Assessing Fault Occurrence Likelihood for
Service-Oriented Systems

Amal Alhosban!, Khayyam Hashmi', Zaki Malik', and Brahim Medjahed?

! Department of Computer Science
Wayne State University, MI 48202
{ahusban, khayyam, zaki}@wayne . edu
2 Department of Computer & Information Science
The University of Michigan - Dearborn, MI 48128
brahim@umd.umich.edu

Abstract. Automated identification and recovery of faults are impor-
tant and challenging issues for service-oriented systems. The process re-
quires monitoring the system’s behavior, determining when and why
faults occur, and then applying fault prevention/recovery mechanisms
to minimize the impact and/or recover from these faults. In this paper,
we introduce an approach (defined FOLT) to automate the fault iden-
tification process in services-based systems. FOLT calculates the likeli-
hood of fault occurrence at component services’ invocation points, using
the component’s past history, reputation, the time it was invoked, and
its relative weight. Experiment results indicate the applicability of our
approach.

Keywords: Service-oriented architecture, Fault tolerance, Reliability.

1 Introduction

Over the past decade, we have witnessed a significant growth of software func-
tionality that is packaged using standardized protocols either over Intranets or
through the Internet. System architectures adhering to this development ap-
proach are commonly referred to as service-oriented architectures (SOA). In
essence, SOAs are distributed systems consisting of diverse and discrete software
services that work together to perform the required tasks. Reliability of an SOA
is thus directly related to the component services’ behavior, and sub-optimal per-
formance of any of the components degrades the SOA’s overall quality. Services
involved in an SOA often do not operate under a single processing environment
and need to communicate using different protocols over a network. Under such
conditions, designing a fault management system that is both efficient and exten-
sible is a challenging task. The problem is exacerbated due to security, privacy,
trust, etc. concerns, since the component services may not share information
about their execution. This lack of information translates into traditional fault
management tools and techniques not being fully equipped to monitor, analyze,
and resolve faults in SOAs.

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 59 2011.
© Springer-Verlag Berlin Heidelberg 2011

60 A. Alhosban et al.

In this paper, we present a fault management approach (Fault Occurrence
Likelihood esTimation: FOLT) for SOAs. We assume that component services
do not share their execution details with the invoking service (defined as an
orchestrator). The orchestrator only has information regarding the services’ in-
vocation times and some other observable quality of service (QoS) characteristics.
We propose to create fault expectation points in a SOA’s invocation sequence of
component services to assess the likelihood of fault occurrence. Fault recovery
plans are then created for these expectation points and are stored in a data
repository to be retrieved and executed when the system encounters a fault at
runtime. Due to space restrictions we only focus on the former in this paper, i.e.,
assessing the likelihood of a fault’s occurrence. The latter, i.e., “fault recovery”
requires independent discussion.

The paper is organized as follows. Section 2 presents an overview of the service-
oriented architecture. We then discuss service invocation models used there in,
and overview the relationship between services in each model, and the expected
faults for each invocation model. The fault assessment techniques are discussed
in Section 3. We present some experiments and analysis of FOLT in Section 4,
while Section 5 provides an overview of related work. Section 6 concludes the

paper.

2 Service-Oriented Architecture

In this section, we present a brief overview of service-oriented architectures and
the different invocation models used by the composition orchestrators. SOA is
defined as “a paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains” [I1I]. Boundaries of
SOAs are thus explicit, i.e., the services need to communicate across boundaries
of different geographical zones, ownerships, trust domains, and operating envi-
ronments. Thus, explicit message passing is applied in SOAs instead of implicit
method invocations. The services in SOAs are autonomous, i.e., they are indepen-
dently deployed, the topology is dynamic, i.e., new services may be introduced
without prior acknowledgment, and the services involved can leave the system
or fail without notification. Services in SOAs share schemas and contracts. The
message passing structures are specified by the schema, while message-exchange
behaviors are specified by the contracts. Service compatibility is thus determined
based on explicit policy definitions that define service capabilities and require-
ments [12].

Two major entities are involved in any SOA transaction: Service consumers,
and Service providers. As the name implies, service providers provide a service
on the network with the corresponding service description [8]. A service con-
sumer needs to discover a matching service to perform a desired task among all
the services published by different providers. The consumer binds to the newly
discovered service(s) for execution, where input parameters are sent to the ser-
vice provider and output is returned to the consumer. In situations where a
single service does not suffice, multiple services could be composed to deliver the
required functionality [IT].

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 61

(a) Sequential (S : A) (b) Parallel (S : A, B) (c) Probabilistic (S : Alp, B[1 - p)

® ®
B e w0

(d) Circular (S|n) (e) Synchronous (A and B : S) (f) Asynchronous (A or B :)

Fig. 1. Major SOA Invocation Models

Each service in an SOA may be invoked using a different invocation model.
Here, an invocation refers to triggering a service (by calling the desired func-
tion and providing inputs) and receiving the response (return values if any) from
the triggered service. An SOA may thus be categorized as a ‘composite service’,
which is a conglomeration of services with invocation relations between them.
There are six major invocation relations (see Figure [I). (a) Sequential Invoca-
tion: the services are invoked in a sequence, (b) Parallel Invocation: multiple
services are invoked at the same time, (¢) Probabilistic Invocation: one service
is invoked from the multiple options, (d) Circular Invocation: a service invokes
“itself” x times, (e) Synchronous Activation: all services that were invoked need
to complete before the composition can proceed, and (f) Asynchronous Activa-
tion: completion of one of the invoked services is enough for the composition to
proceed [4]. Due to space restrictions, the detailed discussion about these models
is omitted here. The interested reader is referred to [9].

3 Fault Occurrence Likelihood

In this section, we present our approach Fault Occurrence Likelihood esTima-
tion (FOLT) which estimates the likelihood of fault for component services. For
the sake of discussion, each service is treated as an independent and autonomous
component. This component either performs its desired behavior (i.e., success) or
fails to deliver the promised functionality (i.e., fault). FOLT depends on three
major factors: the service’s past fault history, the time it takes to complete
the required task in relation to the composition’s total execution time, and the
service’s weight (i.e., importance) in the composition (in relation to other ser-
vices invoked). Since, a composed service using one or more of the invocation
models described above, may encounter a fault during its execution, the likeli-
hood of encountering a fault is directly proportional to the system’s complexity,
i.e., the more the invocation models involved, the greater the likelihood of a
fault’s occurrence. FOLT output values are thus influenced by the invocation
model(s) used in the composition. In other words, fault occurrence likelihood is
different from one invocation model to the other. In the following, we provide

62 A. Alhosban et al.

details of the FOLT approach. We first provide an illustrative scenario where
FOLT is applied, and then detail the proposed approach’s architecture, and
technique.

3.1 Sample Scenario

A student (Sam) intends to attend a conference in London, UK. He needs to
purchase an airline ticket and reserve a hotel for this travel. Moreover, he
needs some transportation to go from the airport to the hotel and from the
hotel to other venues (since this is the first time he’s visited the UK, he intends
to do some “Site-seeing” also). Sam has a restricted budget, so he is looking for
a “deal”.

Assume that Sam would be using a SOA-based online service (let’s call it
SURETY) that is a one-stop shop providing all the five options (airline ticket,
hotel, attractions, transportation and discounts) through outsourcing. SURETY
provides many services such as: attraction service which outsources to three
services (representing individual services): Art, Museums, and Area tours. This
service provides arrangement to visit different areas through sub-contractor com-
panies. For clarity, Figure 2] shows the options at one level. Sam may select Art,
Museum, Area tours, or any combination of these services. In terms of trans-
port options, Sam can either use a taxi service, or move around in a rental car,
bus, or bike. The different transport companies provide services based on the
distance between the places (attractions, etc.) Sam plans to visit. SURETY also
provides a package optimization service that finds “deals” for the options chosen
by Sam.

In Figure 2 the potential services are shown for clarity from “Get request”
(when SURETY receives Sam’s request) to “Send result” states (when SURETY
sends result(s) to Sam). This is done to show a combination of different invoca-
tion models. In reality, service invocations may not follow such a flat structure.
Since Sam is looking for a travel arrangement that include: booking a ticket,
booking a hotel, transportation (rental car, bike or bus) or taxi, and visiting
some places, some of these services can be invoked in parallel (here we assume
that SURETY provides such an option). Booking a ticket and finding attrac-
tions is an example of parallel invocation. Among the three choices that Sam
can select from (Area tours, Museums, and Art), for area attractions, he has to
make a choice among these service instances; this is an example of probabilistic
invocation. Similarly, taxi or rental car, bike and bus services can be classified as
probabilistic invocations since SURETY has to invoke one service from among
multiple services. SURETY then provides the results of transport selection to
the Package Optimization service, which hunts for available discounts (e.g., if
the customer uses the system for more than one year he will get a 20%, etc.).
This invocation is an example of asynchronous invocation, as one of the trans-
port selections will suffice. SURETY then sends the final selection itinerary to
Sam. In the following, we show how to use these invocation points to assess the
likelihood of a fault’s occurrence (similar to [2]).

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 63

Package
Optimization
T

Service Candidates | (" Senice Candidates
811,812,813, ...81n | 1§91, 892, 893, ...,89n

O, 0_ 0 TTTTmmmTTe F0_0_Q

| S1 Flight Service

| S2 Hotel Service

| S3 Attraction Service

| S3a Tour Service

i S3b Museums Service

| S3cArt Service :
iS4 Transportation Service |
| S5 Rental Car Service

| S6 Bike Service

| S7 Bus Service

| S8 Taxi Service |
| S9 Optimization Service |

@ Sequential Parallel il Q .
Invocation Invocation L Invocation Invocation Invocation

Fig. 2. Scenario with Invocation Models

3.2 Proposed Architecture

In this section, we discuss the architecture of FOLT. FOLT is divided into three
phases. In Phase 1, we assess the fault likelihood of the service using different
techniques (HMM, Reputation, Clustering). In Phase 2, we build a recovery plan
to execute in case of fault(s). Finally, in Phase 3, we calculate the overall system
reliability based on the fault occurrence likelihoods assessed for all the services
that are part of the current composition. In this paper, we present only the work
related to Phase 1. Phase 2 and 3 require independent discussion, which are not
presented here due to space restrictions. Details of Phase 1 follow.

3.3 Phase 1: Fault Occurrence Likelihood Assessment

In this Phase, we calculate the fault occurrence likelihood for the service to
assess its reliability. The notations used hereafter are listed in Table 1. Most of
the terms in the table are self-explanatory. Brief descriptions of other symbols
follow: \; is the ratio of the time taken by service; (to complete its execution),
to the total composition execution time. On the other hand, A, is the ratio of
the time taken by service; to the total time “remaining” in the composition,
from the point when service; was invoked. 4; is the first-hand experience of
an invoking service regarding a component service;’s propensity to fault. For
cases where the invoker has no historical knowledge of service; (i.e., the two
services had no prior interaction), A, = 0. Similarly, A! is the second-hand
experience regarding a service;’s faulty behavior. This information is retrieved

64 A. Alhosban et al.
Table 1. Definition of Symbols

Symbol Definition
T The total execution time.
to Start time.
tn End time.
t; Time at which a new service is invoked.
k Number of services.

P(x)"! Fault occurrence likelihood for service, when invoked at time ¢.
Ai Weight of service; in relation to T.
X\, Weight of service; in relation to (T —t;).
A; First-hand fault history ratio of service;.
A} Second-hand fault history ratio of service;.

f(si) The priority of service; in the composition.

from other services that have invoked service; in the past. We assume that trust
mechanisms (such as [8]) are in place to retrieve and filter service feedbacks.
f(s;) is the assigned weight of a service; in the whole composition. It provides a
measure for the importance of service; in relation to other component services
invoked, where Y"1 | f(s;) = 1.

FOLT architecture (Figure[]) is composed of several modules. These are, His-
tory Module: This module keeps track of an individual service’s propensity to
fault. The information is stored in a History Repository that includes the service
name, invocation time, reported faults (if any), and a numerical score. The FEsti-
mation Module calculates the fault occurrence likelihood for a service in a given
context (execution history). An optional Priority Module is used sometimes (de-
tails to follow) to indicate the service priority assignment by the invoker in a
given execution scenario. Lastly, the Planning Module creates plans to recover
from encountered faults, and prevent any future ones. As mentioned earlier,
details of the module are not the focus of this work.

In summary, the designers store some of the plan details in a plan repository
while others are generated at run time. Each plan contains specific fields such as:
Plan ID, Plan Name, Plan Duration time, Plan Steps and Plan Counter. When
FOLT decides to generate a plan, the system starts the dynamic generation
process. The generated plan depends on the chosen invocation model. When the
orchestrator invokes a service at any given time (invocation point), it calculates
the fault history ratio for the invoked service. Here, we use the maximum value
among the external ratio (service’s second-hand experience as observed by the
community) and internal ratio (first-hand experience of the orchestrator). The
system then calculates the fault occurrence likelihood of the invoked service. If
the likelihood is greater than a pre-defined threshold (6;) the system builds a
fault prevention plan. Otherwise, the system re-calculates the likelihood taking
into consideration the priority of the current service and compares the value
again with 6;. The purpose of this step is that non-critical services have no
plans built for them, and the system can complete the execution even if a fault
occurs in any of these services. The newly created plan is tested using a series

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 65

of verifications. If the plan fails any of the tests, the system returns back to
the planning module, and a new plan is created/checked. The process repeats
for number of times until a valid plan is found. If no plan is still found,
the invoker/user is informed. Once a valid plan is created, it is stored in the
repository. Then, If the likelihood is greater than another pre-defined threshold
(62) the system can execute this fault prevention plan.

Phase 1 is divided into multiple steps: calculating the service’s weight (1)),
calculating the time weight ()\’), calculating the internal history value (4;) using
a Hidden Markov Model, and calculating the external history value (A}) using
clustering and reputation. The likelihood of a fault occurring at time t is defined
by studying the relationship between the service’s importance, time it takes to
execute, and its past performance in the composition. Thus, each invocation
model will have a different fault likelihood value. As mentioned earlier, A is the
ratio of the time that is needed to complete the service execution, divided by
the total time of completing the execution of the whole system. Similar to the
approach used in [10], we use this value of A as one of the basic constructs

External Services

Service Composition

B

\
\
< L] # A | g
%% . 2 A
%% Service Invoker s s
2% Serv: S 3
"z;o» crvice Fault g 2 £
Invocation Occurrence &= ~
Estimation
Module History Module —
Finding a Plan
Update the
o History Ratio
au -
Likelihood h
>0,
Planning Module
5
=™
<
o
>
.2
=4
9
4
Fault Yes
— Likelihood
No >0,
History

No Ratio > ©, Yes

Fig. 3. FOLT Architecture

66 A. Alhosban et al.

in FOLT to measure the (relative) weight of the invoked service to the rest of
system time. The basic premise is that the likelihood of a fault occurrence for a
long running service will be more than a service with very short execution time.
Determining the service execution time could be accomplished in two ways. If
the system does not know the execution time for a service, then the service’s
advertised execution time is used. On the other hand, after attaining experience
with the service (prior invocations), the service execution time could be recorded
and stored in the repository. Then:

p=T 0
r_ T(Si)
=)

where \; is as described above, T'(s;) is the total execution time of service;,
while ¢; is the invocation time of service; (i.e., when the service was invoked).

A service’s past behavior is assessed according to first-hand experience of the
invoking service and second-hand experiences of other services obtained in the
form of ratings via the community. These experiences are evaluated as a ratio
of the number of times the service failed, divided by the total number of times
the service was invoked. To assess the First-hand Experience, we use a Hidden
Markov Model (HMM). The HMM provides the probability that the service will
fail in the next invocation, based on the previous behavior of the service within
the system. HMMs have proven useful in numerous research areas for modeling
dynamic systems [7]. An HMM is a process with a set of states, set of hidden
behavior and a transition matrix. In our architecture, all services stay in one of
the two states: Healthy or Faulty (Figure H).

Each time the composition orchestrator invokes service, it records the state of
that service (Faulty or Healthy) along with the time of invocation. Let the vector
V = the service behavior profile, then to asses the probability that Service; will
be in the Faulty state in the next time instance:

P(Faulty|V) = P(Faulty|Healthy) + P(Faulty|Faulty) (3)

FOLT also uses other services’ experiences with Service; to assess its relia-
bility. Services are divided into clusters based on their similarity (such as in [I]).
These group of services are consulted for the reputation of Service;. We assume

1

P 1op q ! O State i

| 1

A A | P Probability of being in healthy state. |
'q Probability of being in faulty state. !

1 1-p Probability of going from healthy to

| faulty. !

! 1-q Probability of going from faulty to !

| healthy. |

I 1

1-q e i

Fig. 4. Finite state machine for a HMM of the service

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 67

that other services are willing to share their reputation ratings, which are assim-
ilated using our previous work in [§]. A combination of service time weights and
service history ratios (using HMM, and reputation) is used to assess the fault
occurrence likelihood:

g
P(sl)t —1— ()\;) 1-maz(A;,AL) (4)

Note that the fault history is assessed according to max(Aa, A’y). Then, the
likelihood of a service executing without any fault is 1 — maz(Aa, A%). We use
this value in relation to the total execution times (remaining given by X, and
overall given by \) to assess the likelihood of a service executing without a fault.
To get the likelihood of the service’s fault occurrence we subtract this value
from 1 in Equation [l In cases where we need to incorporate a service’s priority
weight, Equation] becomes:

Xif(s4)
P(si) = 1— (N)) =mstanaD (5)

We observe that with increased service priority, fault likelihood also increases.
Based on the fault likelihood, FOLT decides when to build a recovery plan.
Services with a high priority are usually critical, and a fault in any of those
services may harm the overall QoS. Thus, fault likelihood and service priority
are directly proportional in FOLT.

Using Equation[d as the basis, we define fault likelihood estimation for each in-
vocation model. For instance, the likelihood of fault(s) in a sequential invocation
(Pseq) is dependent on the successor service(s) [3]. Since FOLT uses invocation
points, only a single service can be invoked per time instance/invocation point.
Hence the equation stays the same. Let A be the successor service, then

Aaf(sa)

Pacg = P(sa)! = 1= (X)) =222 (6)

In a parallel invocation, fault estimation at the invocation point translates to
the fault occurring in either of the invoked services. Since all services are inde-
pendent, we need to add their fault likelihoods. Moreover, due to the likelihood
of simultaneous faults occurring in the respective services, we have

h
Ppar = U P = 2?:1131‘ - Hih:1Pz‘ (7)
i=1

Xif(s4) Xif(sq)
Prar = Ely (1= (M) @an) 7l (1 - () -min@ead) (®)
where h is the number of services invoked in parallel.

In probabilistic invocation (Ppy,), fault likelihood depends on the probability
of selecting the service (Q). Then, if we have k services:

k
Ppro = | P =II}_,Q: x P, (9)

i=1

68 A. Alhosban et al.

First invocation
point

‘ e

Sixth invocation
point

Fifth invocation
point

Fourth invocation
point

Third invocation
point

Second invocation
point

. Parallel Probabilistic Sequential Synchronous Probabilistic Synchronous
Invocation invocation invocation invocation invocation invocation
Service, Services, ‘ ‘{ Service, ‘ L‘ Service, Services ‘ L‘ Services

Services

Services,

Serviceg

Services.

Fig. 5. Simulation Environment of Eleven Services and Six Invocation Points

Similarly, the fault likelihood of a circular invocation is:

Per =117, Ps (10)

4 Assessment

We developed a simulator and conducted experiments to analyze the perfor-
mance of our proposed framework. Our development environment consists of a
Windows server 2008 (SP2) based Quad core machine with 8.0 GB of ram. We
developed our scenarios using Asp.Net running on Microsoft .Net version 3.5 and
SQL as the back-end database. We simulated a services-based system complete
with fault prediction, recovery strategies and performance measurement. The
input to the system is an XML schema of the system that is used to exhibit the
characteristics of a running system.

The experimental results based on the scenario of Figure[2 are discussed below.
We are focusing in our experiment in reducing the total execution time, since
the service will not be executed if there is a high likelihood that it fails at run
time, as this increases the total execution time. In Figure [}, we show a system
with 11 services and 6 invocation points. The invocation points are at t; = 30
ms, to = 50 ms, t3 = 450 ms, t4 = 560 ms, t5 = 670 ms, tg = 890 ms with
the total execution time (T) as 1000 ms . At ¢; the system invokes two services
(servicey, services) in parallel, at t5 the system uses probabilistic invocation
for three services (services,, servicesp, services.). At ts the system invokes one
service (services) which is sequential invocation, and at ¢4 the invocation is
synchronous for one service services. At t5 the invocation is again probabilistic
for three services (services, serviceg, servicer) and at tg the system invokes one
service (serviceg). Table 2l shows a sample (i.e. these are not constant) of the
different parameter values for all 6 invocation points.

We assume the different theta values for this experiment i.e., §; = 0.50, 0,
= 0.60. The table lists the priority of each service involved, the services’ time

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 69

Table 2. Service Parameters at Invocation Points

Invocation Service Time Priority \; A A, Al P(s;)
Point

1 Service; 180 60% 0.18 0.1856 0.30 0.15 0.2289
1 Services 250 40% 0.25 0.2577 0.40 0.60 0.2875
2 Services, 80 70% 0.08 0.8421 0.90 0.70 0.7498
2 Services, 90 50% 0.09 0.0947 0 0.20 0.1241
2 Services. 80 30% 0.08 0.0842 0.50 0.40 0.1120
3 Services 150 80% 0.15 0.2727 0.70 0.80 0.5414
4 Services 1000 80% 0.1 0.2273 0.60 0.80 0.4471
5 Services 80 90% 0.08 0.2424 0.70 0.65 0.2883
5 Serviceg 70 80% 0.07 0.2121 0.50 0.80 0.3522
5 Servicey 80 90% 0.08 0.2424 0.75 0.90 0.6395
6 Services 100 80% 0.1 0.9091 0.70 0.80 0.0374

weights and their history ratios (from internal and external experiences). Using
Equation 8, FOLT calculated the fault likelihood at the first invocation point
(Parallel invocation) to be Ppar =0.4505. Since service; and services had a
very low fault likelihood, this in turn implied that the invocation point fault
likelihood was lower. In this case Ppqr < 61, FOLT did not build any plan and
continued with the system execution. For the second invocation point (Prob-
abilistic invocation), as per the given parameters FOLT calculated the fault
likelihood using Equation 9 to be P,.,=0.0104. Hence, the system did not build
a recovery plan and continued its execution. Similarly at third invocation point
(Sequential invocation): the fault likelihood was calculated using Equation 6 to
be P,cq=0.5414. In this case Ps.q > 01, the system did build a recovery plan and
continued its execution. However, the execution of the created plan had to wait
until the occurrence of fault because Ps.q < 2. Fourth invocation point (Syn-
chronous invocation): The fault likelihood was same as of service, = 0.4471.
Fifth invocation point (Probabilistic invocation): The fault likelihood calculated
by FOLT was P,,,=0.0649. Since service; had a high fault likelihood and the
other two services had low fault likelihood , this in turn implied that the in-
vocation point fault likelihood was lower. In the case that the selected service
was servicer, the system would have build a recovery plan and executed it(fault
likelihood of servicer > 63). Sixth invocation point (Asynchronous invocation):
The fault likelihood of this invocation point was same as that of serviceg =
0.0374. For this invocation point the system did not create any plan.

In Figure G (a) We can see the eleven services in this system and their fault
likelihoods. We notice that servies, has the highest fault likelihood and services
has the lowest fault likelihoods. These results are based on the different service’s
weight, history, behavior, invocation time and priority. Figure [6-(b) shows the
fault likelihood for each invocation point where the highest fault likelihood was
at t3 and the lowest fault likelihood was at ¢o. Figure[6-(c) shows the relationship
between the priority and the fault likelihood. For example, services, has a pri-
ority of 70% and the fault likelihood is 0.7498, however, the priority for servicer

70 A. Alhosban et al.

06
08 .
e
07 05 F":‘
o0 e " e
g o 2 0a] -
S 05 1<) [\ Pl U
£ £) w e
= 04 = 03— S Y
P} g O it [el st
~ 03 P ﬁs it 1§
2 0 d 02 A G s
ERT 3) "&,‘ i
z v 3 o1 Fiy 601
oo £ o 33;3 - p—
I | .
> o A e & |’ -
CELEFFELELELS 0 E— -
F S Ls &S5 1 [8 u 5 %
Service Name Invocation Points
(a) (b)
08 1
A 09 -
< 07 A - PP
S 06 s 08 Pld
o O I \ S 07 N >
< < -
5 05 = 06 =
g I\ s | el
~ 04] \v4 2 05
. a 7\ @me)
=0 7~ / = s I\
5 02 S 03 ’ 2
£ / £ 02 L ~
01 ’
o1 e
0 0 ! B—
0 02 04 06 08 1 0 02 o4 06 o8 L
Service's Proirity Service's Weight

(©) (d)

Fig. 6. (a) Services Fault Likelihood (b) Invocations Fault Likelihood (c) Service Pri-
ority (d) Service Time Weight

is 90% and the fault likelihood is 0.6395, because it has lower weight. Figure
[6-(d) presents the relationship between service weight and the fault occurrence
likelihood.

We also performed experiments to assess the FOLT approach’s efficiency. Fig-
ure [7H(a) shows the comparison between FOLT, no fault and systems that use
replace, retry and restart as recovery techniques. Here total execution time is
plotted on the y-axis and the number of faults on the x-axis. With increasing
number of faults, the execution time also increases. However, FOLT takes less
time than compared techniques. This is due to the fact that FOLT preempts a
fault and builds a recovery plan for it. Figure [@H(b) shows the total execution
time comparisons for the five systems. Here we fix the number of faults to four.

5 Related Work

In this section, we provide a brief overview of related literature on fault manage-
ment and fault tolerance techniques in service-oriented environments, and the
Web in general. Santos et al. [14] proposed a fault tolerance approach (FTWeb)
that relies on active replicas. FTWeb uses a sequencer approach to group the
different replicas in order. It aims at finding fault free replica(s) for delegating
the receiving, execution and request replies to them. FTWeb is based on the

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 71

7 5
o 45

o 6
Es : g ¢
E E 35
g =@=Retry t 34
ER Replace g 251

3 ’ E

% ? =H=Restart 3 2
Ay 215
=#=FOLT S I

0
0 2 4 6 8 10 03
0

Number of Faults No Fault Retry Replace Restart FOLT

(@) (b)

Fig.7. (a) Total Execution Time Comparisons in Relation to Number of Faults (b)
Execution Time Comparisons

WSDispatcher engine, which contains components responsible for: creating fault
free service groups, detecting faults, recovering from faults, establish a voting
mechanism for replica selection, and invoking the service replicas. Raz et al. [13]
present a semantic anomaly detection technique for SOAs. When a fault occurs,
it is corrected by comparing the application state to three copies of the service
code and data that is injected at a host upon its arrival. Similarly, Hwang et
al. [B] analyze the different QoS attributes of web services through a probability
based model. The challenge in this approach is composing an alternate work
flow in a large search space (withe the least error). Online monitoring (for QoS
attributes) also needs some investigation in this approach.

Wang et al’s. [16] approach integrates handling of business constraint vio-
lations with runtime environment faults for dynamic service composition. The
approach is divided into three phases. The first phase is defining the fault tax-
onomy by dividing the faults into four groups (functional context fault, QoS
context fault, domain context fault and platform context fault) and analyzing
the fault to determine a remedial strategy. The second phase is defining remedial
strategies (remedies are selected and applied dynamically). The remedial strate-
gies are categorized into goal-preserving strategies to recover from faults (ignore,
retry, replace and recompose) and non-goal preserving strategies to support the
system with actions to assist possible future faults (log, alert and suspend). The
third phase is matching each fault category with remedial strategies based on the
data levels. The main challenge in this approach is the extra overhead, especially
when the selected strategy is a “recomposition” of the whole system.

Simmonds et al. [15] present a framework that guarantees safety and aliveness
through the conversation between patterns, and checking their behaviors. The
framework is divided in two parts: (1) Websphere runtime monitoring with prop-
erty manager and monitoring manager. The property manger consists of graphical
tools to transfer the sequential diagram to NFAs and check the XML file. The mon-
itoring manager builds the automata and processes the events. (2) Websphere run-
time engine. It uses the built-in service component that already exists in BPEL,

72 A. Alhosban et al.

to provide service information at runtime. Delivering reliable service compositions
over unreliable services is a challenging problem. Liu et al. [6] proposed a hybrid
fault-tolerant mechanism (FACTS) that combines exception handling and trans-
action techniques to improve the reliability of composite services.

6 Conclusion

We presented a new framework for fault management in service-oriented ar-
chitectures. Our proposed approach Fault Occurrence Likelihood esTimation
(FOLT) depends on the past behavior of services, the invocation method of the
services, the execution times of services, and the priority of a specific service in
the current system. We identified new metrics to measure the fault occurrence
likelihood. We evaluated FOLT using simulations and the results indicate the
approach’s efficiency and ability to recover from faults. FOLT reduces the over-
all system execution time by replacing the traditional system recovery methods
(i.e., restarting the system at check points) by reacting to the faults by expecting
the faults ahead of time and pro-actively building the prevention/recovery plans.
In the future, we plan to compare FOLT with other similar existing approaches.
In this paper, we presented Phase 1 of our approach, and are currently working
on Phase 2 (i.e. generating a fault recovery plan) and Phase 3 (i.e. assessing
overall system reliability to see when to execute a plan).

References

1. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Architecture for
web services filtering and clustering. In: International Conference on Internet and
Web Applications and Services, p.18 (2007)

2. Bai, C.G., Hu, Q.P., Xie, M., Ng, S.H.: Software failure prediction based on a
markov bayesian network model. J. Syst. Softw. 74(3), 275-282 (2005)

3. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Modeling quality of service for work-
flows and web service processes. Journal of Web Semantics 1, 281-308 (2002)

4. D’Mello, D.A., Ananthanarayana, V.S.: A tree structure for web service composi-
tions. In: COMPUTE 2009: Proceedings of the 2nd Bangalore Annual Computer
Conference, pp. 1-4. ACM, New York (2009)

5. Hwang, S.-Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to mod-
eling and estimating the qos of web-services-based workflows. Inf. Sci. 177(23),
5484-5503 (2007)

6. Liu, A., Li, Q., Huang, L., Xiao, M.: Facts: A framework for fault-tolerant com-
position of transactional web services. IEEE Transactions on Services Comput-
ing 99(PrePrints), 46-59 (2009)

7. Malik, Z., Akbar, 1., Bouguettaya, A.: Web services reputation assessment us-
ing a hidden markov model. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 576-591. Springer, Heidelberg (2009)

8. Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establish-
ment among web services. The VLDB Journal 18(4), 885-911 (2009)

9. Menasce, D.A.: Composing web services: A qos view. IEEE Internet Computing 8,
88-90 (2004)

10.

11.

12.

13.

14.

15.

16.

Assessing Fault Occurrence Likelihood for Service-Oriented Systems 73

Meulenhoff, P.J., Ostendorf, D.R., Zivkovi¢, M., Meeuwissen, H.B., Gijsen,
B.M.M.: Intelligent overload control for composite web services. In: Baresi, L.,
Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 34—
49. Springer, Heidelberg (2009)

Papazoglou, M.: Web Services: Principles and Technology. Pearson-Prentice Hall,
London (2008) ISBN: 978-0-321-15555-9

Chen, H.p., Zhang, C.: A fault detection mechanism for service-oriented architec-
ture based on queueing theory. International Conference on Computer and Infor-
mation Technology, 1071-1076 (2007)

Raz, O., Koopman, P., Shaw, M.: Semantic anomaly detection in online data
sources. In: ICSE 2002: Proceedings of the 24th International Conference on Soft-
ware Engineering, pp. 302-312. ACM, New York (2002)

Santos, G.T., Lung, L.C., Montez, C.: Ftweb: A fault tolerant infrastructure for
web services. In: Proceedings of the IEEE International Enterprise Computing
Conference, pp. 95-105. IEEE Computer Society, Los Alamitos (2005)
Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E., Water-
house, J.: Runtime monitoring of web service conversations. IEEE Transactions on
Services Computing 99(PrePrints), 223-244 (2009)

Wang, M., Bandara, K.Y., Pahl, C.: Integrated constraint violation handling for
dynamic service composition. In: SCC 2009: Proceedings of the 2009 IEEE Inter-
national Conference on Services Computing, pp. 168-175. IEEE Computer Society,
Washington, DC, USA (2009)

	Assessing Fault Occurrence Likelihood for Service-Oriented Systems
	Introduction
	Service-Oriented Architecture
	Fault Occurrence Likelihood
	Sample Scenario
	Proposed Architecture
	Phase 1: Fault Occurrence Likelihood Assessment

	Assessment
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

