
J. Ralyté, I. Mirbel, and R. Deneckère (Eds.): ME 2011, IFIP AICT 351, pp. 168–183, 2011.
© IFIP International Federation for Information Processing 2011

Developing Families of Method-Oriented Architecture

Mohsen Asadi1,2, Bardia Mohabbati1,2, Dragan Gašević2, and Ebrahim Bagheri2,3

1 Simon Fraser University, Canada
2 Athabasca University, Canada

3 National Research Council, Canada
{masadi,mohabbati}@sfu.ca, dgasevic@acm.org,

ebagheri@athabasca.ca

Abstract. The method engineering paradigm is motivated by the need for soft-
ware development methods suitable for specific situations and requirements of
organizations in general and projects in particular. Assembly-based method en-
gineering, as one of the prominent approaches in method engineering, creates
project-specific methods by (re-)using method components, specified with me-
thod processes and products, and stored in method repositories. This paper tries
to address the two challenges of assembly-based method engineering related to
more effective: i) publication and sharing of method components; and ii) man-
agement of variability in software methods, which have many commonalties. In
order to address these two challenges, we propose the concept of Families of
Method-Oriented Architectures. This concept is built on top of the principles of
service-oriented architectures and software product lines.

Keywords: Method engineering, Software Product Lines, SOA.

1 Introduction

The increase in the complexity of software-intensive systems has urged for the inte-
gration of seminal approaches such as Object-modeling Technique (OMT) and Objec-
tory to form integrated (plan-driven) and unified frameworks such as the Rational
Unified Process (RUP). Integrated approaches typically target development of a vast
variety of software applications, which increase the size of methods and make them
become “cook-book” approaches. Recent critical literature reviews and comprehen-
sive case studies have shown that such cook-book approaches do not work successful-
ly for all circumstances [1]. Practitioners could potentially waste up to 35% of their
effort by following the steps of standard development methods [3]. Moreover, the
results of such studies reveal that the formal definition prescribed by a method in
forms of stages and steps widely differ from the method actually being used [4].
These issues have motivated the software engineering research community to estab-
lish the Method Engineering (ME) [3] discipline. The ME community concentrates on
the idea of providing an “adaptation framework whereby methods are developed
to match specific organization situation” [1]. The most prominent ME approach is the
assembly-based method engineering that creates a new method by assembling

 Developing Families of Method-Oriented Architecture 169

existing method components [6][16]. Despite the fact that ME has recently produced
promising research results, there are still many open research challenges [1]. In this
paper, we focus on two key challenges, namely:

1. The lack of a standard model for describing method components limits the oppor-
tunities of method engineers, teams and organizations to share, discover, and re-
trieve distributed method components. When a method engineer wants to create a
new method from scratch or by adapting (extending/constraining) an existing me-
thod, a common approach is to try to reuse existing method components from the
method repository. Therefore, method components need to be discovered and com-
posed with other method components. Due to the lack of standards, method engi-
neers are forced to reuse method components from the local proprietary repositories,
without effective capabilities for retrieving method components in repositories of
their collaborators. Moreover, with this limitation of method component sharing,
business opportunities of organizations are also limited. In fact, they cannot easily
publicize and offer the methods that they are specialized in, as (for profit) services.

2. In essence, organizations initially adopt a method for software development. Af-
terwards, components of the method may be subsequently added and gradually
extended. Such extensions may be derived due to either the evolution of software
development or various variations created for some specific method components.
Some sources of these diversities may be differences among domains of systems
under development (i.e., desktop application, web application, and real-time) or
newly emerged software development approaches such as Model Driven Devel-
opment, Component based Software Development as well as method types such as
agile or plan-driven. Thus, there is the need for a systematic approach to manage
variability of software methods and adapt software methods (families) that best suit
the needs of a specific development context.

The first challenge has been already recognized in the literature [13][1] and some
researchers have proposed to use of SOA and Web service standards and principles
for dealing with the challenge [13][1]. To this end, the concept of Method Services
was coined in analogy of the concept of services in SOA. In order to address both of
the above challenges at the same time, we propose combining principles (Sect. 4 and
5) of Software Product Line Engineering (SPLE, Sect. 3.1) and Service-oriented Ar-
chitectures (SOAs, Sect. 3.2) [12]. We use the method service notion for defining
method components. We also propose leveraging SPLE with the goal of addressing
the second challenge. Our key idea is to introduce a concept of method families,
which share a set of common method components, and yet have effective tools for
variability management (e.g., feature models). With the use of SPLE principles, we
can allow for a systematic modeling of method families and for an automated process
of specialization of method families where each family specialization satisfies re-
quirements of a specific situation.

2 Motivating Example

In order to illustrate the challenges that are tackled in this paper, let consider an
organization, which develops software systems in two distinct domains, namely,

170 M. Asadi et al.

information systems (both desktop and web-based systems) and real-time systems. We
consider that the organization has adopted a base method (e.g., RUP) for the entire
systems development process. The base method supposedly is a modular method and
its method components are stored in a method repository. Moreover, the organization
has employed different development approaches, including code centric development,
component based development, and model driven development. Based on the scale
and complexity of a project, the organization may follow different development poli-
cies such as agile or plan-driven. In addition, contingency factors such as time pres-
sure, user involvement and project familiarity cause the source of diversity in method
components. Furthermore, human factors (e.g., roles in the organization and their
experience level) could be a source of variation points in the method activities. The
organization might also intend to add more requirements for future variations of me-
thods and integrate more project management method components in order to have a
better support for project management and risk assessment tasks. As a response to the
described circumstance, the organization requires to extend the base method using
different method components. As a consequence, the complexity and variations of the
base method are gradually increased in practice. This complexity leads to a limited
sharing and management of lessons learned. Thus, there is a need to more effectively:
1) manage different variations of the base method that were observed and encountered
in the previous projects and systematize the lessons learned; 2) anticipate further
needs by considering all possible variations of the base method; and create a syste-
matic method for adaptation of the base method considering the needs and require-
ments of the new development situations. Moreover, the organization, besides its own
development projects, might also want to offer some consultancy services or partner
with some other organizations based on expertise in method engineering. In such
cases, the organization needs to have a standard method for publishing their compe-
tencies, so that other organizations can effectively discover and reuse such experience
in similar development situations.

3 Background

3.1 Software Product Line Engineering

The SPLE paradigm aims at managing variability and commonality of core software
assets of a given domain in order to facilitate the development of software-intensive
products and to achieve high reusability [2]. SPLE empowers the derivation of differ-
ent product family applications (aka, family members) by reusing the realized product
family assets such as common models, architecture, and components. In this context,
software assets are characterized by a set of features shared by each individual prod-
uct of a family. The set of all valid feature combinations defines a set of product line
members of the family. A valid composition of features is called a configuration
which in turn is a valid software product specialization. The development of a soft-
ware family is performed by conducting the domain engineering lifecycle in which
the common assets, family reference architecture and the variability models are de-
veloped. Afterwards, in the application engineering lifecycle, the common assets

 Developing Families of Method-Oriented Architecture 171

are reused and variability models are configured to produce a family. Feature model-
ing, as a popular technique for modeling variability, is employed to represent the
variability and describe the allowed configurations of a software family. This tech-
nique is typically used in domain engineering to model an entire family based on the
functional characteristics (aka features) that the family provides. Feature models for-
mally and graphically define relations, constraints, and dependencies of software
artifacts in a software product family. In essence, there are four types of relationships
related to variability concepts in the feature model. They can be classified as: Manda-
tory (Required), Optional, Alternative feature group and Or feature group. Common
features among various members of the family are modeled as mandatory features. In
other words, mandatory features must be included in the description of their parent
features and must be present in any final configuration. Optional features may or may
not be included in a final configuration. Alternative features indicate that only one of
the features from the feature groups can be opted.

Once a feature model for an entire family is in place, a process of configuration
follows. Configuration is a process of selecting features needed for specific applica-
tions. Recently, the research community has proposed effective methods for staged
configuration where each stage addresses a specific set of requirements in the applica-
tion development process [11].

3.2 Method Oriented Architecture

Service-oriented computing (SoC) is a computing paradigm that promises flexibility
and agility in the development of collaborative software systems. Service-oriented
Architecture (SOA) is the main architectural style for realizing the SoC vision. SOA
provides an underlying structure enabling for interoperability and communications
between services. Web service, reusable and loosely-coupled components, are the best
known materialization of SOAs [12]. Web services are built on well-defined stan-
dards such as Web Services Description Language (WSDL). Furthermore, the wide-
spread adoption of Web service technologies provides open standards which increase
accessibility and interoperability of distributed software services in a networked
environment.

On the other hand, ME approaches are hindered by the lack of standards for
describing the interfaces of components of methods. Moreover, reusable method
components are restrained to be adopted locally by their providers in proprietary re-
positories. Indeed, the discovery and retrieval of reusable method components can
significantly enhance rapid method construction and reuse. The ME community has
already proposed the notion of Method Oriented Architecture (MOA) [1][13], which
builds on and adopts SOA principles. Rolland proposed the MOA approach where
Method as a Service (MaaS) is considered as an analogy to Software as a Services
(SaaS)[1]. MOA aims at developing an ME approach, which elevates the accessibility
of method services and facilitates their automated composition. In MOA, method
services are described by method providers through WSDL documents. On the other
hand, clients search and retrieve the required method services and compose them in
order to create their own more complicated method service.

172 M. Asadi et al.

4 Method Services and Feature Modeling

As mentioned in the introduction section, to address the challenge of variability in
method engineering, we intend to apply SPL principles and techniques especially
feature modeling. In SPL, functionalities of a set of similar software systems and their
visibilities are presented in a feature model in terms of features and variability points,
respectively. Likewise, a set of similar methods (we call a family of methods) may
have commonalities and variabilities with respect to functionality (i.e. activities).
Therefore, a family of methods provides the means for capturing the commonalities
(core assets) of all possible methods of a given domain and also addresses variability
by covering a comprehensive set of dissimilarities between the methods. In our pro-
posal for family development, distinguishable characteristics of a method mostly
including functionalities of the method (i.e. activities) are represented using features.
For instance, in our motivating example, one feature of the family is Use-Case model-
ing. The methods commonality and variability, in terms of their features, are
represented in feature model. The development of a family of methods is performed
by conducting the domain engineering lifecycle (developing feature model and im-
plementing features), which is followed by the application engineering lifecycle (de-
veloping target method with configuring feature model). We should note that the
feature model is only the representation for family characteristics and the variability
relations and we need to link them to corresponding method implementations (i.e.
method fragment). We use method services as well as MOA techniques (i.e. Method
service discovery and composition) to implement features of a family. Therefore, we
refer to our approach as development of families of method oriented architectures.

In order to clarify the difference between feature and method service, let us consider
the process of method construction as a process of problem solving, in which the re-
quirements model and the final method are considered as the problem space and the
solution space, respectively. Since we intended to develop a range (i.e., family) of
solutions (i.e. methods) which have common and variable parts, both the problem and
solution spaces become more complex. By following SPLE principles, the family
problem space (i.e., family requirements model) is decomposed and grouped into
features which form a feature model. In other words, a feature intuitively represents
sub-problems of the family problem space, and a feature model represents a hierarchic-
al representation of the family space with variability. For instance, the problem space
(feature model) of a described family method at the highest level is decomposed
into (see Section 6) management, requirement engineering, development, and deploy-
ment sub-problems (features). On the other hand, method services form the solution
space, in which one or more method services (sub-solutions), implement (solve) one or
more features (sub-problems). From another point of view, features address what the
properties of the solution are and method services represent the realization of those
properties. Fig. 1 shows the use case modeling feature (one of the features of the fea-
ture model given in Section 6) and the corresponding use case modeling method ser-
vice. As the figure shows, the method service represents how the modeling of use cases
should be conducted. Also, a feature represents some functionality, which can be in-
cluded in a method variant. One of the key concerns in method family engineering is
the identification of method services for each feature and the binding of features onto
method services. Then, in the application engineering lifecycle, method engineers

 Developing Families of Method-Oriented Architecture 173

Fig. 1. The relation between use case modeling feature (on the left part) and its corresponding
method services which define both process and product model for use-case (adapted from [16])

select features from feature models corresponding to the requirements of the target
method (i.e. feature configuration). Next, the method services bound to features in
domain engineering are composed automatically and they form an initial method for
application engineering. The initial method is adapted and improved until a suitable
method is reached for the target problem and deployed.

5 Families of Method Oriented Architecture

Similar to developing software product lines, we propose two main lifecycles for
method family engineering process, namely the Method Domain Engineering and
Method Application Engineering lifecycles. Method Domain Engineering lifecycle is
carried out one time for the whole family and develops the architecture of the method
family, common assets, and variants. In this lifecycle, family features and their varia-
bility are modeled by a feature model and suitable method services corresponding to
features (i.e. a feature implementation) are discovered and bound to the features. The
method application engineering lifecycle develops a target method (i.e. a member of
family) for a concrete application by configuring the feature model and assembling
the method services related to the configuration. The method application engineering
lifecycle is carried out every time a new method is required. The remainder of this
section describes the main phases and activities of both lifecycles along with their
associated product artifacts.

5.1 Method Domain Engineering

Method domain engineering aims at discovering, organizing, and implementing
common assets of a method family. Moreover, determining the scope of a method
family and describing the variability of the models is achieved during this lifecycle.
The input of the lifecycle is domain knowledge relating to and describing the method
family and the reusable assets, while variability models for the methods expressed
using feature models are the output of this lifecycle. Fig. 2 illustrates the phases and
stages of the method domain engineering lifecycle.

Use-Case
Modeling

…

Start Stop

Use-case and
Actor

Identification

Write
Use-case

Model
Use-case

Functional
Strategy

Actor
Based

Case Based
Strategy

Free prose
strategy Template

Based

Tool Support

Manually

Completeness

Extend-based
Strategy

Include-based
Strategy

Exception-
based

Strategy

Extend FlowBasic Flow

1..*
Extends

-Description

Workflow

-Name
-Description

UseCase

-Name
-Description

Actor

Use Case Model
1

Uses

Initialize

Support

Includes

0..1

1

*

*

**

1

Software
Development

Methods
Feature Model

Feature Model Method Chunk/Service

Include flow

Process model Fragment
(map-driven notation) Product Model Fragment

174 M. Asadi et al.

Fig. 2. The Method Domain Engineering Lifecycle

Method domain engineering starts with the Method Family Scoping phase which is
a key phase for achieving economic benefits of a product line [2]. The Method Family
Scoping phase aims at determining a set of products (Software Development Me-
thods) which belong to the family. Scoping of the family is performed in the three
stages [2]. The Method portfolio scoping stage is a high level domain analysis process
and uses the market inputs on existing methods, and expert knowledge to derive a
standardized description of a method product line, technical domains that are relevant
to it, and the range of methods that shall be supported with the method family. It sys-
tematizes the method product information, identifies the main features of the product
line and checks the consistency. With regard to features of a method family, the de-
velopment approaches used in methods (e.g., Model Driven Development-MDD, and
SOA), final application domains (e.g., Information System, Embedded Systems, and
Ubiquities Systems), and method types (e.g., agile or plan-driven methodologies) are
determined through this phase using the project documents.

Later, the domain scoping stage uses the basis provided in the previous stage and
the expert inputs to identify and group the major functional areas in terms of technical
domains which belong to the current method family. Moreover, the benefits and risks
pertaining to the various domains are explored and documented. For instance, benefits
and risks of employing MDD are identified. Finally, in the asset analysis stage, based
on the preconditions established in the previous two stages, precise functionality of
the method components that should be supported by the method family are described.
This stage determines which assets should be developed for reuse (commonality) and
which ones as project-specific (variability). The method engineer indicates the varia-
ble features (project-specific) belonging to the family, the type of the variables (e.g.
logic, workflow), set of variants for the variable, and status of variants (open or close)
[17]. The method product-line roadmap is produced as the output of this phase.

The Method Family Requirements Analysis phase aims at capturing requirements
and developing a requirements model for the methods family. The family require-
ments model contains unique and unambiguous definitions for each requirement as
well as the variability of the requirements. The phase receives the documents, stake-
holders’ viewpoints, and the product-line roadmap, and variability ranges. Similar to
typical software engineering procedures, we define functional requirements and non-
functional requirements for methods. The functional requirements show the properties

Capture Family
Requirements

Modeling
Requirements

Refine
Requirements

Validation and
Verification

Method Family
Project Definition

Method Family
Requirements
Specification

Feature
Model

Method
Services Lists

Method Family Realization

Feature Model
Development

Feature Driven
Method Service

Discovery

Product Road-map,
Variability Table

Method Family Scoping Phase

Method Portfolio
Scoping

Asset Analysis

Domain Scoping

Method Family
Requirements

Model

Method Family Requirements Analysis

Artifact

Stage

Production/
Revision

Control Flow

Legend

 Developing Families of Method-Oriented Architecture 175

that the method should provide, such as work products and required activities; and
non-functional requirements include properties that the entire or a large part of me-
thods in the family should have such as smoothness of transition between activities,
robustness, and scalability. The method family requirements are elicited and docu-
mented. The method engineer gets an agreement of developers (i.e., stakeholders in
this case) on the method family requirements. Next, family requirements are refined
through decomposition, aggregation, and grouping. Afterwards, in the modeling
family requirements stage, techniques such as the map-driven technique [9] are ap-
plied to develop the family requirements model. The family requirements model in-
cludes the functional requirements and is represented as family requirements map.
The progression activity analyzes the family requirements model and defines the
requirements filling the gaps in the family requirements model. Finally, the method
engineer verifies the completeness and coherence of the family requirements models
as well as the level of satisfaction of the stakeholders’ needs by using Requirements
verification and Validation activities [9], respectively.

The goal of the next phase, Method Family Realization phase, is to identify com-
mon and variant features within the family and to model them with a feature model.
Afterwards, the appropriate method services are discovered for each of the features.
The feature model is developed by the Feature Model Development stage. That is, the
common and variable functionalities of methods of the family are managed by
representing them in a feature model. The method engineer starts from the require-
ments and analyzes the requirements, their granularity level and relationships, and
then groups them into appropriate features. Moreover, the variability relations are
identified between features. Additionally, nonfunctional requirements such as tracea-
bility and project management are analyzed and added to the feature model as features
and their relations are also identified. Furthermore, the method engineer annotates the
features with required information.

The requirements and feature family modeling phases produce the requirements
model, requirements documents, and feature model of the method family. Feature
family modeling, as described above, is followed by a Feature Driven Method for
service discovery and selection. The stage of the feature-driven discovery is per-
formed by considering each individual feature and their respective annotations. In
essence, a feature annotation provides functional and non-functional keywords used to
generate feature queries. The feature queries simply describe what the desired method
services should be and how they should behave. In our current implementation, we
adopted text-based approach to the discovery of method services. In evaluations of
our current implementation of the feature-driven service discovery, we observed
promising results in experimenting with the active service search engines while de-
veloping families of software services [15]. Since, MOA uses SOA standards for
defining and publishing method services, we may expect similar results for discover-
ing of method services. Given that there are no publically available repositories of
method services, we are now developing a test collection of method services. In this
process, we can easily leverage existing service repositories (e.g., Seekda already
used in our implementation) for storing method services. Other approaches can be
leveraged in feature-driven service discovery such as logic-based approaches [14].

176 M. Asadi et al.

5.2 Method Application Engineering

Once the method domain model is created, then method engineers can take the me-
thod domain model and create different instances out of it based on target method
requirements. We refer to this process as method application engineering.

Therefore, method application engineering aims to develop a method for a target
situation (e.g. a member of the method family) by utilizing the reusable assets created
in the domain engineering lifecycle. The input of the lifecycle is the project docu-
ments for the concrete method and the output is the method satisfying the require-
ments. It captures the final method requirements, selects the corresponding features
from the feature model, and finally assembles the method services bound to the se-
lected features. The application engineering process is illustrated in Fig. 3.

The Application Method Requirement Analysis phase aims to define the require-
ments of the target method. The documents related to the required method are the
inputs and its requirements model and the requirement documents are the outputs.
The documents related to the target method should include definition (specify the type
of the project at hand), domain (specify the application domain of the target method),
and deliverable (specify the artifacts that should be produced) [10]. The family re-
quirements model and documents are utilized through this phase to produce the me-
thod application requirements.

Fig. 3. Method Application Engineering Lifecycle

First, the method application requirements phase captures stakeholders’ require-
ments and documents them. Then, method requirements are refined and clarified
further and the agreement of stakeholders is achieved. Next, the method engineer
develops the requirements model in the form of a requirements map. Moreover, non-
functional requirements are utilized in the feature selection process. Finally, the
method requirements are validated and verified to check the completeness and cor-
rectness of the method requirements. In all the activities of this phase, the family
requirements model is used as a reference to facilitate the process of requirement
analysis of the members of the method family. There is a possibility of capturing
requirements which were not captured in method family requirement analysis. The

Capture Method
Requirements

Modeling Method
Requirements

Refine Method
Requirements

Validation and
Verification

Application Method
Project Definition

Application Method
Requirements
Specification

Feature
Configuration Target Method

Application Method Development

Feature Model
Configuration

Assemble Method
Services

Application Method
Requirements Model

Application Method Requirements Analysis

Method
Deployment

 Developing Families of Method-Oriented Architecture 177

activities of this phase concentrate on one method application, so they do not deal
with variability in the family.

The Application Method Development phase creates the target method by configur-
ing the method family and delivers the final method configuration to the developers.
The method feature model configuration stage aims to develop the method by select-
ing the most appropriate set of features from the feature model through a stage
configuration process. It receives the method requirements and produces the corres-
ponding feature configuration. The stage configuration process [11] starts from the
feature model and carries out successive specializations to create the final configura-
tion. That is, the staged configuration process would limit the space of the method
family to the space most relevant for the current method that is being built. Through
the staged configuration, the method engineer produces the final configuration. Since
in method domain engineering, the method engineer might want to bind a list of me-
thod services that have the same interfaces (i.e. situation and intention) but different
nonfunctional properties defined in descriptors of method services, the final method
service for each feature is selected from the list of alternative method services. The
output of the stage is the set of the features (mandatory and optional) as well as their
corresponding method services.

If the selected method services (features) do not cover all the requirements of
the target method, the new method services for the remaining requirements are dis-
covered in some other repositories or developed from scratch. After the method engi-
neer makes sure that all required method services (features) have been gathered,
he/she starts the composition of method services (features) via the Assemble Method
Services stage. The selected features are divided into functional (e.g., requirement
elicitation, use case modeling, and developing design model) and non-functional
features (e.g. quality assurance, project monitoring, and traceability checking). First,
the method services are orchestrated and the necessary adaptation and mediation are
conducted. Then, a decision about the location of method services within a large
scope (like quality assurance) is made. After creating the target method, the verifica-
tion/validation task is done by the method engineer to check whether the method is
free from defects and if the target method meets all requirements established in the
requirements phase. Moreover, the completeness of the method is verified by a com-
pleteness task. Finally, the method is deployed to the stakeholder environment by
preparing method documents, training developers, and supporting staff through the
execution of the method.

6 Case Study

In this section, we represent our motivational example from Section 2 by following
our proposed approach described in the previous section. Due to the space limitation,
we only explain the domain method engineering lifecycle, which comprises Product
Line Scoping, Family Requirement Analysis, Feature Modeling and Feature-based
Method Service Discovery and Selection.

178 M. Asadi et al.

Product Line Scoping: By completing the activities of the product line scoping
phase, we identified the criteria which specify the product line boundaries, the main
functionality area, and core assets of the method family. Table 1 shows a part of the
product line scoping results. One of the major functionality areas distinguished in the
domain scoping by all variations of the method is the support for a generic develop-
ment lifecycle. For instance, unit testing is a core asset in the method family.

Family Requirement Analysis: Functional and non-functional requirements with
their commonalities and variability are captured and documented separately. Table 1
shows a part of requirements categorized based on their types. Functional require-
ments include activities and work products that should be supported with family me-
thod. The base method of the organization is explored to discover more detail
requirements. The family requirements model is created first by using map-driven
approach [6] and then verified and validated. Due to the space limitation for this pa-
per, the requirements model is omitted from the paper.

Feature model Development – based on the family requirements model defined in
the previous phase and the existing basis method in the organization, features and
their corresponding relations are identified and modeled. The part of feature model
designed for target organization is depicted in Fig. 4. Features show the method ser-
vices required for the family and they can be considered as interfaces for representing
method services in the family.

Feature-driven Method Service Discovery and Selection: The next step after fea-
ture model development is the discovery of method services. The aim is to find and
select among available methods services, which can satisfy desired functional and
non-functional requirements of the method for specific situations. As we described
earlier, we consider each feature and their associated annotations as queries for me-
thod components stored in method repositories. In method service discovery, we as-
sume that the method components, described by WSDL, are available and accessible
through either the proprietary method repositories of the organization or public repo-
sitories provided by third-parties. Thereby, organizations can publish and share their
method chunks as services. Although there are on-line repositories such as Open
Process Framework (OPF) [20], available reusable method components are not ac-
cessible through standard interfaces. Moreover, there are no facilities to search and
discover such available methods. Accordingly, in the process of discovery and selec-
tion, the proprietary method repository of the organization is initially used to method
services. In case that some of the features are not associated with the organization’s
services, search queries are broadcasted to the public method repositories.

The Feature Model Plugin (http://gsd.uwaterloo.ca/projects/fmp-plugin/), available
for Eclipse environment, is utilized and extended as tool support for modeling
and configuring method family. It supports cardinality-based feature modelling,
specialization of feature diagrams and configuration based on feature diagrams.
Our method chunk service repository is based on the publicly-available Seekda
(http://seekda.com) service repository. Our current implementation of feature-driven
service discovery is described in [15].

 Developing Families of Method-Oriented Architecture 179

Table 1. Product line scoping and family requirements analysis outcomes after applying the
proposed method on the motivational example. It is important to notice that the table does not
give all items identified these phased, but some of the most notable examples.

Fig. 4. A sample feature model of a family of software development methods

Phase Identified work Product and domains

P
roduct L

ine Scoping

P
ortfolio

Application properties – application domain (Information systems, Real-time),
application type (intra-organization, Organization-customer, inter-organization), source
system (it can either use legacy system or does not have system code).
Development Approach – systems can be developed by following multiple approaches
such as Component based Development, Model Driven Development, or Test Driven
Development.
Human Factors such skill level includes beginner, medium, and expert (i.e., analyst,
designer, developer, and, tester).
Contingency Factors –user involvement, project familiarity, project scale and
complexity, innovation level, and project dependency.
Project Management – monitoring, risk management, configuration and change
management, postmortem reviewing, metric management, human resource
management. D

om
ain

Generic software development lifecycle (requirement engineering, analysis, design,
development, deployment), reusability, management (risk, people), maintenance, test
model, implementation models, design model, and Application Technology (Include
Data-base, and GUI, is distributed).

A
sset

Functional requirement engineering, non-functional requirement engineering,
behavioral analysis, structural structure, functional analysis, feasibility study,
architecture design, project planning, test case development, unit testing, and risk
management.

F
am

ily R
equirem

ent
A

nal ysis

F
unctional

R
equirem

ents

Common – Specification in high level abstraction, covering generic software
development lifecycle, manage and monitor the project, capture requirements, model
requirements, validate requirements, defining the infrastructure of system, and plan the
project.
Variables- Goal-based requirement extraction, consider review sessions (product and
plan review), having stand up meeting, having lightweight design process, formal
verification on each abstraction level, concurrency, configuration of software and
hardware, having platform independent models, having platform specific models,
component identification, component specification, component interaction, component
assembly, and PIM and PSM synchronization.

N
on-

F
unctional

R
equirem

en
ts

Common – iterative process, incrementally development, traceability to requirements,
clear separation of concerns, smooth transition between activities, and method
flexibility.
Variables - semi automatic refinement between abstraction level, method scalability,
lightweight process, and formal checking.

180 M. Asadi et al.

7 Related Work

ME defines techniques and approaches for constructing and/or adapting the methods.
The most prominent sub-area of ME, Situational Method Engineering (SME), pro-
posed by Welke et al [5] is concerned with the creation of methods ‘on-the-fly’ (i.e.
construct or adapt a method according to situation of the project at hand). The ME
approaches are classified by Ralyte et al [6] as: Ad-Hoc (i.e. Method created from
scratch); Extension-Based (i.e. Method is created by extending an existing method
[6]); Paradigm-based (an existing meta-model is adapted, instantiated, or abstracted
to create a new method [6]); and Assembly-based (a method is created by reusing
existing method components [7][16][25]). These approaches mostly focus on reusa-
bility and modularity principles. Besides this classification, Karlsson et al. [8] pro-
posed the Method Configuration approach (more general than extension based) in
which a target method is created by adding/removing elements and features. They
concentrate on variability management and reusability. All mentioned approaches are
based on one or more of the following principles - meta-modeling, reuse, modularity,
and flexibility. Our proposed approach is similar to the assembly-based and method
configuration by following of the modularity, reusability, and variability principles.
However, our approach enables for a higher degree of reusability by leveraging SOA
principles and for a more systematic variability management by employing SPLE
principles (As shown in software engineering SPLE increases reusability [24]).

Gonzalez-Perez [20] explained the benefits of ISO/IEC 24744 meta-model for both
method specification and enactment and proposed a product-centric approach to de-
veloping a new methodology. Aharoni et al [22] enriched the ISO/IEC 24744 for
creating and tailoring methods through an approach called Application-based Domain
Modeling (ADOM). The approach is based on the layered framework including appli-
cation, domain, and language. The domain (methodology) layer contains different
method concepts as well as the specification of their exact usage situation. The appli-
cation layer, called endeavor layer, includes specific method components and situa-
tional methods, which are created based on domain model terminology, rules, and
constraints. The language layer defines any modeling language that can be used for
describing meta-models and method components. Our approach differs from these
approaches in using variability modeling language (i.e. feature modeling) and soft-
ware product line principles. Moreover, we provide a reference architecture for a
whole family which eases configuring and developing methods. Additionally, we use
a new concept for method component (i.e., method service), which utilizes standards
in SOA to improve discovering and reusing method components.

Recently MOA [13][1] was proposed which empowered the assembly-based me-
thod engineering principles with a standard for describing method components (in
terms of method service) and with service discovery principles for finding distributed
method components. Our approach also utilizes MOA to describe and discover me-
thod services corresponding to the features of a method family.

8 Discussion

Two main issues regarding the proposed approach are validity and cost-benefit analy-
sis of the approach. For both issues, it is required to conduct an empirical study. We

 Developing Families of Method-Oriented Architecture 181

did a case-study in which we explained the steps of the method. However, it cannot
completely ensure the validity of our approach, its benefits and limitations. In order to
clarify these issues in our method, we make our argument based on analogy between
software and methods as proposed by Osterweil [23]. Therefore, our assumption is
“software processes are software too” [23]. Considering this analogy, we can adopt
similar approaches and techniques used in software engineering for solving existing
problems in method engineering. As we see, the method engineering community
proposed MOA inspired from SOA to deal with the lack of standard for defining the
method fragment interfaces [1]. But, to use analogy as a viable strategy for solving a
problem in method engineering, referred to as the target domain, we need to identify
the corresponding construct in software engineering (source domain) and define a
mapping schema. For example, in method engineering, the method fragment notion
(called method service) is mapped to service notion in SOA and method notion is
mapped to software service. Hence, we can use SOA principles and have benefits of
SOA in the MOA domain. The other problem method engineers deal with is variabili-
ty in the base method and configuring the method based on the target project for
which some approaches have been proposed [6][8]. On the other hand, software va-
riability is a well-known problem in the software engineering community and many
techniques and approaches have been proposed like feature modeling to manage the
problem and various success stories in using product families and associated tech-
niques have been reported. As an example, Clements and Northrop reported that
Nokia was able to increase its production capacity for new cellular phone models
from 5-10 to around 30 models per year, which alleviated Nokia’s main challenge
being the high pace of market demand and customer taste change [24]. These results
ensure both validity and benefits of software families. Therefore, we tried to make an
analogy between software family and method base and coined the notion of family of
methods. We mapped the features to the method fragment interfaces and handled the
variability in base method and configuration problem according to the target project
requirements. As a result, we expect similar benefits to be reaped within the method
engineering domain. We are also aware of the cost of creating family or reengineering
current methods into method family (i.e., creating a method feature model), but for
long term the benefits that will be achieved can recompensate these costs as happened
in the broader software engineering practice.

9 Conclusion and Future Work

In this paper, we have presented an approach for developing families of software
developments methods. We exploited the notion of method services to facilitate the
discovery of distributed method components. Such discovered method components
can be used as an implementation for both sets of common and variable method assets
of a family of methods. The proposed approach makes use of feature modeling to
manage variability of method families. Managing and modeling variability enables for
a more effective method construction and for a more systematic method reuse. We
believe that the described concept of families of method-oriented architectures may
not be entirely feasible now, due to the lack of a complete method sharing ecosystem,
but with the growing interest for services economy, more attention to such ecosystems

182 M. Asadi et al.

can easily be envisioned to appear soon. Thus, our approach is a small step towards
making this vision possible. The adoption of widely used SOA standards helps in
publishing and sharing method components. Furthermore, organizations will be able
to take the advantages of distributed architectures to design, implement, execute and
reuse available method components. Last but not least, the long term goal is to enable
different organizations and enterprises to publish, advertise, discover and reuse their
methods components.

While the paper proposed a methodology for the combined use of SPLE and SOA
principles in method engineering, the contribution of this paper deserves to be consi-
dered in a broader context of its implications. As already demonstrated in the previous
research [18], transforming configured feature models into workflow and service
composition languages is possible. Thus, the combined use of SOA and SPLE enables
for leveraging existing workflow engines (e.g., BPEL) in management and execution
of software projects. Moreover, with such an executable representation of methods as
workflows, one can also expect an increased compliance of projects with the steps
defined by methods. As workflow management provides also best practices (i.e.,
workflow patterns), the combined use of workflows with software methodologies
might lead to further benefits such as improved parallelization of some stages. With
representation of method components as services, tracking of the project progress
could also be improved, while the invocation of method services can explicitly be
associated with the other tools used in different method stages.

As future work, we intend to provide a more comprehensive evaluation of the pro-
posed approach by developing a collection of method service to be used for experi-
mentation. We aim to extend our approach from different perspectives to reduce the
manual intervention needed in the final method development. We plan to use ontolo-
gy-based representation for feature models to automate consistency checking of fea-
tures in method families as described in [18]. Furthermore, we intend to extend the
feature modeling language to allow method engineers to add concepts of domain
ontologies for annotation of features. This will consequently be used for advanced
ontology-based discovery and composition of method services [14]. Currently, we are
developing an environment that supports our proposed process. The environment will
include the modeling of method families, annotation of feature models, discovering of
method services, stage configuration of feature models, and deployment to standard
workflow management engines.

References

1. Rolland, C.: Method engineering: towards methods as services Software Process. Im-
provement and Practice 14(3), 143–164 (2009)

2. Schmid, K.: A comprehensive product line scoping approach and its validation. In: Proc.
of the 24th International Conference on Software Engineering, pp. 593–603 (2002)

3. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young, Utrecht (1997)
4. Lings, B., Lundell, B.: Method-in-action and method-in-tool: some implications for case.

In: Proc. 6th Int’l Conference on Enterprise Information Systems, pp. 623–628 (2004)
5. Welke, R.J., Kumar, K.: Method Engineering: a proposal for situation-specific methodolo-

gy construction. In: Cotterman, W.W., Senn, J.A. (eds.), pp. 257–268. Wiley, Chichester
(1992)

 Developing Families of Method-Oriented Architecture 183

6. Ralyté, J., Deneckére, R., Rolland, C.: Towards a generic model for situational method en-
gineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

7. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 267–283.
Springer, Heidelberg (2001)

8. Karlsson, F., Gerfalk, P.J.A.: Method configuration: adapting to situational characteristics
while creating reusable assets. Inf. and Soft. Technology. 46(9), 619–633 (2004)

9. Ralyte, J.: Requirements definition for the situational method engineering. In: Proc. of the
IFIP WG8.1 Working Conf. on Eng. Inf. Sys. in the Internet Context, pp. 127–152 (2002)

10. Coulin, C., Zowghi, D., Sahraoui, A.E.K.: A Lightweight Workshop-Centric Situational
Approach for the Early Stages of Requirements Elicitation in Software Systems Deve-
lopme. In: Proc. of Workshop on Situational Requirements Eng. Processes (2005)

11. Czarnecki, K., et al.: Staged Configuration through Specialization and Multi-level Confi-
guration of Feature Models. Soft. Process: Improvement & Prac. 10(2), 143–169 (2005)

12. Tsai, W.: Service-oriented system engineering: a new paradigm. Service-Oriented System
Engineering. In: Proc. IEEE Int’l Workshop on Service-Oriented Sys. Eng., pp. 3–6 (2005)

13. Deneckère, R., Iacovelli, A., Kornyshova, E., Souveyet, C.: From Method Fragments to
Method Services. In: Proc. 13th Int’l Conf. on Exploring Modelling Methods for Systems
Analysis and Design, pp. 81–96 (2008)

14. Klusch, M.: Semantic Web Service Coordination. In: CASCOM: Intelligent Service Coor-
dination in the Semantic Web, pp. 59–104 (2008)

15. Mohabbati, B., Kaviani, N., Lea, R., Gašević, D., Hatala, M., Blackstock, M.: ReCoIn: A
Framework for Dynamic Integration of Remote Services in a Service-Oriented Component
Model. In: Proceedings of the 2009 IEEE Asia-Pacific Services Comp. Conf. (2009)

16. Mirbel, I., Ralyte, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

17. Kim, S., Min, H.G., Her, J.S., Chang, S.H.: DREAM: A practical product line engineering
using model driven architecture. In: Proc. Int’l Conf. on Information Technology and Ap-
plications, pp. 70–75 (2005)

18. Montero, I., Pena, J., Ruiz-Cortes, A.: From Feature Models to Business Processes. In:
Proc. of the IEEE Int’l Conf. on Services Computing, vol. 2, pp. 605–608 (2008)

19. Bošković, et al.: Automated Staged Configuration with Semantic Web Technologies. In-
ternational Journal of Software Engineering and Knowledge Engineering (in press, 2010)

20. OPEN Process Framework (OPF) Web Site, http://www.opfro.org/
21. Gonzalez-Perez, C.: Supporting Situational Method Engineering with ISO/IEC 24744 and

the Work Product Pool Approach. SME: Fundamentals and Experiences, pp. 7-18 (2007)
22. Aharoni, A., Reinhartz-Berger, I.: A Domain Engineering Approach for Situational Me-

thod Engineering. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS,
vol. 5231, pp. 455–468. Springer, Heidelberg (2008)

23. Osterweil, L.: Software processes are software too. In: Proceedings of the ICSE, pp. 2–13.
IEEE Computer Society Press, Monterey (1987)

24. Clements, P., Northrop, L.M.: Software product lines visited June 2010 (2003),
 http://www.sei.cmu.edu/programs/pls/sw-product-lines0503.pdf

25. Asadi, M., Ramsin, R.: Patterns of Situational Method Engineering. In: Lee, R., Ishii, N.
(eds.) Software Engineering Research, Management and Applications (SERA) 2009. SCI,
vol. 253, pp. 277–291. Springer, Heidelberg (2009)

	Developing Families of Method-Oriented Architecture
	Introduction
	Motivating Example
	Background
	Software Product Line Engineering
	Method Oriented Architecture

	Method Services and Feature Modeling
	Families of Method Oriented Architecture
	Method Domain Engineering
	Method Application Engineering

	Case Study
	Related Work
	Discussion
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

