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Abstract. Concurrent programs running on weak memory models exhibit re-
laxed behaviours, making them hard to understand and to debug. To use stan-
dard verification techniques on such programs, we can force them to behave as
if running on a Sequentially Consistent (SC) model. Thus, we examine how to
constrain the behaviour of such programs via synchronisation to ensure what we
call their stability, i.e. that they behave as if they were running on a stronger
model than the actual one, e.g. SC. First, we define sufficient conditions ensur-
ing stability to a program, and show that Power’s locks and read-modify-write
primitives meet them. Second, we minimise the amount of required synchronisa-
tion by characterising which parts of a given execution should be synchronised.
Third, we characterise the programs stable from a weak architecture to SC. Fi-
nally, we present our offence tool which places either lock-based or lock-free
synchronisation in a x86 or Power program to ensure its stability.

Concurrent programs running on modern multiprocessors exhibit subtle behaviours,
making them hard to understand and to debug: modern architectures (e.g. x86 or Power)
provide weak memory models, allowing optimisations such as instruction reordering,
store buffering or write atomicity relaxation [2]]. Thus an execution of a program may
not be an interleaving of its instructions, as it would be on a Sequentially Consistent
(SC) architecture [[18]. Hence standard analyses for concurrent programs might be un-
sound, as noted by M. Rinard in [25]. Memory model aware verification tools exist,
e.g. [24411115030], but they often focus on one model at a time, or cannot handle the
write atomicity relaxation exhibited e.g. by Power: generality remains a challenge.

Fortunately, we can force a program running on a weak architecture to behave as if
it were running on a stronger one (e.g. SC) by using synchronisation primitives; this
underlies the data race free guarantee (DRF guarantee) of S. Adve and M. Hill [3].

Hence, as observed e.g. by S. Burckhart and M. Musuvathi in [[12], “we can sensibly
verify the relaxed executions |[... ] by solving the following two verification problems
separately: 1. Use standard verification methodology for concurrent programs to show
that the [SC] executions [... | are correct. 2. Use specialized methodology for memory
model safety verification”. Here, memory model safety means checking that the execu-
tions of a program, although running on a weak architecture, are actually SC. To apply
standard verification techniques to concurrent programs running on weak memory mod-
els, we thus first need to ensure that our programs have a SC behaviour. S. Burckhart and
M. Musuvathi focus in [12] on the Total Store Order (TSO) [28] memory model. We
generalise their idea to a wider class of models (defined in [3]], and recalled in Sec. [I)):
we examine how to force a program running on a weak architecture A; to behave as if
running on a stronger one As, a property that we call stability from Ay to As.
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To ensure stability to a program, we examine the problem of placing lock-based or
lock-free synchronisation primitives in a program. We call synchronisation mapping an
insertion of synchronisation primitives (either barriers (or fences), read-modify-writes,
or locks) in a program. We study whether a given synchronisation mapping ensures
stability to a program running on a weak memory model, e.g. that we placed enough
primitives in the code to ensure that it only has SC executions. D. Shasha and M. Snir
proposed in [27] the delay set analysis to insert barriers in a program, but their work
does not provide any semantics for weak memory models. Hence questions remain
w.r.t. the adequacy of their method in the context of such models.

On the contrary, locks allow the programmer to ignore the details of the memory
model, but are costly from a compilation point of view. As noted by S. Adve and H.-J.
Boehm in [4], “on hardware that relaxes write atomicity [e.g. Power], it is often un-
clear that more efficient mappings (than the use of locks) are possible; even the fully
fenced implementation may not be sequentially consistent.” Hence not only do we need
to examine the soundness of our synchronisation mappings (i.e. that they ensure sta-
bility to a program), but also their cost. Thus, we present several new contributions:

1. We define in Sec. 2] sufficient conditions on synchronisation to ensure stability to a
program. As an illustration, we provide in Sec. [3| semantics to the locks and read-
modify-writes (rmw) of the Power architecture [[1]] (i.e. to the lwarx and stwex .
instructions) and show in Coq that they meet these conditions.

2. We propose along the way several synchronisation mappings, which we prove in
Coq to enforce a SC behaviour to an x86 or Power program.

3. We optimise these mappings by generalising in Sec. dlthe approach of [27] to weak
memory models and both lock-based and lock-free synchronisation, and charac-
terise in Coq the executions stable from a weak architecture to SC.

4. We describe in Sec.[3lour new offence tool, which places either lock-based or lock-
free synchronisation in a x86 or Power assembly program to ensure its stability,
following the aforementioned characterisation. We detail how we used offence to
test and measure the cost of our synchronisation mappings.

We formalised our results in Coq; we omit the proofs for brevity. A long version with
proofs, the Coq development, the documentation and sources of offence and the exper-
imental details can be found at http://offence.inria.fr.

1 Context

We give here the background on which we build our results. This section summarises
our previous generic model [5], which embraces SC [18]], Sun TSO, PSO and RMO [28],
Alpha [7]] and a fragment of Power [1]]. Fig. [ shows a table of our relations. The iriw
test [10] (independent reads of independent writes), in Fig.[2l is our running example.

Executions. An event e is a read or a write, composed of a direction R (read) or
W (write), a location loc(e), the instruction from which it comes ins(e), a value val(e),
a processor proc(e), and a unique identifier. We represent each instruction by the events
it issues. In Fig.[2l we associate the store (¢) z «— 1 on P, with the event (e)Wz1. We
write E for the set of events, and W (resp. R) for the subset of write (resp. read) events.
We write w (resp. r) for a write (resp. read), and m or e when the direction is irrelevant.
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Name Notation Comment
po
program order m1 — my per-processor total order

ppo . s ppo — po
preserved program order mi — o pairs maintained in program order; — C —

rf . . . .
read-from map w — 7 links a write to a read reading its value
. . . . ws . .
write serialisation wy, — wse total order on writes to the same location
fr . . . WS
from-read map r — w rreads from a write preceding w in —
. ab . . .
barriers m1 — mgz ordering induced by barriers

Fig. 1. Table of relations

¢)Ry2 ———» (d)Rx0

po:l
iriw
Py P P, Ps
(aA)rl—x (e)r3«—vy (e)x—1 (fly<2 (f)Wy2 ¢) Wxl

b)r2—y (d)rd —x
Observed? r1=1; r2=0; r3=2; r4=0;

b)RyO <7 (a)Rx1

Fig. 2. The iriw test and a non-SC execution

. . 0 .
We associate a program with an event structure E = ([, L), composed of its

events E and the program order ™ a per-processor total order over E. In Fig. 2 the
read (a) from x on Fy is in program order with the read (b) from y on Py, i.e. (a)Rzl

LA (b)RyO0. The & relation (included in %, the source being a read) models the depen-
dencies between instructions, e.g. when we compute the address of a load or store from
the value of a preceding load.

Given an event structure F, we represent an execution X 2 (33, r—f>) of the corre-
sponding program by two relations over E. The write serialisation - is a per-location
total order on writes modeling the memory coherence assumed by modern architectures

[13], linking a write w to any write w’ to the same location hitting the memory af-
ter w. The read-from map ™ Jinks a write w to aread r from the same location that

fir
reads from w. We derive the from-read map X from ¥ and 5. A read r is in
with a write w when the write w’ from which r reads hit the memory before w did:
fr A ; g1t ;) Ws
r—w = Juw,w - rAv = w.
In Fig. [l the specified outcome corresponds to the execution on the right, if each
location and register initially holds 0. If r1=1 in the end, the read (a) read its value

from the write (e) on Pz, hence (e) LN (a). If r2=0, the read (b) read its value from
the initial state, thus before the write (f) on P, hence (b) o, (f). Similarly, we have
(f) = (¢) from r3=2, and (d) LS (e) from r4=0.

Architectures. In a shared-memory multiprocessor, a write may be committed first into

a store buffer, then into a cache, and finally into memory. Hence, while a write transits
in store buffers and caches, a processor may read a past value.
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Code Comment Doc
mfence ‘WR non-cumulative barrier [16, p. 291]
cmp; bne; isync this sequence forms a RW, RR non-cumulative barrier [} p. 661]
lwsync RW, RR, WW non-, A- and B-cumulative barrier [} p. 700]
sync RW, RR, WW, WR non-, A- and B-cumulative barrier [} p. 700]

Fig. 3. Table of x86 and Power barriers

We model this by some subrelation of LR being non-global: they can be ignored by

.o f .
some processors. We write — (resp. —) for the internal (resp. external) read-from map,
i.e. a read-from map between two events from the same (resp. distinct) processor(s).
Hence we model a read r by a processor P, reading from a write w in Py’s store buffer

by w o being non-global. When r reads from a write w by a distinct processor P;

into a cache shared by Py and P, only (a case of write atomicity relaxation [2]), w L
is non-global, and w is said to be non-atomic. TSO authorises e.g. store buffering (i.e.

fi . . . e . . ouf
Bis non-global) but considers stores to be atomic (:.e. =is global). We write £ for

the global subrelation of M, We consider %3 and -5 global, since 5 is the order in
which the writes to a certain location hit the memory.

Moreover, some pairs of events in the program order may be reordered Thus only
a subset of the pairs of events in =, gathered in a subrelation ™% (preserved program
order), is guaranteed to occur in thls order TSO for example authorises write-read pairs
to be reordered, but nothing else: % = 25\ (W x R).

Finally, architectures provide barrler instructions to order certain pairs of events;
Fig. 3] gives the x86 and Power ones that we use. We gather the orderings induced by

barriers in the global relation Ly Following [3]], the relation fenge C ™ induced by a

barrier fence is non-cumulative when it orders certain pairs of events surrounding the

barrier: NC(renCC) = (tenCe C H) For example, the x86 mfence barrier is a non-

. . . f b .
cumulative barrier ordering write-read pairs only: (w " r) = (w = 7). If there is a

dataflow dependency, e.g. via a comparison cmp, from a read to a conditional branch
(e.g. bne), Power isync forms a non-cumulative barrier when placed in P2 after the

. . cmp;bne;isync ab
cmp ; bne sequence, for read-read and read-write pairs : (r 0 =5 m) = (1 5 m).

. fence . . . of .
The relation —s° is cumulative w.r.t. another relation — C — when it makes the
writes of — atomic (e.g. by flushing the store buffers and caches). Formally, We define

f . f
an A-cumulative (resp. B- cumulatlve) barrier as AC('— e i>) £ (i>, ence) c! b (resp.
BO("°, ) 4 (fe—n°>e %) C ). For example, Power sync barrier is non- (resp. A-

and B-) cumulative for all pairs: we have (m; 5 my) (resp. (m; o msz) and

(mq e 5 mz)) implies (m; & mz). Power lwsync is non- (resp. A- and B-)

. . . Iwsync f
cumulative for all pairs except write-read ones; we have (m; =, mz) (resp. (my —

- sye mz) and (mq twsyne 1 msz)) implies (m; & mz) if (m1,ma) € (W x R).

An architecture A = (ppo grf, ab) specifies the function ppo (resp. grf, ab) re-

ab . .
turning the relation 2 (resp H) when given an execution.
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Validity The uniproc(E, X) £ acyclic(3 U EyLur O;I?C) condition (where "2
is the program order restricted to events with the same location) forces a processor in
a multiprocessor context to respect the memory coherence [13]. The thin(E, X) £
.o d . . .
acychc(g U g) condition prevents executions where values seem to come out of thin
air [21]. We define the global happens-before relation A.ghb(E, X) of an execution
(E, X) on an architecture A as the union of the relations global on A:
A.ghb(E,X) 2 ByuSLymygy®

An execution (E, X) is valid on an architecture A, written A.valid(E, X), when

the relation A . ghb(E, X) is acyclic (together with the two checks above):

A .valid(E, X) £ uniproc(FE, X) A thin(E, X) A acyclic(A . ghb(E, X))

Finally, we consider an architecture A; to be weaker than an architecture Ao, written
A; < Ay, when A; authorises at least all the executions valid on As. TSO is weaker
than SC, hence all the SC executions of a program are valid on TSO. In the following,
we consider As to be without barriers, i.e. b2 .

2 Covering Relations

We examine now how to force the executions of a program running on a weak architec-
ture A; to be valid on a stronger one Ay, which we call stability from A; to As, i.e. we
examine when the following property holds for all (E, X):

stablea, a,(F, X) £ A .valid(E, X) = Ay .valid(E, X)

The execution of iriw in Fig.[2is not stable from Power to SC, for it is valid on Power
yet not on SC. We can stabilise it using synchronisation idioms, e.g. barriers or locks.
Synchronisation idioms arbitrate conflicts between accesses, i.e. ensure that one out of
two conflicting accesses occurs before the other. We formalise this with an irreflexive
conflict relation — over E, such that Vzy, z — y = —(y L x) and a synchronisation
relation > over E. An execution (E, X) is covered when > arbitrates >

covered. s (E, X) L Veyroy=r—>yVy -z

We consider a relation — to be covering when ordering by —» the conflicting accesses
of an execution (E, X) valid on A; guarantees its validity on A, i.e. the synchronisa-
tion — arbitrates enough conflicts to enforce a strong behaviour:

covering(—, ) £ VEX, (A; . valid(E, X) A covered, «(F, X)) = Ay . valid(F, X)

Lock-based synchronisation. For example, the DRF guarantee [3] ensures that if the
competing accesses (defined below) of an execution are ordered by locks, then this
execution is SC, 7.e. locks are covering w.r.t. the competing accesses. Two events are
competing if they are from distinct processors, to the same location, and at least one of
them is a write (e.g. in Fig. 2l the read (a) from z on Py and the write (e) to = on P»):

m1 ¥ mg £ proc(my) # proc(ms) Aloc(my) = loc(ma) A (my € WV my € W)
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We describe the ordering induced by locks by a relation ' (instantiated in Sec.[3.1))

over E, such that aeychc(—> uBulu —>) corresponding in Fig. 2] to placing
locks to a variable ¢; on the accesses (a), (d) and (e) relative to x, and locks to a
different variable 5 on the accesses (b), (¢) and (f) relative to y. Thus We have acycle

n U B @) B 1) () () B (@) () X (a). 1 U s acyclic,
then the execution of Fig.[2lis forbidden. Formally, we have:

m +

Lem. 1. zaucyclic(loaCk U %) = covering(®, (ILCk Uy
This lemma leads to a mapping which we call L (for locks), which simply places a lock
by the same lock variable on each side of a given conflict edge. By Lem.[Il it ensures
stability to a program for any pair (41, Az).

Lock-free synchronisation. We give here an example of a covering lock-free synchroni-
sation relation. A program can distinguish between two architectures A; < A, for one

of two reasons. First, if the program involves a pair (z,y) maintained in program order

PP ) but not on Ay (i.e. =(x ™' y)). In Fig. 2l we have (a) 2> (b).

Hence on a strong architecture A, such as SC where 2= we have (a) ™% (b). On
a weak architecture A; such as Power, where the read-read pairs in program order are
not maintained, we have —((a) ' (b)).

Second, if the program reads from a write atomic on As but not on A;. In Fig.[2, we

on As (i.e. x

f . . .
have (¢) =5 (a). On a strong architecture Ay such as SC where the writes are atomic,

. grf  f grf . .
i.e. >=—, we have (e) = (a). On a weak architecture A; such as Power, which

relaxes write atomicity, we have —((e) i (a)). We call such reads fragile reads and

define them as (rﬂ} LN \ LN being the set difference):

fragile(r) 2 Juw, w ¥ r

We consider such differences between architectures as conflicts, and formalise this
notion as follows. We consider that two events form a fragile pair (written fﬁ) if they
are maintained in the program order on Ao, and either they are not maintained in the
program order on Ay, or the first event is a fragile read:

f .
mi =% ma = my B may A (—(my P2 ma) V fragile(my )

. . . b . . . . .
An execution is covered if the relation = arbitrates the fragile pairs. In Fig.[2] this

corresponds to placing a barrier between (c) and (d) on Py, i.e. (c) 2y (d), and another

barrier between (a) and (b) on Py, i. e (a) oy (b). Hence we have a cycle in ° Dy L

(d) e (a) by (b) L (c) = p (d). It 1shA cumlﬁlatlve w.r.t. ¥ we create a cycle
in ®2', which forbids the execution: (d) ©= B (b) =& B (d). Formally, we have:

Lem. 2. AC(™%,®™") = covering(™¥, ™)

This lemma leads to a mapping which we call F (for fences), given in Fig. [ This
mapping places a barrier between each fragile pair of a program. Following Lem. 2] it
enforces stability to a program for any pair (47, As). Recall that we give the semantics
of the barriers that we use in the mapping F in Sec.[Il § Architectures, on p. 4 and Fig.[3l

In x86, stores are atomic, and only the write-read pairs in program order are not
preserved, ¢.e. the fragile pairs are the pairs w 2% 7. We do not need cumulativity in

. . . . mfence
x86, i.e. we only need a non-cumulative write-read barrier: w — 7.
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Arch. Fragile pair Barriers (mapping F)
Power r S r 2 r (need A-cumulativity)
Iws ..
r 8w r 2w (A-cumulativity OK)

Iwsync ..
wBw w =% w (no need for A-cumulativity)
wS w X r (need for write-read non-cumulativity)

fenc . ..
x86 wBr " r (need for write-read non-cumulativity)

Fig. 4. Mapping F: barriers

Name Code Comment Doc [1]
load reserve lwarx rl,0,r2 loads from the address in r2 into r1 and reserves the address in xr2 p. 718

store conditional stwcx. rl,0,r2 checks if the address in r2 is reserved; if so, stores from rl into p. 721
this address and writes 1 into register cr; if not, writes 0 into cr

branch not equal bne L checks if register cr holds 0, if not branches to L p. 63

compare cmpw r4, r6 compares valuesin r4 and r6 p. 102

Fig. 5. Table of Power assembly instructions, excluding barriers

In Power, no pair is preserved in program order except the read-read and read-write
pairs with a dependency between the accesses [S]]. But since stores are not atomic, even
the dependent read-read and read-write pairs are fragile. For a read-read pair r; L
since r; can read from a non-atomic write w, we need a cumulative barrier between 71
and 5. But lwsync does not order write to read chains, i.e. lwsync between r; and
r9 will not order w and r5. Therefore we need a sync: Y 1. For a read-write pair
r P w, we need a cumulative barrier as well, but 1wsynec is sufficient here, for it will
order the write from which r may read, and w. In the write-write and write-read cases,
there is no need for cumulativity. In the write-write case, a lwsync is enough, for it
orders write-write pairs; but in the write-read case, we need a sync.

The mapping F agrees with D. Lea’s JSR-133 Cookbook for Compiler Writers [19]
for write-write and write-read pairs. Our mapping is much more conservative than D.
Lea’s for read-read and read-write pairs: it is unclear whether D. Lea’s mapping (meant
to implement Java’s volatiles) intends to restore SC like ours, or rather a weaker memory
model. The mapping F on write-write and write-read pairs corresponds to the optimised
version of P. McKenney and R. Silvera’s Example Power Implementation for C/C++
Memory Model [22] for ”Store Seq Cst”. Their "Load Seq Cst” is implemented by
sync;1d;cmp;bc; isync. The use of sync before a load access corresponds to
our mapping on read-read and read-write pairs. The sequence cmp ; bc; isync after
the same load access ensures that the Load Seq Cst has, in addition to an SC semantics,
a load acquire semantics.

3 Synchronisation Idioms

To illustrate Sec. 2l we now study the semantics of Power’s locks and rmw [1]]. As noted
by S. Adve and H.-J. Boehm in [4] “on hardware that relaxes write atomicity [such
as Power] even the fully fenced implementation may not be sequentially consistent.”
Thus it is unclear whether the synchronisation primitives provided by the architecture
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Initially r3 = {,r4 = OQandr5 = 1
loop:
lwarx r6,0,r3

loop: aé)
(a1) lwarx rl,0,r5 (b) cmpw rd, r6 [...]
[...1] (c) bne loop (f) lwsync
(a2) stwex. r2,0,r5 (a2) stwex. r5,0,r3 (g) stw r4,0,r3
(b) bne loop (d) bne 1oop
(e) isync

(a) rmw (b) Lock (c) Unlock

Fig. 6. Read-modify-write, lock and unlock in Power

actually restore SC: it could perfectly be the architect’s intent (e.g. lwsync is not
strong enough to restore SC, but is faster than sync, as we show in Sec.[3), or a bug in
the implementation [5]. Hence we need to define the semantics of the synchronisation
primitives given in the documentation, and study whether they allow us to restore SC,
i.e. that we can use them to build covering relations, as defined in Sec.[2l

We first define atomic pairs, which are the stepping stone to build locks, studied in
Sec. 3.1l and rmw, studied in Sec. 3.2l We show how to use these primitives to build
covering relations. Second, because cumulativity might be too costly in practice, or its
implementation challenging, we propose in Sec. two lock-free mappings restoring
a strong architecture from Power without using cumulativity, as an alternative to the
mapping F (see Sec.2) which uses cumulativity.

Atomicity. Fig.[6la) gives a generic Power rmw (see Fig.[3lfor the instructions we use).
The lwarx (a;) loads from its source address in register r5 and reserves it. Any subse-
quent store to the reserved address from another processor and any subsequent lwarx
from the same processor invalidates the reservation. The stwcx. (ag) checks if the
reservation is valid; if so, it is successful: it stores into the reserved address and the
code exits the loop. Otherwise, stwcx. does not store and the code loops. Thus these
instructions ensure atomicity to the code they surround (if this code does not contain
any lwarx nor stwcx.), as no other processor can write to the reserved location be-
tween the lwarx and the successful stwcx..

We distinguish the reads and writes issued by such instructions from the plain ones:
we write R* (resp. W*) for the subset of R (resp. W) issued by a lwarx (resp. a success-
ful stwcx.), and define two events r and w to form an atomic pair w.r.t. a location ¢
if (a) w was issued by a successful stwex. to ¢, (b) r was issued by the last lwarx
from £ before (in 23) the stwex . that issued w, and (¢) no other processor wrote to ¢
between r and w:

atom(r,w, {) £ r € R* Aw € W* Aloc(r) = loc(w) = £ A (a)
r = maxpo({m | m € (R* UW*) Am 2 w}) A (b)
—(Jw’ € W, proc(w’) # proc(r) Aloc(w’) =LA r o w) (c)
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Locksy(1)
(@) R¥10
¢p0:l

Fig.7. Opening lock and unlock

3.1 Locks

Atomic pairs are used e.g. in lock and unlock primitives [[1, App. B]. The idiomatic
Power lock (resp. unlock) is shown in Fig.[6lb) (resp. Fig.[6l(c)).

Critical sections. A lock reads the lock variable £ to see if it is free; an unlock writes to
¢ to free it. The instructions between a lock and an unlock form a critical section. Thus,
a critical section consists of a lock Lock(¢, ) and an unlock Unlock(¢, r, w) (we define
these two predicates in the next paragraph) with the same variable ¢, and the events in
% between the lock’s read and the unlock’s write:

es(E,,r,w) 2 Lock(4,r) ANE = {e | r B e 2w} A Unlock(l, 7, w)

We write loc(cs) for the location of a critical section cs. Two critical sections cs; and
cso with the same location /£ are serialised if cso reads from csy, as in Fig.[7 on the left
is cs1, composed of a lock Lock; (¢), an event m4 and an unlock Unlock; (¢), which
writes into ¢ via the write (g). The second critical section csy is on the right: the read
(a1) of its lock Locks(€) reads from (g). Thus, cs; and csy are serialised if csa Lock’s
read (written R(cs2)) reads from cs; Unlock’s write (written W(csl)):

CSS
cs; =% csg = loc(csy) = loc(csg) = £ A W(csl) , R(cs2)
Given a location ¢, two events m; and rrlbg kare in ‘¢ if they are in t]W(k) serialised
critical sections (as in Fig. [1), or m is in 3¢ with an event itself in —' with ma
. . . . po
(m € cs ensures m is between cs import and export barriers in —):

10(,1([

lock lock
my my 2 (Fes; Y esg,my € csy Amg € csp) V (Fm,my = m S my)

. . lock . . lock
Finally, two events m and mo are in — if there exists ¢ such that m, = ma.

Lock and unlock In the Power lock of Fig. [6(b), the lines (a;) to (az2) form an atomic
pair, as in Fig. [6(a); this sequence loops until it acquires the lock. Here, acquiring the
lock means that the 1warx read the lock variable ¢, and that ¢ was later written to by a
successful stwex .. Thus, the read r of the 1warx takes a lock / if it forms an atomic
pair with the write w from the successful stwex.:

taken(¢,7) = 3w, atom(r, w, £)

The acquisition is followed by a sequence bne; isync (lines (d) and (e)), forming
an import barrier (1, p. 721]. An import barrier prevents any event to float above a read
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. - . . . ghby . .
issued by a 1warx: in Fig.[Z] the event ms in csg is in E8! with the read (aq) from its
Lock’s 1warx. Hence the read r of a lock’s 1warx satisfies the import predicate when
no access m after r can be speculated before r:

. b

import(r) £ Vrm, (r e R* Ar B m) = (r & m)

Fig.[6l(c) shows Power’s unlock, starting (line (f)) with an export barrier [} p. 722],
here a lwsync. The export barrier forces the accesses before the write w of the unlock
to be committed to memory before the next lock primitive takes the lock: in Fig.[7] the
event m; in cs; is in &' with the read (a1) of cso’s Lock. Thus we define an export
barrier as B-cumulative, but only w.r.t. reads issued by the lwarx of an atomic pair:

export(w) £ Vrm, (reR*A(m w5 r)) = (m 2y r)

Then a store to the lock variable (line (g)), or more precisely the next write event

to ¢ in program order after a lock acquisition, frees the lock:

free(f,r,w) £ w € W Aloc(w) = £ A1 5 w A taken(l, r)A
(3w’ € W,loc(w') = AT 2w B )

A lock primitive thus consists of a taken operation (see Fig.[6(b), lines (a1) to (az))
followed by an import barrier. An unlock consists of an export barrier (line (f)) fol-
lowed by a write freeing the lock (line (g)):

Lock(4,7) = taken(¢,) A import(r)
Unlock(¢, 7, w) = free(£,r, w) A export(w)
We show that this semantics ensures the acyclicity of oy . ie. following Lem.[I]

lock ,  po,t . . ) .
(= U =) is covering for the competing accesses. Hence locks on the competing
accesses ensures a SC behaviour to Power programs:

lock

Lem. 3. VEX, A, .valid(E, X) = acyclic(*> U 22)

Our import barrier allows events to be delayed so that they are performed inside the crit-
ical section. Our export barrier allows the events after the unlock to be speculated before
the lock is released. Such relaxed semantics already exist for high-level lock and un-
lock primitives [8/26]. In the documentation [[1} p. 721], the import barrier is a sequence
bne; isync (i.e. a read-read, read-write non-cumulative barrier) or a lwsync, i.e.
cumulative [, p.721]. Lem. [ shows that the first one is enough, for our import bar-
rier does not need cumulativity. The export barrier is a sync (i.e. cumulative for all
pairs) or a lwsync [}, p. 722]. Lem.[Blshows that we only need a B-cumulative barrier
towards reads issued by a lwarx, i.e. a sync is unnecessarily costly. Moreover, al-
though a 1wsync is not B-cumulative towards plain reads, its implementations appear
experimentally to treat the reads issued by the lwarx of an atomic pair specially. We
tested and confirmed this semantics of lwsync with our diy tool [5]], by running our
automatically generated tests up to 10'Y times each (see the logs online).

3.2 Read-Modify-Write Primitives

By Lem. 2l we can restore SC in the iriw test of Fig. 2l using A-cumulative barriers
between the fragile pairs (a) and (b) on Py, and (c¢) and (d) on P;. Yet, cumulativity
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(f) Wy2

Fig. 8. (a) iriw after mapping P (b) Opening fno on Py

may be challenging to implement or too costly in practice [3]. We propose a mapping of
certain reads to rmw (as in Fig.[6la)), and show that this restores a strong architecture
from a weaker one without using cumulativity.

In Fig.[8la), we replaced the fragile reads (a) and (c) of iriw by rmw: we say these
fragile reads are protected (a notion defined below). In the example we use fetch and
no-op (fno) primitives [1, p.719] to implement atomic reads. Yet, our results hold for
any kind of rmw. We show that when the fragile reads are protected, we do not need
cumulative barriers, but just non-cumulative ones. If a read is protected by a rmw, then
the rmw compensates the need for cumulativity by enforcing enough order to the write
from which the protected read reads.

Protecting the fragile reads. We consider that two events r and w form a rmw w.r.t. a
location / if they form an atomic pair w.r.t. £ (i.e. the code in Fig.[6la) does not loop),
or there is a read ' after r in the program order forming an atomic pair w.r.t. £ with
w, such that 7’ is the last read issued by the loop before the stwcx . succeeds (i.e. the
code in Fig.[6(a) loops). We do not consider the case where the loop never terminates:
rmw(r, w, £) £ atom(r, w, £) V (Ir',r B 1 Aloc(r) = loc(r') A atom(r', w, £))

In Fig. [B(b), we open up the fno box protecting the read (a) from z on Py. We
suppose that the fno is immediately successful, i.e. the code in Fig.[6(a) does not loop.
Hence we expand the fno event (a) on Py to the r* (a;) (from the 1warx) in program
order with the w* (az2) (from the successful stwex.).

We define a read to be protected when it is issued by the 1warx of a rmw immedi-
ately followed in program order by a non-cumulative barrier; an execution (E, X) is
protected when its fragile reads are:

protected(r) £ Jw, rmw(r, w,loc(r)) A (Vm,w 2 m = w oy m)
protected(E, X) £ Vr, fragile(r) = protected(r)

In Fig. [B(b), the write (e) from which (a;) reads hits the memory before (az), i.e.

(e) 5 (ag). Hence there are two paths from (e) to (b): (e) = (a1) 2 (b) and (e) 5
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Arch. Fragile pair rmw (mapping A) rmw (mapping P)

Power r S p fno 5 fno fno L&
rBw fno 5 sta fno " w
wBw sta 5 sta hesype
wBr sta &2 fno wS

x86 wSr xchg LA na

Fig. 9. Mappings A and P: rmw

(az) 2 (b). Thus we can trade the fragile pair (ay,b) for (az, b) and compensate the

lack of write atomicity of (e) (i.e. (e) = (a) not global) with the write serialisation
between (e) and (a2) (thanks to the rmw) instead of cumulativity before. Formally, we

of . .
prove that a sequence w 2" r 2% m with r protected is globally ordered on A;:

hb
wSs ’ gg)l

Lem. 4. Ywrm, (protected(r) A w 2% r 2% ) = 2 m

Thus, if we protect the fragile reads, the only remaining fragile pairs are the ones in
PPO2\! In Fig. Bla), we have (e) 23 (az) 23 (0) 5 (f) and (f) 22 (c2) B2 (@) 5 (e).
hence a cycle in — U U 2 Since 5 and 5 are global, to invalidate this cycle,
we need to order globally (e.g. by a barrier) the accesses (az) and (b) on Py and (c2)
and (d) on P;. Indeed, if an execution is protected, non-cumulative barriers placed
between the remaining fragile pairs in ""22\' ensure stability:

Lem. 5. A, .valid(E, X) A protected(E, X) A (P2 C g) = Ay .valid(E, X)

This lemma leads to a mapping which we call P (for protected reads), given in Fig.
This mapping places a fno on the first read of the fragile pairs, and a barrier between
this fno and the second access of the fragile pairs. If the first access of the fragile pair is
a write, it remains unchanged and we only place a barrier between the two accesses, fol-
lowing the mapping F. For the read-read (resp. read-write) case, since replacing a read
by a fno amounts to replacing the read by a sequence of events ending with a write, we
choose a barrier ordering write-read (resp. write-write) pairs, ¢.e. Power sync (resp.
lwsync). Following Lem.[3] it enforces stability to a program for any pair (A;, As).

H.-J. Boehm and S. Adve propose in [10] a mapping of all stores into rmw (:.e.
xchg) on x86 (which has no fragile reads), to provide a SC semantics to C++- atomics.
We call this mapping A-x86 (for atomics), and give it in Fig.[9l For models with fragile
reads, e.g. Power, they question in [4] the existence of “more efficient mappings (than
the use of locks)”. The mapping P could be more efficient, since it removes the need
for cumulativity. Yet, mapping reads to rmw introduces additional stores (issued by
stwcx.), which may impair the performance. Moreover, we have to use cumulative
barriers in the mapping P, for Power does not provide non-cumulative barriers. Yet, we
show in Sec. [3l that the mapping P is more efficient than locks on Power machines.

We propose another mapping, given in Fig. Ol which we call A-Power. All reads
and writes are mapped into rmw (using fno for reads and fetch-and-store (sta) [1} p.
719] for writes). The documentation stipulates indeed that “a processor has at most one
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reservation at any time” |1, p. 663]. Hence two rmw on the same processor in program
order may be preserved in this order, because the writes issued by their stwcx., though
to different locations, would be ordered by a dependency over the reservation. Although
the documentation does not state if this dependency exists, we show in Sec. 3] that the
mapping A-Power restores SC experimentally and is more efficient than locks as well.

4 Stability from a Weak Architecture to SC

We now want to minimise the synchronisation that we use, ¢.e. we would like to syn-
chronise only the conflicting accesses (either competing accesses or fragile pairs) that
are actually necessary. For example, if in the iriw test of Fig.[2l we add a write (g) to a
fresh variable z after (in program order) the write (e) to  on P», (e¢) and (g) may not
be preserved in program order, i.e. (e) and (g) may form a fragile pair. Yet, there is no
need to maintain them, since they do not contribute to the cycle we want to forbid.

D. Shasha and M. Snir provide in [27] an analysis to place barriers in a program,
in order to enforce a SC behaviour. They examine in [27, Thm. 3.9 p. 297] the critical
cycles of an execution, and show that placing a barrier along each program order arrow
of such a cycle (each delay arrow) is enough to restore SC. Yet, this work does not
provide any semantics of weak memory models. We show in Coq that their technique
applies to the models embraced by our framework, e.g. models with store buffering,
like TSO or relaxing store atomicity, like Power. n

Given an architecture A and event structure F, a cycle % C (“F U ﬂ) (where “¥
is the competing relation of Sec.[) is critical on A, written critical 4 (E, %), when it is
not a cycle in (Cﬁ? uP ﬁA)J” and satisfies the two following properties. (i) Per processor,
there are at most two memory accesses (x,y) on this processor and loc(z) # loc(y).
(ii) For a given memory location z, there are at most three accesses relative to x, and
these accesses are from distinct processors (w P uww&rrBworr & w® ).
In Fig.[2] the execution of iriw has a critical cycle on Power.

In our framework, we show that the execution witnesses X of an event structure £
are stable from A to SC if and only if E contains no critical cycle on A, i.e. that an
execution valid on A is SC if and only if F contains no critical cycle on A:

Thm. 1. VE, (VX,stables sc(E, X)) < —(3 %5, criticala (E, %))

This theorem means that we do not have to synchronise all the conflicts to ensure sta-
bility from a weak architecture to SC, but only those occurring in critical cycles. Hence
to restore SC, we should arbitrate (with a covering relation) the conflicting accesses
(competing accesses or fragile pairs) occurring in the critical cycles.

5 offence: A Synchronisation Tool

We implemented our study in our new offence tool, illustrating techniques that can
be included in a compiler. Given a program in x86 or Power assembly, offence places
either lock-based or lock-free synchronisation along the critical cycles of its input, fol-
lowing the mapping A, P, L or F, to enforce a SC behaviour.
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5.1 Control Flow Graphs and Critical Cycles

offence builds one control flow graph (cfg) per thread of the input program, containing
static events (i.e. nodes representing memory accesses), and control flow instructions.
A static memory event f has a direction, a location, originating instruction and proces-
sor, as events do, but no value component.

Given an event structure and two events e; ® e2, mapping to static events f; and fo,
we compute the static program order P such that e; 2 e, entails f LaN f2 using a
standard forward data flow analysis. If memory locations accessed by a given instruc-
tion are constant, we have loc(e;) = loc(f1) and loc(es) = loc(f2). Hence static
conflicts computed from the cfg, written IS abstract the conflicts of the event struc-
tures. When locations are not constant, we would need alias analysis to compute an
over-approximation of the locations of each static event, considering for example that
all pairs of memory accesses by distinct processors conflict, if one of them is a write.

With F the set of static events, we call the triple (F, ">, %) static event structure.
Following Sec.[], we enumerate the cycles of F' that have properties (i) and (ii), i.e. we
build an over-approximation of the runtime critical cycles.

5.2 Placing Synchronisation Primitives

We then collect the fragile pairs (i.e. the write-read pairs in x86 and all pairs in Power)
occurring in the critical cycles of F'. By Thm.[Tlit is necessary and sufficient to maintain
these fragile pairs to reach stability, i.e. to restore SC.

Barriers. Then, offence follows the mapping F on these fragile pairs. Given a pair
(f1, f2), offence issues the barrier request (i1, i2, b) where i1 = ins(f1), i2 = ins(f2)
and b is the required barrier. Every path from i; to iz in the cfg should pass through a
barrier instruction b. We use the global barrier placement of [20], which maximises the
number of pairs maintained by a given barrier.

Alternative to barriers. offence can also follow the mappings A and P. For A-x86, the
xchg instruction has an implicit write-read barrier semantics [10]. Thus, we use the
global barrier placement of [20] for xchg. For locks, offence follows the mapping L
on the conflict edges of the cfg. Sec. 3.1l describes the lock and unlock idioms that we
use for Power. For x86, lock uses the xchg instruction to build a compare-and-swap
loop, while unlock uses a single store instruction.

5.3 Experiments

Generating tests. We generated two kinds of tests to exercise offence, using our pre-
vious diy tool [5], which computes tests in x86 or Power assembly from a cycle of
relations. First, we generate tests from critical cycles, e.g. iriw in Fig.[2l Second, using
a new tool, we mix such tests: given two tests built from critical cycles, we randomly
permute processors of one of the given tests, turn its memory locations and registers to
fresh ones, and interleave the codes of the programs. We produced two series of tests,
written X, each series consisting of 209 tests for Power and 58 tests for x86.
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Fig. 11. Time of synchronisation constructs, in microseconds

Experimental soundness. We run these tests against hardware using our litmus tool [6].
We observed that all tests from the initial X series exhibit violations of SC and that the
tests transformed by offence (following the mappings F, A, P and L) do not exhibit
violations of SC, running each test at least 10° times. Thus we confirmed experimen-
tally that our mappings enforce SC, which we established formally for the mappings F
(Lem.[2), P (Lem.[3) and L (Lem. [Tl and[3).

Cost measures. Fig.[10lshows the productivity, i.e. the number of outcomes per second,
for the initial series of tests X, and for the tests transformed by offence following the
mappings F, A, P and L. We ran our tests on three Power machines: power7 (Power7,
8 cores 4-ways SMT), abducens (Power6, 4 cores 2-ways SMT) and vargas (Power6,
32 cores 2-ways SMT); and on two AMD64 machines: chianti (Intel Xeon, 8 cores,
2-ways HT) and saumur (Intel Xeon, 4 cores, 2-ways HT). Our mappings F, P and A
outperform the L one, i.e. provide “more efficient mappings (than the use of locks)”,
answering the question of [4].

To compare the barriers and rmw more precisely, we consider 8 specific tests from 1
to 8 threads, where we add with offence only one synchronisation primitive per thread,
and insert the code for each thread inside a tight loop. We then measure running times
on our two 8 core machines, power7 and chianti, substract the time of the original
test from the time of synchronised tests and divide the result by loop size. We give the
results in Fig. [Tl While fences and rmw are fast in isolation (10-20 ns on one thread),
their cost raises to hundreds of ns when communication by shared memory occurs.
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6 Related Work and Conclusion

Related work. The DRF guarantee [3/10i23]], the semantics of synchronisation idioms
[948]], and the insertion of barriers [27414/11/17] have been extensively studied, but most
of these works focus on one kind of synchronisation at a time, and none of them ad-
dresses Power traits such as cumulativity or the lack of write atomicity.

S. Burckhardt and M. Musuvathi examine in [[12] whether we can simulate a program
running on TSO by enumerating only its SC executions. They distinguish a class of
such executions, the TSO-safe ones. We believe these executions to be an instance of
our stable ones, i.e. the stable executions from TSO to SC. Yet, our characterisation of
stability in the general case is a novel contribution.

J. Lee and D. Padua examine in [20] how to restore SC at compiler level: we used
their global fence placement algorithm. Our work improves on [20] w.r.¢. semantical
fundations: as a result, we use Power lwsync when possible and we do not use x86
lfence and sfence barriers, irrelevant in user-level code. Our mappings could be
included in their Java compiler [29], i.e. using lwsync for Power, and xchg for x86.

Conclusion. Our formal study of stability in weak memory models allows us to define
several mappings of Power or x86 assembly code, which, as we prove in Coq, give a
SC behaviour to a program. Along the way, we give a semantics to Power’s lwarx
and stwcx . instructions and show how to use the lightweight Power barrier l1wsync,
which are novel contributions. In addition, we characterise the executions stable from
a weak architecture to SC, hence generalise the result of [27] to weak memory mod-
els. Finally, we implement our study in our offence tool, to measure the cost of these
mappings: our lock-free mappings outperform locks on our test set. Our work could for
example benefit to compiler writers and semanticists interested in standardisation and
implementability (e.g. of Java volatiles or C++ atomics on Power platforms).

Acknowledgements. We thank Susmit Sarkar, Peter Sewell, Michael Tautschnig, Jules
Villard and Boris Yakobowski for comments on a draft.
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