
Towards Formal Validation of Trust and Security
in the Internet of Services

Roberto Carbone1, Marius Minea2, Sebastian Alexander Mödersheim3,
Serena Elisa Ponta4,5, Mathieu Turuani6, and Luca Viganò7

1 Security & Trust Unit, FBK, Trento, Italy
2 Institute e-Austria, Timişoara, Romania

3 DTU, Lyngby, Denmark
4 SAP Research, Mougins, France
5 DIST, Università di Genova, Italy

6 LORIA & INRIA Nancy Grand Est, France
7 Dipartimento di Informatica, Università di Verona, Italy

Abstract. Service designers and developers, while striving to meet the
requirements posed by application scenarios, have a hard time to assess
the trust and security impact of an option, a minor change, a combination
of functionalities, etc., due to the subtle and unforeseeable situations and
behaviors that can arise from this panoply of choices. This often results
in the release of flawed products to end-users. This issue can be sig-
nificantly mitigated by empowering designers and developers with tools
that offer easy to use graphical interfaces and notations, while employ-
ing established verification techniques to efficiently tackle industrial-size
problems. The formal verification of trust and security of the Internet of
Services will significantly boost its development and public acceptance.

1 Introduction

The vision of the Internet of Services (IoS) entails a major paradigm shift in
the way ICT systems and applications are designed, implemented, deployed and
consumed: they are no longer the result of programming components in the tra-
ditional meaning but are built by composing services that are distributed over
the network and aggregated and consumed at run-time in a demand-driven, flex-
ible way. In the IoS, services are business functionalities that are designed and
implemented by producers, deployed by providers, aggregated by intermediaries
and used by consumers. However, the new opportunities opened by the IoS will
only materialize if concepts, techniques and tools are provided to ensure secu-
rity. Deploying services in future network infrastructures entails a wide range
of trust and security issues, but solving them is extremely hard since making
the service components trustworthy is not sufficient: composing services leads
to new, subtle and dangerous, vulnerabilities due to interference between com-
ponent services and policies, the shared communication layer, and application
functionality. Thus, one needs validation of both the service components and
their composition into secure service architectures.

J. Domingue et al. (Eds.): Future Internet Assembly, LNCS 6656, pp. 193–207, 2011.
c© The Author(s). This article is published with open access at SpringerLink.com.

194 R. Carbone et al.

Standard validation technologies, however, do not provide automated sup-
port for the discovery of important vulnerabilities and associated exploits that
are already plaguing complex web-based security-sensitive applications, and thus
severely affect the development of the future internet. Moreover, security vali-
dation should be carried out at all phases of the service development process,
in particular during the design phase by the service designers themselves or by
security analysts that support them in their complex tasks, so as to prevent the
production and consumption of already flawed services.

Fortunately, a new generation of analyzers for automated security validation
at design time has been recently put forth; this is important not just for the
results these analyzers provide, but also because they represent a stepping stone
for the development of similar tools for validation at service provision and con-
sumption time, thereby significantly improving the all-round security of the IoS.
In this chapter, we give a brief overview of the main scientific and industrial chal-
lenges for such verification tools, and the solutions they provide; we also discuss
some concrete case studies and success stories, which provide proof of concept.
As an actual example, we discuss the main ideas and results of one such rigorous
technology: the AVANTSSAR Validation Platform (or AVANTSSAR Platform
for short) is an integrated toolset that has been developed in the context of
the AVANTSSAR project (www.avantssar.eu, [4]) for the formal specification
and automated validation of trust and security of service-oriented architectures
(SOAs). This technology, which involves the design of a suitable specification lan-
guage and is based on a variety of complementary techniques8, has been tuned
and proven on a number of relevant industrial case studies. We also report on
our activities in migrating project results to industry and disseminating them to
standardization bodies, which will ultimately speed up the development of new
network and service infrastructures, enhance their security and robustness, and
thus increase the development and public acceptance of the IoS.

We proceed as follows. In Sections 2 and 3, we discuss, respectively, some of
the main features of specification languages and automated validation techniques
that have been developed for the verification of trust and security of services. In
Section 4, we present the AVANTSSAR Platform and the AVANTSSAR Library,
and then, in Section 5, we present some case studies and validation success
stories, and the migration of results into industrial practice. Section 6 concludes
the chapter.

2 Specification Languages

Modeling and reasoning about trust and security of SOAs is complex due to
three main characteristics of service orientation.

First, SOAs are heterogeneous: their components are built using different
technology and run in different environments, yet interact and may interfere
with each other.
8 Such as model checking with constraints, approaches based on SAT (i.e., satisfiabil-

ity) or SMT (i.e., satisfiability modulo testing), or abstract interpretation.

www.avantssar.eu

Towards Formal Validation of Trust and Security in the Internet of Services 195

Second, SOAs are also distributed systems, with functionality and resources
distributed over several machines or processes. The resulting exponential state-
space complexity makes their design and efficient validation difficult, even more
so in hostile situations perhaps unforeseen at design time.

Third, SOAs and their security requirements are continuously evolving : ser-
vices may be composed at runtime, agents may join or leave, and client creden-
tials are affected by dynamic changes in security policies (e.g., for incidents or
emergencies). Hence, security policies must be regarded as part of the service
specification and as first-class objects exchanged and processed by services.

The security properties of SOAs are, moreover, very diverse. The classical
data security requirements include confidentiality and authentication/integrity
of the communicated data. More elaborate goals are structural properties (which
can sometimes be reduced to confidentiality and authentication goals) such as
authorization (with respect to a policy), separation or binding of duty, and
accountability or non-repudiation. Some applications may also have domain-
specific goals (e.g., correct processing of orders). Finally, one may consider live-
ness properties (under certain fairness conditions), e.g., for a given web service for
online shopping one may require that every order will eventually be processed
if the intruder cannot block the communication indefinitely. This diversity of
goals cannot be formulated with a fixed repertoire of generic properties (like
authentication); instead, it suggests the need for specification of properties in an
expressive logic.

Various languages have been proposed to model trust and security of SOAs,
e.g., BPEL [24], π calculus [19], F# [5], to name a few. Each of them, however,
focuses only on some aspects of SOAs, and cannot cover all previously described
features, except perhaps in an artificial way. One needs a language fully dedi-
cated to specifying trust and security aspects of services, their composition, the
properties that they should satisfy and the policies they manipulate and abide
by. Moreover, the language must go beyond static service structure: a key chal-
lenge is to integrate policies that are dynamic (e.g., changing with the workflow
context) with services that can be added and composed dynamically themselves.

As a concrete solution, in the AVANTSSAR project, we have defined a lan-
guage, the AVANTSSAR Specification Language ASLan, that is both expressive
enough that many high-level languages, such as BPEL, can be translated to it,
and amenable to formal analysis.9 A key feature of ASLan is the integration of
Horn clauses that are used to describe policies in a clear, logical way, with a
transition system that expresses the dynamics of the system, e.g., agents can
become members of a group or leave it, with immediate consequences for their
access rights.

9 The AVANTSSAR Platform allows users also to input their services by specifying
them using the high-level formal specification language ASLan++, which we have
defined to be close to specification languages for security protocols/services and to
procedural and object-oriented programming languages. The semantics of ASLan++
is formally defined by translation to ASLan.

196 R. Carbone et al.

As a simple, general (i.e., not AVANTSSAR/ASLan specific) example, con-
sider the policies that a user U has access to a file F if U belongs to a group G
that is the owner of F , or U is the deputy of a user that has access to F :

access(U,F) ← member(U,G) ∧ owner(G,F)
access(U,F) ← deputy(U,U ′) ∧ access(U ′, F)

Policies are dynamic, since facts like member , owner , and deputy can change
over time, which in turn affects access rights. For instance, if user Alice changes
to another group within the organization, she will immediately obtain all access
rights to files of the new group, but lose access rights to files of her old group,
except for those that she maintains due to her being a deputy for other users.

We consider transition systems in which a state is a set of facts like member ,
owner , etc.; they can be used to describe service workflows and steps in security
protocols. For instance, an employee (Alice) changing group membership at the
command of her manager (Peter) can be formalized as:

member(Alice, g1) ∧ isManager(Peter,Alice) ∧ canAssign(Peter, g3) ⇒
member(Alice, g3) ∧ isManager(Peter,Alice) ∧ canAssign(Peter, g3)

The above transition is applicable in a state that includes all facts on the left
hand side. When the transition is applied, Alice’s membership to g1 is removed,
she is added as member to g3, and other facts are preserved.

We can now integrate policies with the dynamic aspects of transition systems
by defining: the set of facts that hold true in a state is the least closure of the
state under all Horn clauses. For example, if a state contains the facts

member(a, g1),member(b, g2), owner(g1, f1), owner(g2, f2), deputy(a, b)

then the policy implies the following access rights:

access(a, f1), access(b, f2), access(a, f2)

The least closure represents a “default deny”: if the policies do not imply the
access right, it is false. The main difference between policies expressed via Horn
clauses and transitions expressed via rewrite rules is that the effects of the policy
are inferred in the same state (repeatedly, after each transition), while the effects
of a transition are inferred in the next state. Thus, the use of Horn clauses enables
a deduction chain which is performed for every state of the transition system.
Integrating Horn clauses with transition systems is, of course, a broader concept:
next to policies, we can model other consequences of facts that become true.

Finally, we need to model the security properties. While this can be done by
using different languages, in ASLan we have chosen to employ a variant of linear
temporal logic (LTL, e.g. [18,25]), with backwards operators and ASLan facts
as propositions. This logic gives us the desired flexibility for the specification
of complex goals. As an example, in a system employing the policy described
above, we may require a separation of duty property, namely that for privacy

Towards Formal Validation of Trust and Security in the Internet of Services 197

purposes, no agent can access both files f1 and f2. This can be expressed in LTL
as follows:

G((access(U, f1) → ¬F (access(U, f2))) ∧ (access(U, f2) → ¬F (access(U, f1))))

3 Automated Validation Techniques

Due to the inherent complexity (heterogeneity, distribution and dynamicity) of
the Internet of Services, the challenge of validating services and service-oriented
applications cannot be addressed simply by scaling up the current generation of
formal analysis approaches and tools. Rather, novel and different validation tech-
niques are required to automatically reason about services, their composition,
their required security properties and associated policies. In particular, one has
to consider the various ways in which component services can be coordinated,
and develop new techniques, such as model checking, that allow for composi-
tional validation reflecting this modularity, as well as cope with the complexity
problem. Moreover, for the practical use and take-up by industry and standard-
isation organisations, it is essential that any such verification technique provides
a high degree of automation.

An important solution to overcome the complexity of SOAs and the heteroge-
neous security contexts is to integrate different technologies into a single analysis
tool, in such way that they can interact and benefit from each other’s features.
For instance, the AVANTSSAR Platform comprises three validation backends
(CL-AtSe [27], OFMC [23], and SATMC [1]), which are based on different au-
tomated deduction techniques operating on the same ASLan input, and which
thus provide complementary strengths.

In the following subsections, we discuss these four points — orchestration,
model checking of SOAs, compositional reasoning, and abstraction-based valida-
tion techniques — in more detail and describe how they have been implemented
in the AVANTSSAR Platform.

3.1 Orchestration

Composability, one of the basic principles and design-objectives of SOAs, ex-
presses the need for providing simple scenarios where already available services
can be reused to derive new added-value services. In their SOAP incarnation,
based on XML messaging and relying on a rich stack of related standards, SOAs
provide a flexible yet highly inter-operable solution to describe and implement
a variety of e-business scenarios possibly bound to complex security policies.

When security constraints are to be respected, it can be very complex to dis-
cover or even to describe composition scenarios. This motivates the introduction
of automated solutions to scalable services composition. Two key approaches for
composing web services have been considered, which differ by their architecture:
orchestration is centralized and all traffic is routed through a mediator, whereas
choreography is distributed and all web services can communicate directly.

198 R. Carbone et al.

Several “orchestration” notions have been advocated (see, e.g., [20]). How-
ever, in inter-organizational business processes it is crucial to protect sensitive
data of each organization; and our main motivation is to take into account the se-
curity policies while computing an orchestration. The AVANTSSAR Platform,
for example, implements an idea presented in [11] to automatically generate
a mediator. We specify a web service profile from its XML Schema and WS-
SecurityPolicy using first-order terms (including cryptographic functions). The
mediator is able to use cryptography to produce new messages, and is con-
structed with respect to security goals using the techniques we developed for the
verification of security protocols.

3.2 Model Checking of SOAs

Model checking [13] is a powerful and automatic technique for verifying con-
current systems. It has been applied widely and successfully in practice to ver-
ify digital sequential circuit designs, and, more recently, important results have
been obtained for the analysis of security protocols. In the context of SOAs, a
model-checking problem is the problem of determining whether a given model —
representing the execution of the service under scrutiny in a hostile environment
— enjoys the security properties specified by a given formula. As mentioned in
Section 2, these security properties can be complex, requiring an expressive logic.

Most model-checking techniques in this context make a number of simplify-
ing assumptions on the service and/or on its execution environment that prevent
their applicability in some important cases. For instance, most techniques assume
that communication between honest principals is controlled by a Dolev-Yao in-
truder [17], i.e. a malicious agent capable to overhear, divert, and fake messages.
Yet we might be interested in establishing the security of a service that relies
on a less insecure channel. In fact, services often rely on transport protocols
enjoying some given security properties (e.g. TLS is often used as a unilateral or
a bilateral communication authentic and/or confidential channel), and it is thus
important to develop model-checking techniques that support reasoning about
communication channels enjoying security-relevant properties, such as authen-
ticity, confidentiality, and resilience.

Among general model-checking techniques, bounded model checking, by sup-
porting reasoning about LTL formulae, allows one to reason about complex
trace-based security properties. In particular, the AVANTSSAR Platform in-
tegrates a bounded model-checking technique for SOAs [1] that allows one to
express complex security goals that services are expected to meet as well as
assumptions on the security offered by the communication channels.

3.3 Channels and Compositional Reasoning

A common feature of SOAs is an organization in layers: we may have a layer
that provides a secure communication infrastructure between participants, e.g. a
virtual private network or a TLS [26] channel, and run applications on top of
it, as if the participants were directly connected via tamper-proof lines. It is,

Towards Formal Validation of Trust and Security in the Internet of Services 199

of course, undesirable to verify the entire system as a whole: this can easily be
too complex for automated methods, and lacks generality and reuse. In fact, an
application that requires a secure connection should not depend on the details
of the realization of the secure connection and, vice-versa, a system that estab-
lishes a secure channel should be able to run arbitrary protocols over it. Thus, a
compositionality result is desired: if components are safe in isolation and satisfy
certain properties, then they can be composed into a larger system that is also
safe.

Progress has been made in this direction for the parallel (and sequential)
composition of protocols [12,15,16], i.e., independently using several protocols
over the same communication medium. Moreover, there are first results for the
layered compositional reasoning needed for SOAs, namely running an application
over a channel [22]. This means verifying that (i) a protocol such as TLS indeed
provides an authentic and confidential channel, (ii) an application system is safe
if its communication is routed over a secure channel, and (iii) both satisfy certain
sufficient conditions (their message formats do not interfere). Here, (i) and (ii)
are verification tasks that the tools can check in isolation, and (iii) is a format
property that can be checked statically. If (i), (ii), and (iii) hold, then we can
conclude that running the application over the established channel is also safe.

3.4 Abstract Interpretation

The complexity of SOAs is a major challenge for classical model-checking meth-
ods. To cope with this, formal validation approaches often strictly bound all
aspects of a system, e.g., the number of service runs that honest agents (and a
dishonest agent) can perform. However, one would rather verify a system with-
out such limitations, e.g., no matter how many agents use it in parallel. Hence,
methods based on abstract interpretation have recently become increasingly pop-
ular [6,7,8,9,14,28]. For instance, TulaFale [6], a tool by Microsoft Research based
on ProVerif [7], exploits abstract interpretation for verification of web services
that use SOAP messaging, using logical predicates to relate the concrete SOAP
messages to a less technical representation that is easier to reason about.

There are two basic ideas here: (i) partition the infinite set of constants
(representing, for instance, agents, request numbers, or cryptographic keys) into
finitely many equivalence classes and to compute on those equivalence classes
instead; (ii) avoid reasoning about a transition system and rather compute an
over-approximation of everything that will ever hold true. This allows for the use
of classical automated first-order reasoning techniques, in particular resolution or
fixed-point computations of static analysis. Thanks to the over-approximation,
these systems completely avoid the state-explosion problems of model checking
and can analyze systems without bounds on the number of runs that agents
participate in. On the downside, the over-approximation can introduce false
positives, i.e., attacks introduced by the over-approximation while the actual
system is safe.

The ability of abstraction methods to avoid exploration of concrete transition
systems has been the reason for their success, but on the other hand also implies

200 R. Carbone et al.

a serious limitation for the verification of complex SOAs. Since there is no notion
of time, we cannot model that at some time-point, a key, certificate, access right,
or membership is revoked. The set-based abstraction method [21] can overcome
this limitation while preserving the benefits of abstract interpretation. The idea
is to organize data by means of sets and to abstract data by set membership. In
the example of Section 2, we may consider the set Ug of users that are currently
members of a group g. We can then identify all users that belong to the same set
of groups as one abstract equivalence class. The difficult part is how to handle
the change of the set memberships, e.g., if a user changes from one group to
another. Here, the set-abstraction method defines a mechanism to reason about
how facts about one class imply facts about a new class, e.g., roughly, a dishonest
user would not delete any information that he has learned in the old group, but he
cannot read any new information that the old group produces. Thus, revocation
of facts can be modeled without the need to directly express sequencing in time.

4 The AVANTSSAR Platform and Library

We have implemented the AVANTSSAR Platform as a service-oriented archi-
tecture. As shown in Fig. 1, the platform includes a connectors layer, i.e., a
layer of software modules that carry out the translation from application-level
specification languages (such as BPMN and BPEL, as well as our own AnB and
ASLan++) into ASLan, and vice versa for the platform output. The platform
then takes as concrete input a policy stating the functional and security require-
ments of a goal service and a description of the available services (including
a specification of their security-relevant behavior, possibly including the local
policies they satisfy) and applies automated reasoning techniques in order to
build an orchestration of the available services that meets the security require-
ments stated in the policy. More specifically, the platform comprises of two main
components:

– The Orchestrator tries to build an orchestration, i.e., a composition, of the
available services in a way that is expected (but not yet guaranteed) to
satisfy the input policy. It takes as input an ASLan file with a specification
of the available services and either a specification of the client or a partial
specification of the goal, and it produces as output an ASLan file with the
specification of the available services, a full specification of the goal, and a
specification of the client (a putative one, if it was not given as input).

– The Validator takes as input an orchestration and a security goal formally
specified in ASLan, and automatically checks whether the orchestration
meets the security goal. If this is the case, then the ASLan specification
of the validated orchestration is given as output, otherwise a counterexam-
ple is sent back to the Orchestrator (where a failed validation means the
existence of vulnerabilities that need to be fixed).

Towards Formal Validation of Trust and Security in the Internet of Services 201

V
ul

ne
ra

bi
lit

y

: P
ol

ic
y

: T
oo

l i
np

ut
/o

ut
pu

t
P

: T
ru

st
 a

nd
 S

ec
ur

ity
T

S
: C

om
po

se
d

Se
rv

ic
e

C
S

: C
om

po
se

d
Po

lic
y

C
P

: S
er

vi
ce

S

insecure

P

P
ol

ic
y

C
om

po
se

d
se

rv
ic

e/
po

lic
y

C
P

C
S

Se
cu

re
d

se
rv

ic
e/

po
lic

y

T
S

W
ra

pp
er

C
S

C
P

se
cu

re

Se
rv

ic
es

fe
ed

ba
ck

B
P

M
N

 +
 A

nn
ot

at
io

ns
C

O
N

N
B

P
E

L
 +

 A
nn

ot
at

io
ns

C
O

N
N

C
O

N
NA

nB

C
O

N
N

E
C

T
O

R
A

SL
an

+
+

or
ch

es
tr

at
io

n/
co

m
po

si
tio

n
va

lid
at

io
n

pr
ob

le
m

T
S

V
A

L
ID

A
T

O
R

T
S

O
R

C
H

E
ST

R
A

T
O

R

Sp
ec

if
ic

at
io

n
of

 th
e

av
ai

la
bl

e
se

rv
ic

es
(n

ew
)

Se
rv

ic
e

sp
ec

if
ie

d

A
SL

an
A

SL
an

T
S

W
ra

pp
er

T
he

 A
V

A
N

T
SS

A
R

 V
al

id
at

io
n

P
la

tf
or

m

F
ig

.1
.
T

he
A
V
A

N
T

SS
A

R
V

al
id

at
io

n
P

la
tf

or
m

an
d

it
s

us
ag

e
to

w
ar

ds
E

nt
er

pr
is

e
SO

A
.

202 R. Carbone et al.

As proof of concept, we have applied the AVANTSSAR Platform to the case
studies in the AVANTSSAR Library, which comprises of the formalization of
10 application scenarios and 94 problem cases of service-oriented architectures
from the e-Business, e-Government and e-Health application areas. In this way,
we have been able to detect a considerable number of attacks in the considered
services and provide the required corrections. Moreover, the formal modeling of
case studies has allowed us to consolidate our specification languages and has
driven the evolution of the validation platform, both in terms of support for
the new language and modeling features, as well as in efficiency improvements
needed for the validation of significantly more complex models. We expect that
the library will provide a useful test-suite for similar validation technologies.

5 Case Studies, Success Stories, and Industry Migration

The landscape of services that require validation of their security is very broad.
The validation is made more difficult by the tension between the need for flexibil-
ity, adaptability, and reconfigurability, and the need for simple, understandable,
coherent, declarative policies. These must contain all relevant information re-
quired to determine the access to private data and to the meta-policies that
control them. For example, e-Health practitioners are under pressure to reduce
redundant and inefficient behaviors in daily workflows and methods. They must
establish repeatable, standards-based solutions that promote a “plug-and-play”
approach to context-based information access, making clinical and non-clinical
data available anywhere and anytime in a health care organization, while lower-
ing infrastructure costs. Clearly, privacy requirements will be much more difficult
to implement and assess in such environments. To ease the analysis, it is neces-
sary to factor out the access control policies and meta-policies from the possible
workflow, and to understand and validate the authorization conditions and the
security mechanisms that implement them independently of their use in partic-
ular workflows. There is thus a clear advantage in having a language allowing
the specification of policies via clauses (e.g., Horn clauses) next to the transition
system defining the workflow as put forward in Section 2.

Within the AVANTSSAR project, services from a wide variety of applica-
tion areas have been modeled: banking (loan origination), electronic commerce
(anonymous shopping), e-Government (citizen and service portals, public bid-
ding, digital contract signing), and e-Health (electronic health records). Classes
of properties that have been verified include authorization policies, accountabil-
ity, trust management, workflow security, federation and privacy.

A highlight of the effectiveness of the AVANTSSAR methods and tools is
the detection of a serious flaw in the SAML-based SSO solution for Google
Apps [3]. Though well specified and thoroughly documented, the OASIS SAML
security standard is written in natural language that is often subject to inter-
pretation. Since the many configuration options, profiles, protocols, bindings,
exceptions, and recommendations are laid out in different, interconnected doc-
uments, it is hard to establish which message fields are mandatory in a given

Towards Formal Validation of Trust and Security in the Internet of Services 203

profile and which are not. Moreover, SAML-based solution providers have in-
ternal requirements that may result in small deviations from the standard. For
instance, internal requirements (or denial-of-service considerations) may lead
the service provider to avoid checking the match between the ID field in the
AuthResp and in the previously sent AuthReq. What are the consequences of
such a choice? The technical overview document provided by OASIS SAML as a
non-official addendum increases the clarity in this respect. Still, when Google de-
veloped their SAML-based SSO solution for Google Apps they released a flawed
product, which allowed a dishonest service provider to impersonate the victim
user on Google Apps, granting unauthorized access to private data and services
(email, docs, etc.). The vulnerability was detected by the SATMC backend of the
AVANTSSAR Platform and the attack was reproduced in an actual deployment
of SAML-based SSO for Google Apps. Google and the US Computer Emergency
Readiness Team (US-CERT) were informed and the vulnerability was kept con-
fidential until Google developed a new version of the authentication service and
Google’s customers updated their applications accordingly. The severity of the
vulnerability has been rated High in a note issued by the National Institute of
Standard and Technology (NIST).

Moreover, as shown in [2], the SATMC backend of the AVANTSSAR Plat-
form also allowed us to detect that the prototypical SAML SSO use case (as
described in the SAML technical overview) suffers from an authentication flaw
that, under some conditions, allows a malicious service provider to hijack a client
authentication attempt and force the latter to access a resource without its con-
sent or intention. It also allows an attacker to launch Cross-Site Scripting (XSS)
and Cross-Site Request Forgery attacks (XSRF). This last type of attack is even
more pernicious than classic XSS, because XSRF requires the client to have
an active session with the service provider, whereas in this case, the session is
created automatically hijacking the client’s authentication attempt. This may
have serious consequences, as witnessed by the new XSS attack identified in the
SAML-based SSO for Google Apps and that could have allowed a malicious web
server to impersonate a user on any Google application. In [2], solutions that can
be used to mitigate and even solve the problem are described. These possible
solutions are being discussed with OASIS.

In another notable validation success story, the tool Tookan [10], which is
based on SATMC, has automatically found vulnerabilities in PKCS#11-based
products by Aladdin, Bull, Gemalto, RSA, and Siemens among others. PKCS#
11 specifies an API for performing cryptographic operations such as encryption
and signature using cryptographic tokens (e.g., USB tokens or smart cards).
Sensitive cryptographic keys, stored inside the token, should not be revealed to
the outside and it should be impossible for an attacker to change those keys.
The attacks found show that in many implementations this is not the case: the
compromise of a key allows an attacker to clone the token and, more generally,
to perform the same security-critical operations as the legitimate token user.

Formal validation of trust and security will become a reality in the Internet
of Services only if and when the available technologies will have migrated to in-
dustry, as well as to standardization bodies (which are mostly driven by industry

204 R. Carbone et al.

and influence the future of industrial development). Such an industry migration
has to face the gap between advanced formal methods (FM) techniques and their
real exploitation within industry and standardisation bodies. Though the use of
FM would promote a more secure development environment, a variety of prac-
tical and cultural reasons lead the industrial world to perceive FM approaches
as being expensive in terms of time and effort in comparison to the benefits
they provide, and difficult to be integrated within industrial processes. In order
to ease their adoption, several obstacles have to be overcome, such as: (i) the
lack of automated FM technology, (ii) the gap between the problem case that
needs to be solved in industry and the abstract specification provided by FM,
and (iii) the differences between formal languages and models and those used in
industrial design and development environments (e.g., BPMN, Java, ABAP).

The problem is how to make new, efficient methodologies and technologies
accessible and readily exploitable, benefitting industry designers and develop-
ers. This amounts to migrating the research outcomes of the logical level into
the application level by providing a push-button technology so that industry
and standardization bodies could check more rapidly the correctness of the pro-
posed solutions without having a strong mathematical background. In particular,
industrially suited specification languages (model-driven languages), equipped
with easy-to-use GUIs and translators to and from the core formal models should
be devised and migrated to the selected development environments.

A concrete example is the industry migration of the AVANTSSAR Platform
to the SAP environment. Two valuable migration activities have been carried
out by building contacts with core business units. First, in the trail of the suc-
cessful analysis of Google’s SAML-based SSO, an internal project has been run
to migrate AVANTSSAR results within SAP NetWeaver Security and Identity
Management (SAP NW SIM) with the objective of exploiting the AVANTSSAR
technology to initiate a deep formal analysis of the SAP NetWeaver SAML Next
Generation Single Sign-On (NW-NGSSO) to formally establish its soundness,
i.e., to have formal evidence that the employed service providers and identity
provider services fulfill the expected security desiderata in the considered SAP
relevant scenarios. This has included the evaluation of those configurations of the
highly configurable SAML SSO standard that are relevant for SAP as well as de-
sign and development decisions SAP could have taken to fulfill internal customer
requirements. More than 50 formal specifications capturing these scenarios, the
variety of configuration options, and SAP internal design and implementation
choices have been specified. By means of the AVANTSSAR Platform, safe and
unsafe configurations for NW-NGSSO for several SAML profiles relevant for
SAP have been identified. All discovered risks and flaws in the SAML protocol
have been addressed in NW-NGSSO implementation and counter-measures have
been taken. The results have been collected in tables that can be used by SAP
in setting-up the NW-NGSSO services on customer production systems.

Besides this, the results triggered very valuable discussions in the steering
committee that was supervising this internal project. For instance, the authen-
tication flaw in the SAML standard helped SAP business units to get major
insights in the SAML standard than the security considerations described in

Towards Formal Validation of Trust and Security in the Internet of Services 205

there and helped SAP Research to better understand the vulnerability itself and
to consolidate the results.

The AVANTSSAR technology has been also integrated into the SAP Net-
Weaver Business Process Management (NW BPM) product to formally validate
security-critical aspects of business processes. An eclipse plug-in extension for
NW BPM was proposed through the design and development of a security val-
idation plug-in that enables a business process modeler to easily specify the
security goals one wishes to validate such as least privilege which can be ac-
complished by means of the Need-to-Know principle (giving to the users enough
rights to perform their job, but no more than that). It also proposes to control
the access over automated tasks through the restriction on the invocation and
consumption of remote services. A scalability study has also been conducted on
a loan origination process case study with a few security goals and on a more
complex aviation maintenance process (designed with 70 human activities). The
performance analysis helped us to devise a number of optimizations (up to three
orders of magnitude).

These results show that the AVANTSSAR technology can provide a high level
of assurance within industrial BPM systems, as it allows for validating all the
potential execution paths of the BP under-design against the expected security
desiderata. In particular, the migration activity succeeded in overcoming obsta-
cles for the adoption of model-checking techniques to validate security desiderata
in industry systems by providing an automatic generation of the formal model on
which to run the analysis, as well as highlighting the model-checking results as
a comprehensive feedback to a business analyst who is neither a model-checking
practitioner nor a security expert. As a successful result, the security validation
plug-in is currently listed in the productization road-map of SAP products for
business process management.

6 Conclusions and Outlook

As exemplified by these case studies and success stories, formal validation tech-
nologies can have a decisive impact for the trust and security of the IoS. The
research innovation put forth by AVANTSSAR aims at ensuring global security
of dynamically composed services and their integration into complex SOAs by
developing an integrated platform of automated reasoning techniques and tools.
Similar technologies are being developed by other research teams. Together, all
these research efforts will result in a new generation of tools for automated se-
curity validation at design time, which is a stepping stone for the development
of similar tools for validation at service provision and consumption time. These
advances will significantly improve the all-round security of the IoS, and thus
boost its development and public acceptance.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

206 R. Carbone et al.

References

1. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. Journal of Applied Non-Classical Logics, special issue on Logic and Infor-
mation Security, 403–429 (2009)

2. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Pellegrino, G., Sorniotti, A.:
From Multiple Credentials to Browser-based Single Sign-On: Are We More Secure?
In: Proceedings of IFIP SEC 2011 (to appear)

3. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Tobarra Abad, L.: Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In: Proceedings of the 6th ACM Workshop on
Formal Methods in Security Engineering (FMSE 2008), pp. 1–10. ACM Press,
New York (2008)

4. AVANTSSAR: Automated Validation of Trust and Security of Service-Oriented
Architectures. FP7-ICT-2007-1, Project No. 216471, http://www.avantssar.eu,
01.01.2008–31.12.2010

5. Bhargavan, K., Fournet, C., Gordon, A.D.: Verified Reference Implementations of
WS-Security Protocols. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 88–106. Springer, Heidelberg (2006)

6. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: Tulafale: A security tool
for web services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)

7. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules.
In: Proceedings of the 14th IEEE Computer Security Foundations Workshop, pp.
82–96. IEEE Computer Society Press, Los Alamitos (2001)

8. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols. Journal of Computer Security 13(3), 347–390 (2005)

9. Boichut, Y., Héam, P.-C., Kouchnarenko, O.: TA4SP (2004),
http://www.univ-orleans.fr/lifo/Members/Yohan.Boichut/ta4sp.html

10. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and Fixing
PKCS#11 Security Tokens. In: Proceedings of the 17th ACM conference on Com-
puter and Communications Security (CCS 2010), pp. 260–269. ACM Press, New
York (2010)

11. Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Automatic Composition of Services
with Security Policies. In: Proceedings of Web Service Composition and Adaptation
Workshop (held in conjunction with SCC/SERVICES-2008), pp. 529–537. IEEE
Computer Society Press, Los Alamitos (2008)

12. Ciobâca, S., Cortier, V.: Protocol composition for arbitrary primitives. In: Pro-
ceedings of 23rd IEEE Computer Security Foundations Symposium, pp. 322–336.
IEEE Computer Society Press, Los Alamitos (2010)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

14. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-
order logic and application to cryptographic protocols. Technical Report LSV-03-3,
Laboratoire Specification and Verification, ENS de Cachan, France (2003)

15. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1–36 (2009)

16. Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: Secure protocol composition. In:
Proceedings of the 19th MFPS, ENTCS 83, Elsevier, Amsterdam (2004)

http://www.avantssar.eu
http://www.univ-orleans.fr/lifo/Members/Yohan.Boichut/ta4sp.html

Towards Formal Validation of Trust and Security in the Internet of Services 207

17. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory 2(29) (1983)

18. Hodkinson, I., Reynolds, M.: Temporal Logic. In: Blackburn, P., van Benthem, J.,
Wolter, F. (eds.) Handbook of Modal Logic, pp. 655–720. Elsevier, Amsterdam
(2006)

19. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of
Logic and Algebraic Programming 70(1), 96–118 (2007)

20. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157.
Springer, Heidelberg (2009)

21. Mödersheim, S.: Abstraction by Set-Membership — Verifying Security Protocols
and Web Services with Databases. In: Proceedings of 17th ACM conference on
Computer and Communications Security (CCS 2010), pp. 351–360. ACM Press,
New York (2010)

22. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009)

23. Mödersheim, S., Viganò, L.: The Open-Source Fixed-Point Model Checker for
Symbolic Analysis of Security Protocols. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidel-
berg (2009)

24. Oasis Consortium. Web Services Business Process Execution Language vers. 2.0
(2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

25. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer So-
ciety Press, Los Alamitos (1977)

26. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol, Version
1.2. IETF RFC 5246 (Aug. 2008)

27. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

28. Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E.,
Theobalt, C., Topic, D.: System Description: Version 1.0.0. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 378–382. Springer, Heidelberg (1999)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

	Towards Formal Validation of Trust and Security in the Internet of Services
	Introduction
	Specification Languages
	Automated Validation Techniques
	Orchestration
	Model Checking of SOAs
	Channels and Compositional Reasoning
	Abstract Interpretation

	The AVANTSSAR Platform and Library
	Case Studies, Success Stories, and Industry Migration
	Conclusions and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

