
Engineering Secure Future Internet Services

Wouter Joosen1, Javier Lopez2, Fabio Martinelli3, and Fabio Massacci4

1 Katholieke Universiteit Leuven
wouter.joosen@cs.kuleuven.be

2 University of Malaga
jlm@lcc.uma.es

3 National Research Council of Italy
Fabio.Martinelli@iit.cnr.it

4 University of Trento
massacci@dit.unitn.it

Abstract. In this paper we analyze the need and the opportunity for
establishing a discipline for engineering secure Future Internet Services,
typically based on research in the areas of software engineering, of service
engineering and security engineering. Generic solutions that ignore the
characteristics of Future Internet services will fail, yet it seems obvious
to build on best practices and results that have emerged from various
research communities.
The paper sketches various lines of research and strands within each line
to illustrate the needs and to sketch a community wide research plan. It
will be essential to integrate various activities that need to be addressed
in the scope of secure service engineering into comprehensive software
and service life cycle support. Such a life cycle support must deliver
assurance to the stakeholders and enable risk and cost management for
the business stakeholders in particular. The paper should be considered
a call for contribution to any researcher in the related sub domains in
order to jointly enable the security and trustworthiness of Future Internet
services.

1 Introduction

1.1 Future Internet Services

The concept named Future Internet (FI) aggregates many facets of technology
and its practical use, often illustrated by a set of usage scenarios and typical
applications. The Future Internet may evolve to use new infrastructures, net-
work technologies and protocols in support of a growing scale and a converging
world, especially in light of smaller, portable, ubiquitous and pervasive devices.
Besides such a network-level evolution, the Future Internet will manifest itself to
the broad mass of end users through a new generation of services (e.g. a hybrid
aggregation of content and functionality), service factories (e.g., personal and
enterprise mash-ups), and service warehouses (e.g., platform as a service). One
specific service instance may thus be created by multiple service development
organizations, it may be hosted and deployed by multiple providers, and may

J. Domingue et al. (Eds.): Future Internet Assembly, LNCS 6656, pp. 177–191, 2011.
c© The Author(s). This article is published with open access at SpringerLink.com.

178 W. Joosen et al.

be operated and used by a virtual consortium of business stakeholders. While
the creative space of services composition is in principle unlimited, so is the
fragmentation of ownership of both services and content, as well as the complex-
ity of implicit and explicit relations among participants in each business value
chain that is generated. In addition, the user community of such FI services
evolves and widens rapidly, including masses of typical end users in the role
of prosumers(producing and consuming services). This phenomenon increases
the scale, the heterogeneity and the performance challenges that come with FI
service systems.

This evolution obviously puts the focus on the trustworthiness of services.
Multiparty service systems are not entirely new, yet the Future Internet stretches
the present know how on building secure software services and systems: more
stakeholders with different trust levels are involved in a typical service com-
position and a variety of potentially harmful content sources are leveraged to
provide value to the end user. This is attractive in terms of degrees of freedom
in the creation of service offerings and businesses. Yet this also creates more
vulnerabilities and risks as the number of trust domains in an application gets
multiplied, the size of attack surfaces grows and so does the number of threats.
Furthermore, the Future Internet will be an intrinsically dynamic and evolv-
ing paradigm where, for instance, end users are more and more empowered and
therefore decide (often on the spot) on how content and services are shared and
composed. This adds an extra level of complexity, as both risks and assumptions
are hard to anticipate. Moreover, both risks and assumptions may evolve; thus
they must be monitored and reassessed continuously.

1.2 The Need for Engineering Secure Software Services

The need to organize, integrate and optimize the research on engineering secure
software services to deal effectively with this increased challenge is pertinent and
well recognized by the research community and by the industrial one. Indeed,
there is also a growth of successful attacks on ICT-service systems, both in terms
of impact and variety. This obviously harms the economic impact of Future
Internet services and causes significant monetary losses in recovering from those
attacks. In addition, this induces users at several levels to lose confidence in the
adoption of ICT-services.

From a business perspective, however, we are now witnessing the emergence
of new and unprecedented models for service-oriented computing for the Future
Internet: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). These models have the potential to better adhere to
an economy of scale and have already shown their commercial value fostered by
key players in the field. Nevertheless, those new models present change of control
on the applications that will run on an infrastructure not under the direct control
of the business service provider. For business critical applications this could be
difficult to be accepted, when not appropriately managed and secured. These
issues are of an urgent practical relevance, not only for academia, but also for
industry and governmental organizations. New Internet services will have to be

Engineering Secure Future Internet Services 179

provided in the near future, and security breaches in these services may lead to
large financial loss and damaged reputation.

1.3 Research Focus on Developing Secure FI Services

Our focus is on the creation and correct execution of a set of methodologies, pro-
cesses and tools for secure software development. This typically covers require-
ments engineering, architecture creation, design and implementation techniques.
However this is not enough! We need to enable assurance: approving that the
developed software is secure. Assurance must be based on justifiable evidence,
and the whole process designed for assurance. This would allow the uptake of new
ICT-services according to the latest Future Internet paradigms, where services
are composed by simpler services (provided by separate administrative domains)
integrated using third parties infrastructures and platforms. The need of man-
aging the intrinsic modularity and compose-ability of these architectures,
traditionally shared with commercial off the shelf components (COTS), should
drive the development of corresponding methodologies. Clearly industry needs
to prioritize its efforts in order to improve their return of investments (ROI).
Thus, embedding risk/cost analysis in the SDLC is currently one of the key
research directions in order to link security concerns with business needs and
thus supporting a business case for security matters.

Our research addresses the early phases of the development process of ser-
vices, bearing in mind that the discovery and remediation of vulnerabilities dur-
ing the early development stages saves resources. Thus our joint research activi-
ties fall in six areas: (1) security requirements for FI services, (2) creating secure
service architectures and secure service design, (3) supporting programming en-
vironments for secure and compose-able services, (4) enabling security assurance,
integrating the former results in (5) a risk-aware and cost-aware software devel-
opment life-cycle (SDLC), and (6) the delivery of case studies of future internet
application scenarios.

The first three activities represent major and traditional stages of (secure)
software development: from requirements over architecture and design to the
composition and/or programming of working solutions. These three activities
interact to ensure the integration between the methods and techniques that are
proposed and evaluated. This is a first element that drives to research integration.

In addition, the research programme adds two horizontal activities that span
the service creation process. Both the security assurance programme and the
programme on Risk and Cost aware SDLC will interact with each of the initial
three activities, drive the requirements of these activities and leverage upon,
even integrate their outcome. This is a second element that drives to research
integration.

Finally, notice that all 5 research activities mentioned above will be inspired
and evaluated by their application in specific FI application scenarios. This third
element complements the overall research programme that leads to integrated
research and intensive research collaboration in the area.

180 W. Joosen et al.

In the sequel of this paper we elaborate on the relevant sub domains and
techniques that we consider useful for engineering secure Future internet services.

2 Security Requirements Engineering

The main focus of this research strand is to enable the modeling of high-level
requirements that can be expressed in terms of high-level concepts such as com-
pliance, privacy, trust, and so on. These can be subsequently mapped into more
specific requirements that refer to devices and to specific services. A key chal-
lenge is to support dealing with an unprecedented multitude of autonomous
stakeholders and devices – probably one of the most distinguishing characteris-
tics of the FI.

The need for assurance in the Future Internet demands a set of novel engi-
neering methodologies to guarantee secure system behavior and provide credible
evidence that the identified security requirements have been met from the point
of view of all stakeholders. The security requirements of Future Internet applica-
tions will differ considerably from those of traditional applications. The reason
is that Future Internet applications will not only be distributed geographically,
as are traditional applications, but they will also involve multiple autonomous
stakeholders, and may involve an array of physical devices such as smart cards,
phones, RFID sensors and so on that are perpetually connected and transmit
a variety of information including identity, bank accounts, location, and so on.
Some of these transactions might even happen transparently to the user; for
example, a person’s identity could be seamlessly communicated by a personal
device to the store she is entering to do the shopping. Addressing concerns about
identity theft, unauthorized credit card usage, unauthorized transmission of in-
formation by third-party devices, trust, privacy, and so on are critical to the
successful adoption of FI applications.

Service-orientation and the fragmentation of services (both key characteris-
tics of FI applications) imply that a multitude of stakeholders will be involved
in a service composition and each one will have his own security requirements.
Hence, eliciting, reconciling, and modeling all the stakeholders’ security require-
ments become a major challenge [5]. Multilateral Security Requirements Anal-
ysis techniques have been advocated in the state of the art [14] but substantial
research is still needed. In this respect, agent-oriented and goal-oriented ap-
proaches such as Secure Tropos [12] and KAOS [8] are currently well recognized
as means to explicitly take the stakeholders’ perspective into account. These
approaches will represent a promising starting point but need to be uplifted in
order to be able to cope with the level of complexity put forward by FI applica-
tions. Furthermore, it is important that security requirements are addressed from
a higher level perspective, e.g., in terms of the actors’ relationships with each
other. Unfortunately, most current requirements engineering approaches con-
sider security only at the technological level. In other words, current approaches
provide modeling and reasoning support for encryption, authentication, access
control, non-repudiation and similar requirements. However, they fail to capture
the high-level requirements of trust, privacy, compliance, and so on.

Engineering Secure Future Internet Services 181

This picture is further complicated by the vast number and the geographical
spread of smart devices stakeholders would deploy to meet their requirements.
Sensor networks, RFID tags, smart appliances that communicate not only with
the user but with their manufacturers, are examples of such devices. Such de-
ployments inherit security risks from the classical Internet and, at the same time,
create new and more complex security challenges. Examples include illicit track-
ing of RFID tags (privacy violation) and cloning of data on RFID tags (identity
theft). Applications that involve such deployments typically cross organization
boundaries.

In light of the challenges and principles highlighted above, we identify the
following detailed objectives:

– The definition of techniques for the identification of all stakeholders (includ-
ing attackers), the elicitation of high-level security goals for all stakeholders,
and the identification and resolution of conflicts among different stakeholder
security goals;

– The refinement of security goals into more detailed security requirements for
specific services and devices;

– The identification and resolution of conflicts between security requirements
and other requirements (functional and other quality requirements);

– The transformation of a consolidated set of security requirements into secu-
rity specifications.

The four objectives listed above obviously remain generic by nature, one should
bear in mind though that the forthcoming techniques and results will be applied
to a versatile set of services, devices and stakeholder concerns.

3 Secure Service Architecture and Design

FI applications entail scenarios in which there exist a huge amount of heteroge-
neous users and a high level of composition and adaptation is required. These
factors increase the complexity of applications and make it necessary to lever-
age existing mechanisms and methodologies for software construction as well as
researching about new ways to take this complexity into account in a holistic
manner. These applications enable pervasive, ubiquitous scenarios where multi-
ple users, devices, third-party components interact continuously and seamlessly,
so security enforcement mechanisms are indispensable. The design phase of the
software service and/or system is a timely moment to enforce and reason about
these security mechanisms, since by that phase one must have already grasped
a thorough understanding of the application domain and of the requirements to
be fulfilled. Furthermore, at design-time a preliminary version of the application
architecture has been produced.

The software architecture encompasses the more relevant elements of the ap-
plication, providing either a static or/and a dynamic view of the application. A
more comprehensive definition can be found in [2], where it is defined as “the
structure or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among them”.

182 W. Joosen et al.

The security architecture for the system must enforce the visible security prop-
erties of components and the relationships between them. All this information
makes it feasible to enforce, assess and reason about security mechanisms at an
early phase in the software development cycle.

The research topics one must focus on in this subarea relate to model-driven
architecture and security, the compositionality of design models and the study
of design patterns for FI services and applications. The three share the common
ambition to maximize reuse and automation while designing secure FI services
and systems.

As for the first element the aim is to support methodologies that utilize
several easy-to-understand models to represent the application. According to
the model-driven approach, these models may be manipulated and converted
automatically into other models, in such a way that they all preserve certain
properties. So, it would be possible to specify a first high-level model with some
high-level security policies. Then, by automation, this model could be converted
into another more specific model, in which the security policies become more
detailed, closer to the enforcement mechanisms that will fulfil them. This process
should be applied until a basic version of the application architecture can be
released.

The integration of security aspects into this paradigm is the so-called model-
driven security [6], leading to a design for assurance methodology in which every
step of the design process is performed taking security as a primary goal. A way
of carrying out this integration includes first decomposing security concerns,
so that the application architecture and its security architecture is decoupled.
This makes possible for architects to assess more easily tradeoffs among different
security mechanisms, simulate security policies and test security protocols before
the implementation phase, where changes are typically far more expensive.

In order to achieve this, it is first needed to convert the security require-
ments models into a security architecture by means of automatic model trans-
formations. These transformations are interesting, since whilst requirements be-
long to the problem-domain, the architecture and design models are within the
solution-domain, so there is an important gap to address. In the context of se-
curity modeling, it is extremely relevant to incept ways to model usage control
(e.g., see [21,22,18]), which encompasses traditional access control, trust man-
agement and digital rights management and goes beyond these building blocks
in terms of definition and scope. Finally, by means of transformation patterns, it
is required to research on new ways to map the high-level policies established at
requirements stage into low-level, enforceable policies at run-time. Furthermore
note that FI scenarios include Cloud and GRID services and although some work
has already been made in the area [23], further research is necessary to find out
what kind of security architecture is required in the context and how to carry
out the decomposition of such fairly novel architectures.

Until this point in the software and service development process, different
concerns – security among them – of the whole application have been sepa-
rated into different models, each model representing different functional and
non-functional concerns that different stakeholder may have about it. However,

Engineering Secure Future Internet Services 183

in order to grasp a comprehensive understanding of the application as a whole,
it is required to integrate all these views into a unified one. This process is called
composition [25,11] and, as a recent work suggests [20], it is possible to perform it
at run-time, adding a new level of flexibility and adaptation for FI applications.
Regarding composition, several topics will be studied. First, it is desirable to
define contracts for model composition, in such a way that only correct compo-
sitions are allowed, limiting the propagation of design flaws through the models.
Second, given that different sub-architectures may exist, each addressing dif-
ferent concerns – even different security sub-architectures for different security
requirements – it is required to assure that the composition of all these architec-
tures is accomplished and that all the requirements are met in this composition.
Finally, adaptation of composite services is a key area of interest. FI scenarios
are very dynamic, so threats in the environment may change along the time and
some reconfiguration may be required to adapt to that changes.

The last research focus is on design patterns and on reusable architectural
know-how. A design pattern is a general repeatable solution to a commonly oc-
curring problem in software design. Design patterns, once identified, allow reuse
of design solutions that have proved to be effective in the past, reducing costs
and risks usually arisen by uncertainty, leveraging a risk and cost-aware . There
are large catalogues and surveys on security patterns available [26,13], but the FI
applications yet to come and the new scenarios enabled by FI need to extend and
tailor these catalogues. In this context, the first step is studying the patterns
currently available and, what is more important, to analyze the relationships
amongst them [17], identifying those which may be useful for FI scenarios. Fi-
nally, how to bridge the gap among problem patterns – such as problem frames or
KAOS refinement patterns and solution patterns – architectural patterns – must
be analyzed, both from a general perspective and from a security perspective for
security-critical software systems.

4 Security Support in Programming Environments

Security Support in Programming Environments is not new; still it remains a
grand challenge, especially in the context of Future Internet (FI) Services. Secur-
ing Future Internet Service is inherently a matter of secure software and systems.
The context of the future internet services sets the scene in the sense that (1)
specific service architectures will be used, that (2) new types of environments
will be exploited, ranging from small embedded devices (“things”) to service in-
frastructures and platform in the cloud, and (3) a broad range of programming
technologies will be used to develop the actual software and systems.

The search for security support in programming environments has to take
this context in account. The requirements and architectural blueprints that will
be produced in earlier stages of the software engineering process cannot deliver
the expected security value unless the programs (code) respect these security
artefacts that have been produced in the preceding stages. This sets the stage
for model driven security in which transformations of architecture and design
artefacts is essential, as well as the verification of code compliance with various

184 W. Joosen et al.

properties. Some of these properties have been embedded in the security spe-
cific elements of the software design; other may simply be high priority security
requirements that have articulated – such as the appropriate treatment of con-
currency control and the avoidance of race conditions – in the code, as a typical
FI service in the cloud may be deployed with extreme concurrency in mind.

Supporting security requirements in the programming – code – level requires
a comprehensive approach. The service creation means must be improved and
extended to deal with security needs. Service creation means both aggregating
and composing services from pre-existing building blocks (services and more tra-
ditional components), as well as programming new services from scratch using
a state-of-the-art programming language. The service creation context will typ-
ically aim for techniques and technologies that support compile and build-time
feedback. One could argue that security support for service creation must focus
on and enable better static verification. The service execution support must be
enhanced to deal with hooks and building blocks that facilitate effective security
enforcement at run-time. Dependent on the needs and the state-of-the-art this
may lead to interception and enforcement techniques that “simply” ensure that
the application logic consistently interacts with underpinning security mecha-
nisms such as authentication or audit services. Otherwise, the provisioning of
the underpinning security mechanisms and services (e.g. supporting mutual non
repudiation, attribute based authorization in a cloud platform etc.) will be re-
quired as well for many of the typical FI service environments. Next we further
elaborate on the needs and the objectives of community wide research activities.

4.1 Secure Service Composition

Future Internet services and applications will be composed of several services
(created and hosted by various organizations and providers), each with its own
security characteristics. The business compositions are very dynamic in nature,
and span multiple trust domains, resulting in a fragmentation of ownership of
both services and content, and a complexity of implicit and explicit relations
among the participants.

Service Composition Languages. One of the challenges for the secure
service composition is the need for new formalisms to specify service requests
(properties of service compositions) and service capabilities, including their secu-
rity policies, and tools to generate code for service compositions that are able to
fulfil these requirements based on the available services. In addition to complying
with the requested functional and quality-of-service-related characteristics, com-
position languages must support means to preserve at least the security policy
of those services being composed. The research community needs to consider the
cases where only partial or inadequate information on the services is available,
so that the composition will have to find compliant candidates or uncover the
underspecified functionality.

Middleware Aspects. The research community should re-investigate ser-
vice-oriented middleware for the Future Internet, with a special emphasis on

Engineering Secure Future Internet Services 185

enabling deployment, access, discovery and composition of pervasive services
offered by resource-constrained nodes.

4.2 Secure Service Programming

Many security vulnerabilities arise from programming errors that allow an ex-
ploit. Future Internet will further reinforce the prominence of highly distributed
and concurrent applications, making it important to develop methodologies that
ensure that no security hole arises from implementations that exploit the com-
putational infrastructure of the Future Internet. The research community must
further investigate advances over state-of-the-art in fine-grained concurrency to
enable highly concurrent services of the Future Internet, and will improve anal-
ysis and verification techniques to verify, among others, adherence to program-
ming principles and best-practices [10].

Verifiable Concurrency. Lock-free wait-free algorithms for common soft-
ware abstractions (queues, bags, etc.) are one of the most effective approaches
to exploit multi-core parallelism. These algorithms are hard to design and prove
correct, error-prone to program, and challenging to debug. Their correctness is
crucial to the correct behaviour of client programs. Research should now focus on
build independently checkable proofs of the absence of common errors, including
deadlock, race conditions, and non-serialize-ability [16].

Adherence to Programming Principles and Best-Practices. Program-
ming support must include methods to ensure the adherence of a particular pro-
gram to well-known programming principles or best-practices in secure software
development. Emphasis will be put on language extensions that guarantee adher-
ence to best-practices, and verified design patterns that can be used during devel-
opment. The research community might investigate and re-visit methods from
language-based security, in particular type systems, to enforce best-practises
currently used in order to prevent cross-site scripting attacks and similar vul-
nerabilities associated with web-based distributed applications. Obviously, the
logical rationales underlying such best-practises must be articulated, enabling he
development of type systems enforcing these practises directly – thus allowing
users to deviate from rigid best-practices while still maintaining security.

4.3 Platform Support for Security Enforcement

Future Internet applications span multiple trust domains, and the hybrid aggre-
gation of content and functionality from different trust domains requires com-
plex cross-domain security policies to be enforced, such as end-to-end informa-
tion flow, cross-domain interactions and usage control. In effect, the security
enforcement techniques that are triggered by built-in security services and by
realistic in the FI setting, must address the challenge of complex interactions and
of finely grained control [15]. Research should therefore focus on the enforcing
cross-domain barriers in the interaction among different cross-domains, and on
the enforcement of fine-grained security policies via execution monitoring.

186 W. Joosen et al.

Secure Cross-Domain Interactions. Web technology inherently embeds
the concept of cross-domain references, and applications are isolated via the
Same-Origin-Policy (SOP) in the browser. From a functional perspective, the
SOP puts limitations on compose-ability and cooperation of different applica-
tions, and from a security perspective, the SOP is not strong enough to achieve
the appropriate application isolation.

Finely Grained Execution Monitoring. Trustworthy applications need
run-time execution monitors that can provably enforce advanced security policies
[19,3] including fined-grained access control policies usage control policies and
information flow policies [24].

Supporting Security Assurance for FI Services. Assurance will play a
central role in the development of software based services to provide confidence
about the desired security level. Assurance must be treated in a holistic manner
as an integral constituent of the development process, seamlessly informing and
giving feedback at each stage of the software life cycle by checking that the
related models and artefacts satisfy their functional and security requirements
and constraints. Obviously the security support in programming environments
that must be delivered will be essential to incept a transverse methodology that
enables to manage assurance throughout the software and service development
life cycle (SDLC). The next section clarifies these issues.

5 Embedding Security Assurance and Risk Management
during SDLC

Engineering secure Future Internet services demands for at least two traversal
issues, security assurance and risk and cost management during SDLC.

5.1 Security Assurance

The main objective is to enable assurance in the development of software based
services to ensure confidence about their trustworthiness. Our core goal is to
incept a transverse methodology that enables to manage assurance throughout
the software development life cycle (SDLC). The methodology is based on two
strands: A first sub-domain covers early assurance at the level of requirements,
architecture and design. A second sub-domain includes the more conventional
and complementary assurance techniques based on implementation.

Assurance during the Early Stages of SDLC. Early detection of security
failures in Future Internet applications reduces development costs and improves
assurance in the final system. This first strand aims at developing and applying
assurance methods and techniques for early security verification. These methods
are applied to abstract models that are developed from requirements to detailed
designs.

One main area of research is step-wise refinement of security, by develop-
ing refinement strategies, from policies down to mechanisms, for more complex

Engineering Secure Future Internet Services 187

secure protocols, services, and systems. This involves the definition of suitable
service and component abstractions (e.g., secure channels) and the setup of the
corresponding reasoning infrastructure (e.g., facts about such channels). More-
over, we need to extend the refinement framework with compositional techniques
for model-based secure service development. Model decomposition supports a
divide-and-conquer approach, where functional and security-related design as-
pects can be refined independently. Model composition must preserve the refine-
ment relation and component properties. Our aim is to offer developers support
for smoothly integrating security aspects into the system development process
at any step of the development.

Enabling rigorous and formal analysis processes. There is an increasing de-
mand of models and techniques to allow the formal analysis of secure services.
The objective is to develop methodologies, based on formal mappings from the
constraint languages, to other formalisms for which theorem proving and/or
(semi-)decision procedures are available, to support formal (and, when possible,
automated) reasoning about the security policies models.

The methodologies must be supported by automatic protocol verification
tools, such as the AVISPA [1] tool set and the Scyther tool [7], for the veri-
fication of Future Internet protocols. The planned extensions require not only
significant efficiency improvements, but also the ability to deal with more com-
plex primitives and security properties. Moreover, the Dolev-Yao attacker model
[9] used by these tools needs to be extended to include new attack possibilities
such as adaptive corruptions, XSS attacks, XML injection, and guessing attacks
on weak passwords. In addition, for assurance, there is the need to extend model
checking methods to enable automatic generation of protocol correctness proofs
that can be independently verified by automated theorem proving.

Security Assurance in Implementation. Several assurance techniques are
available to ensure the security at the level of an implementation. Security poli-
cies can be implemented correctly by construction through a rigorous secure
programming discipline. Internet applications can be validated through testing.
In that case, it is possible to develop test data generation that specifically targets
the integration of services, access control policies or specific attacks. Moreover,
implementations can be monitored at run-time to ensure that they satisfy the
required security properties.

Complementing activities are related to secure programming. This strand
addresses a comprehensive solution for program verification, while adding a par-
ticular focus on session management in concurrent and distributed service com-
positions.

In addition, an important set of research activities must address testing.
This strand covers the testing activities which complement programming and
coding. We can consider three aspects, that although not comprehensive, present
characteristic for service-oriented applications in the future Internet: penetration
testing that leverages on the high-level models that are generated in early stages
of the software life cycle, automated generation in XML-based input data to
maximize the efficiency in the security testing process, and testing of policies

188 W. Joosen et al.

that are the typical high-level front end of a complex service composition. The
latter part will focus on access control policies. i

Finally, an important set of activities relates to run-time verification. This
strand concludes the trilogy of implementation-level testing: run-time verifica-
tion must complement programming-level verification and testing in order to
provide the final assurance that the latter cannot deliver, be it for scientific and
technological reasons, be it for reasons of organizational complexity. The latter
may frequently occur in a multi-organizational context, typical for service com-
positions in Future Internet. We will study approaches for run-time monitoring
of data flow, as well as technologies for privacy-preserving usage control.

Towards a Traverse Methodology. Security concerns are specified at the
business-level but have to be implemented in complex distributed and adaptable
systems of FI services. We need comprehensive assurance techniques in order to
guarantee that security concerns are correctly taken into account through the
whole SDLC. A chain of techniques and tools crossing the above areas is planned.

Security Metrics. Measurements are essential for objective analysis of secu-
rity systems. Metrics can be used directly for computing risks (e.g., probability
of threat occurrence) or indirectly (e.g., time between antivirus updates). Se-
curity metrics in the Future Internet applications become increasingly impor-
tant. Service-oriented architectures demand for assurance indicators that can
explicitly indicate the quality of protection of a service, and hence indicate the
effective level of trustworthiness. These metrics should be assessed and commu-
nicable to third parties. Clients want to be sure that their data outsourced to
other domains, which the clients cannot control, are well protected. We need
to define formal metrics and measurements that can be practically calculated.
Compositional calculation approaches will be studied in this context. Many of
the proposed metrics will be linked to and determined by the various techniques
in the Engineering process.

5.2 Risk and Cost Aware SDLC

There is the need of the creation of a methodology that delivers a risk and cost
aware SDLC for secure FI services. Such a life cycle model aims to ensure the
stakeholders’ return of investment when implementing security measures during
various stages of the SDLC. We can envision several aspects of this kind of SDLC
support (see also [4]).
Process: The methodology for risk and cost aware SDLC should be based on an
incremental and iterative process that is accommodated to an incremental soft-
ware development process. While the software development proceeds through
incremental phases, the risk and cost analysis will undergo new iterations for
each phase. As such the results of the initial risk and cost analyses will propa-
gate through the software development phases and become more refined. In order
to support the propagation of analysis results through the phases of the SDLC

Engineering Secure Future Internet Services 189

one needs to develop methods and techniques for the refinement of risk analysis
documentation. Such refinement can be obtained both by refining the risk mod-
els, e.g. by detailing the description of relevant threats and vulnerabilities, and
by accordingly refining the system and service models.

Aggregation: In order to accommodate to a modular software development pro-
cess, as well as effectively handling the heterogeneous and compositional nature
of Future Internet services, one needs to focus on a modular approach to the
analysis of risks and costs. In a compositional setting, also risks become compo-
sitional and should be analysed and understood as such. This requires, however,
methods for aggregating the global risk level through risk composition which
will be investigated.

Evolution: The setting of dynamic and evolving systems furthermore implies
that risk models and sets of chosen mitigations are dynamic and evolving. Thus,
in order to maintain risk and cost awareness, there is a need to continuously
reassess risks and identify cost-efficient means for risk mitigation as a response
to service or component substitution, evolving environments, evolving security
requirements, etc., both during system development and operation. Based on
the modular approach to risk and cost analysis one needs methods to manage
the dynamics of risks. In particular, the process for risk and cost analysis is
highly iterative by supporting updates of global analysis results through the
analysis of only the relevant parts of the system as a response to local changes
and evolvements.

Interaction: The methodology of this strand spans the orthogonal activities of
security requirement engineering, secure architecture and design, secure pro-
gramming as well as assurance and the relation to each of these ingredients
must be investigated. During security requirements engineering risk analysis fa-
cilitates the identification of relevant requirements. Furthermore, methods for
risk and cost analysis offer support for the prioritization and selection among
requirements through e.g. the evaluation of trade-off between alternatives or the
impact of priority changes on the overall level of risks and cost. In the identifica-
tion of security mechanisms intended to fulfil the security requirements, risk and
cost analysis can be utilized in selecting the most cost efficient mechanisms. The
following architecture and design phase incorporates the security requirements
into the system design. The risk and cost models resulting from the previous
development phase can at this point be refined and elaborated to support the
management of risks and costs in the design decisions. Moreover, applying cost
metrics to design models and architecture descriptions allows early validation of
cost estimates. Such cost metrics may also be used in combination with security
metrics for the optimization of the balance between risk and cost. The assurance
techniques can therefore be utilized in providing input to risk and cost analy-
sis, and in supporting the identification of means for risk mitigation based on
security metrics.

190 W. Joosen et al.

6 Conclusion

We have advocated in this paper the need and the opportunity for firmly es-
tablishing a discipline for engineering secure Future Internet Services, typically
based on research in the areas of software engineering, security engineering and
of service engineering. We have clarified why generic solutions that ignore the
characteristics of Future Internet services will fail: the peculiarities of FI services
must be reflected upon and be addressed in the proposed and validated solution.

The various lines of research and the strands within each of research line have
been articulated while founding the NESSoS Network of Excellence (www.nessos-
project.eu). Clearly, the needs and challenges sketched in this paper reach beyond
the scope and capacity of a closed consortium. The topics listed above should
and will be shared and tackled by an entire and open research community.

Acknowledgments. We would like to thank the anonymous reviewers for the
helpful comments. Work partially supported by EU FP7-ICT project NESSoS
(Network of Excellence on Engineering Secure Future Internet Software Services
and Systems) under the grant agreement n.256980.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von
Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.:
The AVISPA tool for the automated validation of internet security protocols and
applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Boston (2003)

3. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. SIG-
PLAN Not. 40, 305–314 (2005)

4. Braber, F., Hogganvik, I., Lund, M.S., Stølen, K., Vraalsen, F.: Model-based secu-
rity analysis in seven steps — a guided tour to the coras method. BT Technology
Journal 25, 101–117 (2007)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

6. Clavel, M., da Silva, V., de O. Braga, C., Egea, M.: Model-driven security in prac-
tice: An industrial experience. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-
FA 2008. LNCS, vol. 5095, pp. 326–337. Springer, Heidelberg (2008)

7. Cremers, C.J.: The scyther tool: Verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

Engineering Secure Future Internet Services 191

8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20, 3–50 (1993)

9. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings
of the 22nd Annual Symposium on Foundations of Computer Science, Washing-
ton, DC, USA, pp. 350–357. IEEE Computer Society Press, Los Alamitos (1981),
doi:10.1109/SFCS.1981.32

10. Erlingsson, U., Schneider, F.B.: Irm enforcement of java stack inspection. In: Pro-
ceedings of the 2000 IEEE Symposium on Security and Privacy, Washington, DC,
USA, pp. 246–255. IEEE Computer Society Press, Los Alamitos (2000)

11. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing support for
model composition in metamodels. In: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference, Washington, DC, USA, p.
253. IEEE Computer Society Press, Los Alamitos (2007)

12. Giorgini, P., Mouratidis, H., Zannone, N.: Modelling security and trust with secure
tropos. In: Integrating Security and Software Engineering: Advances and Future
Vision, IDEA (2006)

13. Group, O.: Security design pattern technical guide,
http://www.opengroup.org/security/gsp.htm

14. Gürses, S.F., Berendt, B., Santen, T.: Multilateral security requirements analysis
for preserving privacy in ubiquitous environments. In: Proc. of the Workshop on
Ubiquitous Knowledge Discovery for Users at ECML/PKDD, pp. 51–64 (2006)

15. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for en-
forcement mechanisms. ACM Trans. Program. Lang. Syst. 28, 175–205 (2006),
doi:10.1145/1111596.1111601

16. Jacobs, B., Piessens, F., Smans, J., Leino, K.R.M., Schulte, W.: A program-
ming model for concurrent object-oriented programs. ACM Trans. Program. Lang.
Syst. 31, 1–1 (2008), doi:10.1145/1452044.1452045

17. Kubo, A., Washizaki, H., Fukazawa, Y.: Extracting relations among security pat-
terns. In: SPAQu’08 (Int. Workshop on Software Patterns and Quality) (2008)

18. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Computer Science Review 4(2), 81–99 (2010)

19. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based confiden-
tiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435,
pp. 75–89. Springer, Heidelberg (2008)

20. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.-M., Solberg, A., Dehlen, V.,
Blair, G.S.: An aspect-oriented and model-driven approach for managing dynamic
variability. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 782–796. Springer, Heidelberg (2008)

21. Park, J., Sandhu, R.S.: The uconabc usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128–174 (2004)

22. Pretschner, A., Hilty, M., Basin, D.A.: Distributed usage control. Commun.
ACM 49(9), 39–44 (2006)

23. Rosado, D.G., Fernandez-Medina, E., Lopez, J.: Security services architecture for
secure mobile grid systems. Journal of Systems Architecture. In Press (2010)

24. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 2003 (2003)

25. Whittle, J., Moreira, A., Araújo, J., Jayaraman, P., Elkhodary, A.M., Rabbi, R.:
An expressive aspect composition language for UML state diagrams. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 514–528. Springer, Heidelberg (2007)

26. Yoshioka, N., Washizaki, H., Maruyama, K.: A survey on security patterns.
Progress in Informatics 5, 35–47 (2008)

http://www.opengroup.org/security/gsp.htm

	Engineering Secure Future Internet Services
	Introduction
	Future Internet Services
	The Need for Engineering Secure Software Services
	Research Focus on Developing Secure FI Services

	Security Requirements Engineering
	Secure Service Architecture and Design
	Security Support in Programming Environments
	Secure Service Composition
	Secure Service Programming
	Platform Support for Security Enforcement

	Embedding Security Assurance and Risk Management during SDLC
	Security Assurance
	Risk and Cost Aware SDLC

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

