Better Security for Deterministic Public-Key
Encryption: The Auxiliary-Input Setting

Zvika Brakerski! and Gil Segev?

! Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot 76100, Israel
zvika.brakerski@weizmann.ac.il
2 Microsoft Research, Mountain View, CA 94043, USA
gil.segev@microsoft.com

Abstract. Deterministic public-key encryption, introduced by Bellare,
Boldyreva, and O’Neill (CRYPTO ’07), provides an alternative to ran-
domized public-key encryption in various scenarios where the latter ex-
hibits inherent drawbacks. A deterministic encryption algorithm, how-
ever, cannot satisfy any meaningful notion of security when the plaintext
is distributed over a small set. Bellare et al. addressed this difficulty by
requiring semantic security to hold only when the plaintext has high
min-entropy from the adversary’s point of view.

In many applications, however, an adversary may obtain auxiliary
information that is related to the plaintext. Specifically, when determin-
istic encryption is used as a building block of a larger system, it is rather
likely that plaintexts do not have high min-entropy from the adversary’s
point of view. In such cases, the framework of Bellare et al. might fall
short from providing robust security guarantees.

We formalize a framework for studying the security of deterministic
public-key encryption schemes with respect to auxiliary inputs. Given the
trivial requirement that the plaintext should not be efficiently recover-
able from the auxiliary input, we focus on hard-to-invert auxiliary inputs.
Within this framework, we propose two schemes: the first is based on the
decisional Diffie-Hellman (and, more generally, on the d-linear) assump-
tion, and the second is based on a rather general class of subgroup indis-
tinguishability assumptions (including, in particular, quadratic residu-
osity and Paillier’s composite residuosity). Our schemes are secure with
respect to any auxiliary input that is subexponentially hard to invert
(assuming the standard hardness of the underlying computational as-
sumptions). In addition, our first scheme is secure even in the multi-user
setting where related plaintexts may be encrypted under multiple public
keys. Constructing a scheme that is secure in the multi-user setting (even
without considering auxiliary inputs) was identified by Bellare et al. as
an important open problem.

1 Introduction

Public-key encryption is one of the most basic cryptographic tasks. A public-key
encryption scheme consists of three algorithms: a key-generation algorithm that

P. Rogaway (Ed.): CRYPTO 2011, LNCS 6841, pp. 543 560, 2011.
© International Association for Cryptologic Research 2011

544 Z. Brakerski and G. Segev

produces a secret key and a corresponding public key, an encryption algorithm
that uses the public key for mapping plaintexts into ciphertexts, and a decryption
algorithm that uses the secret key for recovering plaintexts from ciphertexts.
For modeling the security of public-key encryption schemes, the fundamental
notion of semantic security was introduced in the seminal work of Goldwasser
and Micali [20]. Semantic security asks that it should be infeasible to gain any
effective information on the plaintext by seeing the ciphertext and the public key.
More specifically, whatever can be computed efficiently from the ciphertext, the
public key and possibly some auxiliary information, can essentially be computed
efficiently from the public key and the auxiliary information alone.

Together with its rigorous, robust, and meaningful modeling of security, se-
mantic security inherently carries the requirement for a randomized encryption
algorithm. In some cases, however, a randomized encryption algorithm may suf-
fer from various drawbacks. In terms of efficiency, ciphertexts are not length
preserving (and might be significantly longer than their corresponding plain-
texts), and are in general not efficiently searchable. These properties severely
limit the deployment of public-key encryption schemes in applications involv-
ing, for example, massive data sets where the ciphertext expansion is crucial, or
global deduplication-based storage systems where searches are highly frequent
(e.g., [26]). In addition, in terms of security, the security guarantees provided by
randomized public-key encryption, and by randomized cryptographic primitives
in general, are typically highly dependant on the availability of true and fresh
random bits (see, for example, [3] and the references therein).

Deterministic public-key encryption. For dealing with these kind of draw-
backs, Bellare, Boldyreva, and O’Neill [2] initiated the study of determinis-
tic public-key encryption schemes. These are public-key encryption schemes in
which the encryption algorithm is deterministid]. In this setting, where full-
fledged sematic security is out of reach, Bellare et al. put forward the goal of
formalizing a notion of security that captures semantic security as much as pos-
sible. An immediate consequence of having a deterministic encryption algorithm,
however, is that essentially no meaningful notion of security can be satisfied if
the plaintext is distributed over a set of polynomial size. Indeed, in such a case
an adversary who is given a public key pk and an encryption c¢ of some plaintext
m under the public key pk, can simply encrypt all possible plaintexts, compare
each of them to the given ciphertext ¢, and thus recover the plaintext m.
Bellare et al. addressed this problem by requiring security to hold only when
the plaintext is sampled from a distribution of high min-entropy. Subject to
this restriction, they adapted semantic security to the setting of deterministic
encryption: For any high-entropy plaintext distribution, whatever can be com-
puted efficiently from the ciphertext and the public key, can also be computed
efficiently from the public key alone. Constructions of deterministic public-key
encryption schemes satisfying this and similar notions of security were proposed
in the random oracle model by Bellare et al. [2], and then in the standard model

! Note that this is effectively a collection of injective trapdoor functions (assuming
the decryption algorithm is deterministic as well).

Better Security for Deterministic Public-Key Encryption 545

by Bellare, Fischlin, O’Neill, and Ristenpart [4], by Boldyreva, Fehr, and O’Neill
[B], and by O’Neill [23]. We refer the reader to Section for an elaborated
discussion of these constructions.

Security with respect to auxiliary information. In typical applications, a
deterministic public-key encryption scheme is used as building block of a larger
system. In such a setting, an adversary usually has additional information that
it can use when trying to break the security of the scheme. This danger becomes
even more critical when such additional information is related to the encrypted
plaintext. In general, security with respect to auxiliary information is essential
towards obtaining composable security (see, for example, [11] and the references
therein). More closely related to our approach are the studies of security with
respect to auxiliary information in the contexts of perfect one-way functions [10],
program obfuscation [19], and leakage-resilient encryption [I3IT2/]].

For example, when using a deterministic public-key encryption scheme for
enabling efficient searches on encrypted databases, as suggested by Bellare et al.
[2], it is not unlikely that the same plaintext belongs to more than one database,
and is therefore encrypted under several public keys; or that various statistics
of the database are publicly available. A more acute example is when using a
deterministic public-key encryption scheme for a key-encapsulation mechanism
that “hedges against bad randomness” [3]. In such a case an adversary that
observes the usage of the encapsulated key (say, as a key to a symmetric-key
encryption scheme) may in fact obtain a huge amount of additional information
on the encapsulated key.

In this light, the notion of security proposed by Bellare et al. [2] might fall
short of capturing the likely case where auxiliary information is available. That
is, although a plaintext may be sampled from a distribution with high min-
entropy to begin with, it might still have no entropy, from the point of view of
an adversary, in many realistic scenarios. We note that already in the setting
of deterministic symmetric-key encryption of high-entropy messages, Dodis and
Smith [I4] observed that the main weakness of an approach that does not take
into account auxiliary information, is the lack of composable security. It is thus a
highly desirable task to model and to construct secure deterministic encryption
schemes in the setting of auxiliary information, as a crucial and essential step
towards obtaining more realistic security guarantees.

1.1 Owur Contributions

In this paper we introduce a framework for modeling the security of determinis-
tic public-key encryption schemes with respect to auxiliary inputs. Within this
framework we propose constructions that are based on standard cryptographic
assumptions in the standard model (i.e., without random oracles). Our frame-
work is a generalization of the one formalized by Bellare et al. [2] (and further
studied in [45I23]) to the auxiliary-input setting, in which an adversary possibly
obtains additional information that is related to the encrypted plaintext, and
might even fully determine the encrypted plaintext information theoretically.

546 Z. Brakerski and G. Segev

Modeling auxiliary information. An immediate consequence of having a de-
terministic encryption algorithm is that no meaningful notion of security can be
satisfied if the plaintext can be recovered from the adversary’s auxiliary informa-
tion (see Section [B] for a discussion of this inherent constraintﬁ). Thus, we focus
our attention on the case of hard-to-invert auxiliary inputs, where the source of
hardness may be any combination of information-theoretic hardness (where the
auxiliary-input function is many-to-one) and computational hardness (where the
auxiliary input function is injective, but is hard to invert by efficient algorithms).

Notions of security. Following [2/4/5] we formalize three notions of security
with respect to auxiliary inputs, and prove that all three are equivalent. The
first is a simulation-based notion, capturing the intuitive meaning of semantic
security: whatever can be computed efficiently given a public key, an encryption
of a message, and hard-to-invert auxiliary input, can be computed efficiently
given only the public key and the auxiliary input. The second is a comparison-
based notion, which essentially serves as an intermediate notion towards an
indistinguishability-based one that is somewhat easier to handle in proofs of se-
curity. The high-level approach of the equivalence proofs is motivated by those
of [5], but the existence of auxiliary inputs that may fully determine the en-
crypted messages introduces various difficulties that our techniques overcome.

Constructions. We propose two constructions in the standard model satisfying
our notions of security. At a first glance, one might hope that the constructions
proposed in [2[45l23] can be naturally extended to the auxiliary-input setting
by replacing the notion of statistical min-entropy with an appropriate notion of
computational min-entropy. This, however, does not seem to be the case (at least
without relying on random oracles), as these constructions seem to heavily rely
on information-theoretic properties that might not have natural computational
analoguesﬁ.

Our first construction is based on the decisional Diffie-Hellman assumption,
(and more generally, on any of the d-linear assumptions), and our second con-
struction is based on a rather general class of subgroup indistinguishability as-
sumptions as defined in [§] (including, in particular, the quadratic residuosity
assumption, and Paillier’s composite residuosity assumption [24]). The resulting
schemes are secure with respect to any auxiliary input that is subexponentially
hard to invertd. In addition, our first scheme is secure even in the multi-user
setting where related messages may be encrypted under multiple public keys. In
this setting we obtain security (with respect to auxiliary inputs) for any poly-
nomial number of messages and users as long as the messages are related by
invertible linear transformations. Constructing a scheme that is secure is the

2 This is somewhat similar to the observation that security is impossible to achieve
when the plaintext is distributed over a small set.

3 A prime example is the generalized crooked leftover hash lemma [5], for which a
computational analogue may seem somewhat challenging to devise.

4 We emphasize that in this paper we rely on standard computational assumptions
(i.e., d-linear or quadratic residuosity), and only the auxiliary inputs are assumed to
have subexponential hardness.

Better Security for Deterministic Public-Key Encryption 547

multi-user setting (even without considering auxiliary inputs) was identified as
an important open problem by Bellare et al. [2]. Finally, we note that this scheme
also exhibits an interesting homomorphic property: it allows homomorphic addi-
tions and one multiplication, in the spirit of [6/16]. This property may be found
especially useful in light of the possible applications of deterministic public-key
encryption schemes in database systems [2].

1.2 Related Work

Exploiting the entropy of messages to prove otherwise-impossible security was
first proposed by Russell and Wang [25], followed by Dodis and Smith [I4]. These
works achieved information-theoretic security for symmetric-key encryption with
short keys.

In the setting of public-key encryption, deterministic encryption for high min-
entropy messages was proposed by Bellare, Boldyreva, and O’Neill [2] who for-
malized a definitional framework, which was later refined and extended by Bel-
lare, Fischlin, O’Neill, and Ristenpart [4], by Boldyreva, Fehr, and O’Neill [5],
and by O’Neill [23]. Bellare et at. [2] presented two constructions in the random
oracle model: The first relies on any semantically-secure public-key encryption
scheme; whereas the second relies on the RSA function (and is in fact length
preserving). Constructions in the standard model (i.e., without random oracles),
were then presented in [4J5]. Bellare et al. [4] presented a construction based
on trapdoor permutations, which is secure as long as the messages are (almost)
uniformly distributed. Boldyreva et al. [5] presented a construction based on
lossy trapdoor functions, which is secure as long as its n-bit messages have min-
entropy at least n® for some constant 0 < € < 1. These constructions, however,
fall short in two interesting cases: In the multi-message setting, where arbitrarily
related messages are encrypted under the same public key; and in the multi-
user setting where the same message is encrypted under several (independently
chosen) public keys. Recently, O'Neill [23] made a step towards addressing the
former, by presenting a scheme that can securely encrypt any fixed number q
of messages, but whose parameters depend polynomially on g. The latter case
remained unexplored until this work.

Deterministic public-key encryption was used by Bellare et al. [3] who defined
and constructed “hedged” public-key encryption schemes. These are schemes
that are semantically secure in the standard sense, and maintain a meaning-
ful and realistic notion of security even when “corrupt” randomness is used
for the encryption, so long as the joint message-randomness pair has sufficient
min-entropy. The definition of security in the latter case takes after that of de-
terministic public-key encryption.

The tools underlying our constructions in this paper are inspired by the line of
research on “encryption in the presence of auxiliary input”, initiated by Dodis,
Kalai, and Lovett [13] in the context of symmetric-key encryption, and then ex-
tended in [T2J§] to public-key encryption. These works consider encryption schemes
where the adversary may obtain a hard-to-invert function of the secret key — ex-
tending the frameworks of “bounded leakage” [I] and “noisy leakage” [22].

548 Z. Brakerski and G. Segev

1.3 Overview of Our Approach

In this section we provide a high-level overview of our approach and techniques.
We begin with a brief description of the notions of security that we consider
in the auxiliary-input setting, and then describe the main ideas underlying our
two constructions. For simplicity, in what follows we consider the case where one
message is encrypted under one public key, and refer the reader to the relevant
sections for the more general case.

Defining security with respect to auxiliary inputs. Towards describing
our notions of security, we first discuss our notion of hard-to-invert auxiliary
inputs. We consider any auxiliary input f(z) from which it is hard to recover
the input z. The source of hardness may be any combination of information-
theoretic hardness (where the function f is many-to-one), and computational
hardness (where f(x) fully determines z, but x is hard to recover by efficient
algorithms). Informally, we say that a function f is e-hard-to-invert with respect
to a distribution D, if for every efficient algorithm A it holds that A(f(z)) =«
with probability at most €, over the choice of x <+ D and the internal coin tosses
of A.

As discussed in Section[I.]] we formalize three notions of security with respect
to auxiliary inputs, and prove that all three are equivalent. For concreteness we
focus here on the simulation-based definition, which captures the intuitive mean-
ing of semantic security: Whatever can be computed efficiently given a public key,
an encryption of a message, and hard-to-invert auziliary input, can be computed
efficiently given only the public key and the auxiliary input. A bit more formally,
we say that a scheme is secure with respect to e-hard-to-invert auxiliary in-
puts if for any probabilistic polynomial-time adversary A, and for any efficiently
samplable plaintext distribution M, there exists a probabilistic polynomial-time
simulator S, such that for any efficiently computable function f that is e-hard-to-
invert with respect to M, and for any function g € {0,1}* — {0,1}*, the prob-
abilities of the events A (pk, Enc,i(m), f(m)) = g(m) and S (pk, f(m)) = g(m)
are negligibly close, where m < M. We note that the functions f and g may
be arbitrary relatedd. This is a generalization of the definitions considered in
[21415123].

The scheme of Boldyreva et al. [5]. Our starting point is the scheme of
Boldyreva et al. [5] that is based on lossy trapdoor functions. This is in fact the
only known construction in the standard model (i.e., without random oracles)
that is secure for arbitrary plaintext distributions with high (but not nearly
full) min-entropy. In their construction, the public key consists of a function
h that is sampled from the injective mode of the collection of lossy trapdoor
functions, and a pair-wise independent permutation 7. The secret key consists
of the trapdoor for inverting h (we assume that 7 is efficiently invertible). The
encryption of a message m is defined as Encpr(m) = h(m(m)), and decryption is
naturally defined.

5 In fact, the “target” function g is allowed to take as input also the randomness that
is used for sampling m, and any other public randomness — see Section [Bl

Better Security for Deterministic Public-Key Encryption 549

In a high level, the proof of security in [5] considers the joint distribution of the
public key and the ciphertext (pk, Encpr(m)), and argues that it is computation-
ally indistinguishable from a distribution that is independent of the plaintext
m. This is done by considering a distribution of malformed public keys, that
is computationally indistinguishable from the real distribution. Specifically, the
injective function h is replaced with a lossy function h to obtain an indistinguish-
able public key pk. The next step is to show that the ciphertext ¢ = Enc{;k (m)
can be described by the following two-step process. First, an analogue of a strong
extractor is applied to m (where the seed is the permutation 7 that lies in pk) to
obtain v = ext;k(m). Then, the output of the extractor is used to compute the

ciphertext ¢ = g(]:l;, v). From this point of view, it is evident that so long as the
plaintext m is drawn from a distribution with high min-entropy, it holds that
v =exty (m) is statistically close to a uniform distribution (over some domain).
This holds even given the malformed public key, and does not depend on the
distribution of m. This methodology of using an analog of a strong extractor
relies on the crooked leftover hash lemma of Dodis and Smith [14], that enables
to base the construction on any collection of lossy trapdoor functions.

Our constructions. In our setting, we wish to adapt this methodology to rely
on computational hardness instead of min-entropy. However, there is currently no
known analog of the crooked leftover hash lemma in the computational setting.
This is an interesting open problem. We overcome this difficulty by relying of
specific collections of lossy trapdoor functions, for which we are in fact able to
extract pseudorandomness from computational hardness. We do this by replacing
the strong extractor component with a hard-core function of the message (with
respect to the auxiliary input). Specifically, our encryption algorithm (when
using the malformed public key) can be interpreted as taking an inner product
between our message m (viewed as a vector of bits) and a random vector a,
where the resulting ciphertext depends only on (a, (m,a)). This is similar to
the Goldreich-Levin hard-core predicate [I8], except that the vector a is not
binary and the inner product is performed over some large Z-module and not
over the binary field. We thus require the generalized Goldreich-Levin theorem of
Dodis et al. [I2] to obtain that even given the auxiliary input, the distributions
(a, (m,a)) and (a,u) are computationally indistinguishable, where u is uniformly
distributed and does not depend on the distribution of m.

To be more concrete, let us consider our DDH-based scheme (formally pre-
sented in Section []) which is based on the lossy trapdoor functions of Freeman
et al. [I5]. The scheme is instantiated by a DDH-hard group G of prime order ¢
that is generated by g. The message space is {0,1}"™ (where n is polynomial in
the security parameter) and the public key is g#, for a random n x n matrix A
over Zq. Encryption is done by computing Encya (m) = g2 ™ and decryption is
performed using sk = A-1[§

5 We overload the notation g* to matrices as follows: for X € Z’;X”, we let g% € GF*»
denote the matrix defined as (g%);; = ¢g®)3.

550 Z. Brakerski and G. Segev

For analyzing the security of the scheme, we consider the joint distribu-
tion of the public key, ciphertext and auxiliary input (pk, Encyi(m), f(m)) =
(g™, gA ™, f(m)). The malformed distribution pk is obtained by taking A to be
a random rank-1 matrix (rather than completely random). DDH implies that pk
and ;)‘l; are computationally indistinguishabile. Such a low-rank matrix takes the
form A =r-b’, and therefore A -m =r - b’ - m, for random vectors r and b.
Thus, our ciphertext depends only on (b, (b, m)) which is indistinguishable from
(b, u), for a uniformly random w, even given f(m), by the generalized Goldreich-
Levin theorem [12]. Our initial distribution is therefore indistinguishable from
the distribution (g"'bT,g‘"‘“7 f(m)) as required.

In the multi-user setting, we observe that any polynomial number of public
keys gA1,..., g™ are computationally indistinguishable, by DDH, from having
joint rank-1. Namely, in this case the distributions (g1,...,g¢) and (g“'bT,

., gt ‘bT) are computationally indistinguishable, where the same vector b is
used for all keys. Encrypting a message m under all such ¢ public keys results
in a set of ciphertexts (g"l'bT‘m7 . 7g”'bT'm), where all elements depend on
(b, (b,m)). This enables to apply the above approach, and we show that it in
fact extends to linearly-related messages.

Our second scheme (based on subgroup indistinguishability assumptions) is
analyzed quite similarly. We rely on the lossy trapdoor functions of [21] and can
again show that our public key distribution is indistinguishable from one over
rank-1 matrices. However, the groups under consideration might be non-cyclic.
This adds additional complications into the analysis. In addition, this scheme
does not seem to allow a “joint rank” argument as above, and we leave it as an
open problem to construct an analogous scheme that is secure in the multi-user
setting.

Paper organization. The remainder of this paper is organized as follows. In
Section [21 we formalize a general notion for hard-to-invert auxiliary inputs. In
Section [B] we introduce a framework for modeling the security of deterministic
public-key encryption schemes with respect to auxiliary inputs, consisting of
three main notions of security. In Section @] we present a construction based
on the decisional Diffie-Hellman assumption (and, more generally, on any of
the d-linear assumptions), and in Section [B] we present a construction based on
subgroup indistinguishability assumptions.

Due to space limitations, not all results and proofs appear in this extended
abstract. We refer the reader to the full version of this paper [J] for more
details.

Notation. Throughout the paper we denote scalars in plain lowercase letters
(x € {0,1}). We use the term “vector” both in the algebraic sense, where it
indicates an element in a vector space and denoted by bold lowercase letters (x €
{0,1}*); and in the “combinatorial” sense, indicating an ordered set of elements
(not necessarily having any algebraic properties) for which we use the notation
Z. We denote a combinatorial vector whose elements are algebraic vectors by X,
combinatorial vector of combinatorial vectors by Z, and combinatorial vector of

Better Security for Deterministic Public-Key Encryption 551

combinatorial vectors of algebraic vectors by %. Matrices (always algebraic) are
denoted in bold uppercase (X € {0, 1}¥*™). The k x k identity matrix is denoted
I,. All vectors are column vectors by default, and a row vector is denoted by x”.

2 Hard-to-Invert Auxiliary Inputs

In this work we consider any auxiliary input f(z) from which it is hard to recover
the input z. The source of hardness may be any combination of information-
theoretic hardness (where the function f is many-to-one) and computational
hardness (where f(x) fully determines z, but x is hard to recover by efficient
algorithms). Informally, we say that a function f is e-hard-to-invert with respect
to a distribution D, if for every efficient algorithm A it holds that A(f(z)) =«
with probability at most € over the choice of x < D and the internal coin tosses
of A.

For our purposes, we formalize a slightly more general notion in which D is a
distribution over vectors of inputs ¥ = (x1,...,2:), and for every i € {1,...,t}
it should be hard to efficiently recover x; when given f(Z). In addition, we also
consider a blockwise variant of this notion, in which it should be hard to efficiently
recover x; when given (z1,...,z;—1, f(Z)).

Definition 2.1. An efficiently computable function F = { fx}cy is €(k)-hard-
to-invert with respect to an efficiently samplable distribution D = {Dy }ren over
vectors of t(k) inputs, if for every probabilistic polynomial-time algorithm A and
for every i € {1,...,t(k)} it holds that

Pr [A <1k7 fk(.’i")) = xl] < E(k‘) 5

for all sufficiently large k, where the probability is taken over the choice of ¥ =
(w1,..., %)) < Dy, and over the internal coin tosses of A.

Definition 2.2. An efficiently computable function F = { fi},cy is €(k)-block-
wise-hard-to-invert with respect to an efficiently samplable distribution D =
{Dri}ren over vectors of t(k) inputs, if for every probabilistic polynomial-time
algorithm A and for every i € {1,...,t(k)} it holds that

Pr [A (1k,m1, ey Li—1, fk(f)) = .’I}Z] < G(k)) 5

for all sufficiently large k, where the probability is taken over the choice of ¥ =
(w1,..., %)) < Dy, and over the internal coin tosses of A.

Note that Definition 2] implies in particular that the distribution D is such
that each z; has min-entropy at least log(1/e(k)). Furthermore, Definition
implies that the distribution D is a block source in which each block z; has
(average) min-entropy at least log(1/e(k)) conditioned on the previous blocks
(xla s 7xi71)'

552 Z. Brakerski and G. Segev

3 Modeling Security in the Auxiliary-Input Setting

In this section we present a framework for modeling the security of deterministic
public-key encryption schemes with respect to auxiliary inputs. Our framework
is obtained as a generalization of those considered in [2/4l5] to a setting in which
the encrypted plaintexts may be fully determined by some auxiliary information
that is available to the adversary. Following [2/4l5] we formalize three notions of
security with respect to auxiliary inputs, and prove that all three are equivalent.
The first is a simulation-based semantic security notion (PRIV-SSS), capturing
the intuitive meaning of semantic security: whatever can be computed given
an encryption of a message and auziliary input, can also be computed given
only the auxiliary input. The second is a comparison-based semantic-security
notion (PRIV-CSS), which essentially serves as an intermediate notion towards
an indistinguishability-based one (PRIV-IND) that is somewhat easier to handle
in proofs of security.

In the remainder of this paper we use the following notation. For a deter-
ministic public-key encryption scheme IT = (KeyGen, Enc, Dec), a public key pk,

and a vector of messages m = (mq,...,m;) we denote by Eﬁcpk (m) the vector
(Encpr(ma), ..., Encpr(my)). When considering a distribution M over vectors of
messages m = (mq,...,my) all of which are encrypted under the same public

key, then for the case of hard-to-invert auxiliary inputs we make in this paper
the simplifying assumption that m; # m; for every ¢ # j (a bit more formally,
one should require that all distributions have identical equality patterns — see
[2]). In the case of blockwise-hard-to-invert auxiliary inputs this assumption is
not necessary. In addition, for simplicity we present our definitions for the case
of hard-to-invert auxiliary inputs, and note that they naturally extend to the
case of blockwise-hard-to-invert auxiliary inputs.

Definition 3.1 (Simulation-based security). A deterministic public-key en-
cryption scheme II = (KeyGen, Enc, Dec) is PRIV-SSS-secure with respect to e-
hard-to-invert auxiliary inputs if for any probabilistic polynomial-time algorithm
A and for any efficiently samplable distribution M = {Mj}ren, there exists
a probabilistic polynomial-time algorithm S, such that for any efficiently com-
putable function F = { fx},cy that is e-hard-to-invert with respect to M, and for
any function g € {0,1}* — {0,1}*, there exists a negligible function v(k) such
that

PRIV—SSS def
Adviza ps.F.gk) =

Realf Y355, (k) — 1dealf 2558 (k)| < w(k)
for all sufficiently large k, where
Realf Y 3558, (k) = Pr 4 (1%, pk, Encoe (1), fu(17)) = g()|
1dealfRY 3352 (k) = Pr [(15, pk, fi(17)) = g(1i)] .

and the probability is taken over the choices of M « My, (sk, pk) < KeyGen(1F),
and over the internal coin tosses of A and S.

Better Security for Deterministic Public-Key Encryption 553

Definition 3.2 (Comparison-based security). A deterministic public-key
encryption scheme II = (KeyGen, Enc, Dec) is PRIV-CSS-secure with respect
to e-hard-to-invert auxiliary inputs if for any probabilistic polynomial-time al-
gorithm A, for any efficiently samplable distribution M = {My}ren, for any
efficiently computable function F = {fi},cn that is e-hard-to-invert with re-
spect to M, and for any function g € {0,1}* — {0,1}*, there exists a negligible
function v(k) such that

PRIV—CSS def
Advira mir (k) =

AAVERYAES (6, 0) = AaviRY IS, (b, D] < v(k)
for all sufficiently large k, where
AdvPRY 1G85 (k,b) = Pr [A (1’2 Pk, Encyr (17), fk(mo)) - g(mo)] :

and the probability is taken over the choices of Mg «— My, My — My, (sk, pk) —
KeyGen(1¥), and over the internal coin tosses of A.

Definition 3.3 (Indistinguishability-based security). A deterministic pub-
lic-key encryption scheme II = (KeyGen, Enc, Dec) is PRIV-IND-secure with re-
spect to e-hard-to-invert auxiliary inputs if for any probabilistic polynomial-time
algorithm A, for any two efficiently samplable distributions Mg = {MO,k}keN
and My = { Mk} ,.cy, and for any efficiently computable function F = {fi},cn
that is e-hard-to-invert with respect to both My and My, there ezists a negligible
function v(k) such that

PRIV—IND def
AdVU,A,Mo,ML]:(k) -

ARV, | e (k,0) = AdVIRVIIND, | (K, 1) < w(k)
for all sufficiently large k, where
Adv%ﬁl‘\l/;\/ll':l)l?./\/h,f(k? b) =Pr |:A (]—kapka Eﬁcpk(mb)a fk(mO)) = 1])

and the probability is taken over the choices of mg «— Mox, M1 — My,
(sk,pk) < KeyGen(1%), and over the internal coin tosses of A.

The hard-to-invert requirement. We emphasize that in the setting of de-
terministic public-key encryption the requirement that the encrypted messages
cannot be efficiently recovered from the auxiliary input is essential (unlike in the
setting of randomized encryption, where the notion of semantic security takes
into account any auxiliary input — see, for example, [I7, Ch. 5]). This is easily
observed using our indistinguishability-based formulation (Definition B:3)): an al-
gorithm that on input f(1mo) (where 7o = (mo,1,...,Mgk))) can recover one
of the mg ; values can then encrypt this value under pk, compare the resulting
ciphertext with the ¢-th component of Eﬁcpk (M), and thus learn the bit b.

Relation to previous notions. We note that any constant function is e-
hard-to-invert with respect to any message distribution of min-entropy at least

554 Z. Brakerski and G. Segev

log(1/€). Thus, our notion of auxiliary-input security strictly generalizes previ-
ous security notions, in which auxiliary input is not considered, and the message
distributions need to have sufficient min-entropy [2/4U5123].

Access to the public key. As observed by Bellare et al. [2] it is essential
that the “target” function g does not take the public key as input. Specifically,
with a deterministic encryption algorithm the ciphertext itself is a non-trivial
information that it leaked about the plaintext, and can clearly be computed
efficiently using the public key. We refer the reader to [2] for a more elaborated
discussion.

The randomness of sampling. For our notions of security we in fact allow the
auxiliary-input function f and the “target” function g to take as input not only
the vector of message i, but also the random string r € {0, 1}* that was used for
sampling m from the distribution Dy. When this aspect plays a significant role
we explicitly include r as part of the input for f and g, and denote by i <« Dy(r)
the fact that m is sampled using the random string r. When this aspect does
not play a significant role we omit it for ease of readability (in particular, we
omitted it from the above definitions).

PRIV1: focusing on a single message. As in [5] we also consider the PRIV1-
variants of our notion of security that focus on a single message (instead of
vectors of any polynomial number of messages). In the full version [9] we also
provide proof that security for a vector of messages with respect to a blockwise-
hard-to-invert auxiliary input is in fact equivalent to security for a single message
with respect to a hard-to-invert auxiliary input.

The multi-user setting. So far our notions of security considered vectors of
messages that are encrypted under the same public key. Our definitions in this
section naturally generalize to the multi-user setting, where there are multiple
public keys, each of which is used for encrypting a vector of messages. Due to
space limitations, we refer the reader to the full version [9] for this generalization.

An even stronger notion of security. Note that in Definition the al-
gorithm A is given as input the vector (1k,pk, Eﬁcp;C (mp), fk(ﬁ'zo)), and that a

seemingly stronger definition would even consider the vector

(1k7pk‘7 Encyr (17, Encpr (1713, fie(170), fk(ﬁh))

as its input. As indicated by the equivalence of our three definitions, such a
stronger variant is not needed for capturing the intuitive meaning of semantic
security as in Definition Bl Nevertheless, our schemes in this paper in fact
satisfy this stronger variant. We refer to this notion as strong indistinguishability
(PRIV-sIND), formally defined as follows:

Definition 3.4. A deterministic public-key encryption scheme II = (KeyGen,
Enc, Dec) is PRIV-sIND-secure with respect to e-hard-to-invert auxiliary inputs

Better Security for Deterministic Public-Key Encryption 555

if for any probabilistic polynomial-time algorithm A, for any two efficiently sam-
plable distributions Mo = { Mo }cy and My = {Mi k}, oy, and for any effi-
ciently computable function F = {fi}cy that is e-hard-to-invert with respect to
both Mo and M, there exists a negligible function v(k) such that

PRIV —sIND def PRIV —sIND PRIV —sIND
AV s, 7 (0) S AV OSN3 #(k,0) — Advir 5 2 #(k, 1)’ <wv(k)

for all sufficiently large k, where
Advy Vo, 7 (k;D)
= Pr [4 (1%, pk, Encyp (1in), Encye (it), fi(iio), fu()) = 1]

and the probability is taken over the choices of mg «— Mo, M1 — My,
(sk,pk) «+ KeyGen(1¥), and over the internal coin tosses of A.

4 A Scheme Based on the d-Linear Assumption

In this section we present our d-linear-based based deterministic encryption
scheme and discuss its properties. We show that the d-linear-based lossy trapdoor
function of Freeman et al. [I5] is in fact a deterministic public-key encryption
that is secure with respect to hard-to-invert auxiliary inputs.

The scheme ITy;,. Let GroupGen be a probabilistic polynomial-time algorithm
that takes as input a security parameter 1%, and outputs a triplet (G, ¢, g) where
G is a group of prime order ¢ that is generated by g € G, and ¢ is a k-bit prime
number. For describing the scheme we overload the notation g* to matrices: for
X € MF*" we let g* € G**™ denote the matrix defined as (¢%);; = gXig,
The scheme is parameterized by the security parameter k£ and the message length
n = n(k).

— Key generation. The key-generation algorithm KeyGen(1%) samples (G, g,
g)«GroupGen(1*), and a matrix A « Zy*". It then outputs pk = (G, g, g,
g®) and sk = A~! (note that A is invertible with all but a negligible prob-
ability).

— Encryption. The encryption algorithm Enc,;(m), where m € {0, 1}" C Zg,
outputs the ciphertext ¢¢ = g ™.

— Decryption. The decryption algorithm Decgy(g€), where g¢ € G™, first
computes g™ = gA c. Then, note that if m € {0,1}"™ then it can be
efficiently extracted from ¢g™. In such case it outputs m, and otherwise it
outputs L.

Correctness follows immediately as in [I5]. We prove the following theorem:

Theorem 4.1. Let d € N be some integer. Then under the d-linear assumption,
for any constant 0 < p < 1 and for any sufficiently large message length n =
n(k), the scheme I, is PRIV-IND-secure with respect to 2" _blockwise-hard-
to-invert auxiliary inputs.

556 Z. Brakerski and G. Segev

Due to space limitations, we only describe the main ideas underlying the se-
curity of the scheme. The full proof can be found in the full version [9]. For
simplicity, we focus here on the case d = 1 (i.e., we rely on the DDH assump-
tion). Given a distribution M over messages m € {0,1}", and an auxiliary-
input function f that is sub-exponentially hard to invert with respect to M,
we argue that an encryption of a messages m sampled from the distribution M
is computationally indistinguishable from being completely independent of the
public key pk and the auxiliary input f(m). More specifically, we prove that

(pk, Encpr(m), f(m)) & (pk, g*, f(m)), for a uniformly chosen vector u. Trans-
forming this into either one of our notions of security from Section [3 is rather
standard.

Consider the joint distribution (pk, Encyr(m), f(m)) = (¢, ¢4 ™, f(m)) o
the public key, the ciphertext, and the auxiliary input. The DDH assumptlon
implies that replacing the uniformly chosen matrix A with a random matrix of
rank 1 results in a computationally indistinguishable distribution. Such a low-
rank matrix can be written as A = r - b?, for random vectors r and b, and
therefore A -m =r-b” - m. However b’ - m = (b, m) is indistinguishable from
the uniform distribution, even given b and f(m), according to the generalized
Goldreich-Levin theorem of [I2]. Our initial distribution is thus indistinguishable
from the distribution (g=®", g™, f(m)).

Now, notice that the matrix [r- b’ |r-a] € ng(nﬂ) is essentially a ran-
dom matrix of rank 1. Relying on the DDH assumption once again, it can be
replaced with a completely random matrix while preserving computational in-
distinguishability. This yields the distribution (g, g%, f(m)), where A and u
are chosen uniformly at random.

Homomorphic properties. The scheme naturally exhibits homomorphic prop-
erties w.r.t. multiplication by a scalar or addition of two ciphertexts over Zj.
This follows from “arithmetics in the exponent”. We stress, however, that the
output of such homomorphic operations will be decryptable if it lies in the mes-
sage space of our scheme, {0, 1}", which is a proper subset of the domain Zq on
which these operations are performed. More generally, decryption is possible as
long as each entry of the encrypted plaintext vector belongs to a predetermined
set of logarithmic size.

In addition, if the underlying group G is associated with a bilinear map, then
our scheme enjoys an additional homomorphism w.r.t. one matrix multiplication.
This is similar to the homomorphism style achieved in [6] and in [16]. We stress
that in such case we base the security of the scheme on the d-linear assumption
for d > 2 (as the 1-linear, i.e. DDH, cannot hold in such a group). Formally, let
G, ¢, and g be as in the parameters of our scheme, and let G, be a (different)
group of order ¢g. A bilinear map e : G X G — G, has the following properties.
Bilinearity: for all z,y € G, a,b € Z it holds that e(x%,y®) = e(z,y)*; Non-
degeneracy: e(g, g) # 1. It follows that gTdéfe(g,g) generates Gr.

Homomorphic matrix multiplication, thus, is performed in our scheme as fol-
lows: Given two ciphertexts gA™ and gA™2, one can compute e(g, g)AmlmgAT.

Better Security for Deterministic Public-Key Encryption 557

This ciphertext can be decrypted by multiplying by A~! from the left (in the ex-
ponent) and A7 from the right (again, in the exponent) to obtain e(g, g)ml'mg.
Since m; and my are binary, m; - mJ is binary as well and can be extracted

from the exponent.

The multi-user setting. We now show that ITp;, is secure (with respect to
auxiliary inputs) even in the multi-user setting, where related messages may be
encrypted under multiple public keys. We allow any polynomial number of users,
and for simplicity we assume that each public key encrypts one message. As in
the single-user setting, this natural extends to the case where several messages
are encrypted under each public key with blockwise-hard-to-invert auxiliary in-
put. In addition, we require that the messages to be encrypted come from an
affine distribution, a term we define below. Intuitively, this means that there are
publicly known invertible linear relations (over Zj) between the messages.

Definition 4.2 (Affine message distributions). Let n = n(k) and ¢ = £(k)
be integer functions of the security parameter, and let M = { M} C ({0, 1}”)6 be
a distribution ensemblell Then M is affine if there exist invertible and efficiently
computable (given k) matrices Va, ..., V, C Zy*"™ and vectors wa, ..., Wy € Zy,
such that for all (my,...,my) in the support of M and for all i € {2,...,£} it
holds that m; = V; - my + w; (where arithmetics is over Zg).

Note that we require that messages are taken over the space {0,1}", and arith-
metics is over Z,. In particular, this captures the case of “broadcast encryption”
where encrypting the same message under many public keys. Furthermore, this
also captures XORing with a constant vector over the binary field, or permuting
the coordinates of a binary vector (a tool used, e.g., in [7]). The result is formally
stated below. For proof, see full version [9].

Theorem 4.3. Let d € N be some integer. Then under the d-linear assumption,
for any constant 0 < p < 1 and for any sufficiently large message length n =
n(k), the scheme I, is PRIVI-IND-MU-secure with respect to 2" _hard-to-
mvert auziliary inputs.

5 A Scheme Based on Subgroup Indistinguishability
Assumptions

In this section we present our second deterministic encryption scheme, which is
based on a rather general class of subgroup indistinguishability. For concreteness
we first describe the scheme based on the quadratic residuosity assumption, and
then describe the more general case. We show that (a slight generalization of)
the QR-based lossy trapdoor function of Hemenway and Ostrovsky [21] is in
fact a deterministic public-key encryption scheme that is secure against sub-
exponentially hard-to-invert auxiliary inputs.

" To be absolutely precise should write that My is a distributions over (({0,1}™)")*
for t = 1, but this space is trivially isomorphic to the one we consider.

558 Z. Brakerski and G. Segev

The scheme Ilgr. Let GroupGen be a probabilistic polynomial-time algorithm
that takes as input a security parameter 1%, and outputs an integer N = PQ,
where P and @ are k-bit prime numbers, and P (mod 4) = @ (mod 4) =3 (i.e.,
N is a Blum integer). In addition, recall that y«—g* denotes an application of an
isomorphism transforming an element x in the module Mgg,, into an element y
in the group QR (since we will never express elements in the module explicitly,
we do not care which isomorphism is used). We let ¢ denote the isomorphism
between the group Jy and the corresponding module, such that the generating
set that corresponds to ¢ is the same as that of g, appended with (—1). The
scheme is parameterized by the security parameter k£ and the message length
n = n(k).

— Key generation. The key-generation algorithm KeyGen(1*) samples N «
GroupGen(1%), a vector g% « QRY, and a vector r « ([NQ])H. It then
outputs pk = (N, gWT, (—1)t» og"“’T) and sk =r.

The matrix dot product above refers to element-wise multiplication:

((*1)1’“ ‘QFIWT)- = (D) (QTIWT)

,] ,J

To be completely explicit, we emphasize that pk € N x JVN x Jxm

sk € N™.

— Encryption. The encryption algorithm Enc,;(m), where pk = (NN, QWT,[]T)
and m € {0,1}", outputs the ciphertext ¢ = (ng'm,gT'm). We note that
this computation can be performed efficiently and that c € Jx x J7};.

For a legally generated public key pk = (N, gWT, (—1)t» og"WT) and sk =r,
we get ¢ = (g""T‘m7 (=1)m ~gr‘WT‘m).

— Decryption. The decryption algorithm Decyy(c), where ¢ = (3, §¥), first
computes ¢ ") If the output is of the form (—1)™, for m € {0,1}", then
it outputs m and otherwise it outputs L.

and

Correctness follows immediately by definition. Security is stated below. The
proof appears in the full version [9].

Theorem 5.1. Under the quadratic residuosity assumption, for any constant
0 < p <1 and for any sufficiently large message length n = n(k), the scheme
Ilqr is PRIV-IND-secure with respect to 2" _blockwise-hard-to-invert auziliary
Inputs.

Extension to general subgroup indistinguishability. As mentioned above,
this construction can be extended to general subgroup indistinguishability as-
sumptions [§] (these include, in particular, Paillier’s composite residuosity as-
sumption [24]). These assumptions are defined in a setting where Gy = Gy x Gy,
is a product group such that Gy and G are computationally indistinguishable
(there are of course additional requirements, we refer the reader to [§] for de-
tails). Specifically, quadratic residuosity fits into this setting by letting Gy = Jn,
Gr = QRy, Gy = {£1}. To generalize our construction, we let M be the mod-
ule that corresponds to G, and replace (—1) with a generator h of Gj;. Namely,

Better Security for Deterministic Public-Key Encryption 559

our keys become pk = (gWT, hIn ogr""’T) and sk = r; encryption of a message

m € {0,1}" is done by computing ¢ = (g""T"m7 h™ . g"“’T'm); and decryption of
¢ = (g%, ¢¥) is done by computing GO—rv) = pm and extracting m. The proof
of security in this case is similar to that of the QR-based scheme.

References

1.

10.

11.

12.

13.

14.

Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474-495. Springer, Heidelberg (2009)

. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable

encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535-552.
Springer, Heidelberg (2007)

Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 232-249. Springer, Hei-
delberg (2009)

. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:

Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360-378. Springer, Heidelberg (2008)
Boldyreva, A., Fehr, S., O’'Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335-359. Springer, Heidelberg (2008)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325-341. Springer, Heidelberg
(2005)

Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108-125. Springer, Heidelberg (2008)

Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1-20. Springer, Heidelberg
(2010)

Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
The auxiliary-input setting. Cryptology ePrint Archive, Report 2011/209 (2011)
Canetti, R.: Towards realizing random oracles: Hash functions that hide all par-
tial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455-469. Springer, Heidelberg (1997)

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, pp. 136-145 (2001)

Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 361-381. Springer, Heidelberg (2010)

Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pp. 621-630 (2009)

Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556-577. Springer,
Heidelberg (2005)

560

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Z. Brakerski and G. Segev

Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279-295. Springer, Heidelberg (2010)
Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from
LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506-522.
Springer, Heidelberg (2010)

Goldreich, O.: Foundations of Cryptography — Volume 2: Basic Applications. Cam-
bridge University Press, Cambridge (2004)

Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pp. 25-32 (1989)

Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science, pp. 553-562 (2005)

Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270-299 (1984)

Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic
hash proof systems. Electronic Colloquium on Computational Complexity, Report
TR09-127 (2009)

Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18-35. Springer, Heidelberg (2009)
O’Neill, A.: Deterministic public-key encryption revisited. Cryptology ePrint
Archive, Report 2010/533 (2010)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE
Transactions on Information Theory 52(3), 1130-1140 (2006)

Zhu, B., Li, K., Patterson, R.H.: Avoiding the disk bottleneck in the data domain
deduplication file system. In: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, pp. 269-282 (2008)

	Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting
	Introduction
	Our Contributions
	Related Work
	Overview of Our Approach

	Hard-to-Invert Auxiliary Inputs
	Modeling Security in the Auxiliary-Input Setting
	A Scheme Based on the d-Linear Assumption
	A Scheme Based on Subgroup Indistinguishability Assumptions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

