dependable Systems and Networks, pp.
82–91 (2007)

13. Sens, P., Arantes, L., Bouillaguet, M., Simon, V., Greve, F.: Asynchronous implementation
of failure detectors with partial connectivity and unknown participants. Technical Report,
RR6088, INRIA - France, http://hal.inria.fr/inria-00122517/fr/

14. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures. SIGACT
News 35(2), 36–59 (2004)

15. Ramasubramanian, V., Chandra, R., Mossé, D.: Providing a bidirectional abstraction for uni-
directional adhoc networks. In: Proc. of the 21st IEEE International Conference on Computer
Communications (2002)

16. Min-Te, S., Lifei, H., Arora, A.A., Ten-Hwang, L.: Reliable mac layer multicast in ieee
802.11 wireless networks. In: Proc. of the Intern, August 2002, pp. 527–536 (2002)

17. Koo, C.Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: 23th
Symp. on Principles of Distributed Computing, pp. 275–282 (2004)

18. Bhandari, V., Vaidya, N.H.: Reliable local broadcast in a wireless network prone to byzantine
failures. In: The 4th Int. Work. on Foundations of Mobile Computing (2007)

19. Jiménez, E., Arévalo, S., Fernández, A.: Implementing unreliable failure detectors with un-
known membership. Inf. Process. Lett. 100(2), 60–63 (2006)

20. Mostefaoui, A., Raynal, M., Travers, C., Patterson, S., Agrawal, D., Abbadi, A.: From static
distributed systems to dynamic systems. In: Proc. of the 24th IEEE Symposium on Reliable
Distributed Systems, pp. 109–118 (2005)

21. Bhandari, V., Vaidya, N.H.: Reliable broadcast in radio networks with locally bounded fail-
ures. IEEE Trans. on Parallel and Distributed Systems 21, 801–811 (2010)

22. Mostefaoui, A., Raynal, M., Travers, C.: Time-free and timer-based assumptions can be com-
bined to obtain eventual leadership. IEEE Trans. Parallel Distrib. Syst. 17(7), 656–666 (2006)

23. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: 24th Symp. on
Principles of Distributed Computing, pp. 138–147. ACM, New York (2005)

24. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research.
Wireless Communications & Mobile Computing: Special issue on Mobile Ad Hoc Network-
ing: Research, Trends and Applications 2, 483–502 (2002)

25. Wu, W., Cao, J., Yang, J., Raynal, M.: Design and performance evaluation of efficient con-
sensus protocols for mobile ad hoc networks. IEEE Trans. Comput. 56(8), 1055–1070 (2007)

http://hal.inria.fr/inria-00122517/fr/

	A Failure Detector forWireless Networks with Unknown Membership
	Introduction
	Related Work

	Model and Problem Definition
	Stability Assumptions
	A Failure Detector of Class SM

	Towards a Time-Free Failure Detector for the SM Class
	Stable Query-Response Communication Mechanism
	Behavioral Properties

	A Failure Detector Algorithm for the SM Class
	Algorithm Description
	Practical Issues

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

