JPure: A Modular Purity System for Java

David J. Pearce

School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand
djplecs.vuw.ac.nz

Abstract. Purity Analysis is the problem of determining whether or not a method
may have side-effects. This has applications in automatic parallelisation, extended
static checking, and more. We present a novel purity system for Java that em-
ploys purity annotations which can be checked modularly. This is done using
a flow-sensitive, intraprocedural analysis. The system exploits two properties,
called freshness and locality, to increase the range of methods that can be consid-
ered pure. JPure also includes an inference engine for annotating legacy code. We
evaluate our system against several packages from the Java Standard Library. Our
results indicate it is possible to uncover significant amounts of purity efficiently.

1 Introduction

Methods which don’t update program state may be considered pure or side-effect free.
Knowing which methods are pure in a program has a variety of applications, such
as: specification languages [19U143/10], model checking [31]], compiler optimisations
941836, atomicity [[13], query systems [21/34] and memoisation of function calls [15]].

Several existing techniques are known for determining purity in OO languages
(e.g. [26030/2223]]). The majority employ interprocedural pointer analysis as the un-
derlying algorithm. While this yields precise results, there are a number of drawbacks:
firstly, it requires the whole program be known in advance [29]; secondly, it takes a sig-
nificant amount of time to run, which is prohibitive in normal day-to-day development.

A useful alternative is to use annotations. Here, pure methods are first annotated
with @Pure; then, a purity checker is provided to help enforce the purity protocol in
programs. For this approach to be practical, the purity checker must be efficient to fit
within normal day-to-day development. A sensible way of ensuring this is to require
that the annotations be modularly checkable. That is, the purity annotations on one
method can be checked in isolation from others. Unfortunately, the majority of previous
works on purity analysis, particularly those which depend upon interprocedural pointer
analysis, do not generate modularly checkable annotations.

An obvious difficulty with any annotation-based purity system is the vast amount of
legacy code that would first need to be annotated. In particular, the Java standard library
has not been annotated to identify pure methods. To address this, we present a purity
system that is split into two components: a purity inference and a purity checker. The
purity inference operates as a source-to-source translation, taking in existing Java code
and adding modularly checkable @Pure annotations (and any auxiliary annotations
required). The purity checker can then check these annotations are correct efficiently

J. Knoop (Ed.): CC 2011, LNCS 6601, pp. 104 2011.
(© Springer-Verlag Berlin Heidelberg 2011

JPure: A Modular Purity System for Java 105

at compile-time. The idea behind this is simple: users take their existing applications,
infer the @Pure annotations once using the (potentially expensive) purity inference;
then, they maintain them using the (efficient) purity checker.

An important requirement for an annotation-based purity system is that the anno-
tations themselves must be simple to use. This is because, once the annotations are
inferred, we expect programmers to use and understand them. Our system uses only
three annotations, @Pure, @Local and @Fresh, but remains sufficiently flexible for
many real-world examples.

The contributions of this paper are as follows:

1. We present a novel purity system which employs modularly checkable annotations.
This exploits freshness and locality to increase the number of methods which can
be considered pure. The system comprises a purity checker and a purity inference.
The latter operates as a source-source translation for annotating legacy code.

2. We formalise the intraprocedural analysis that underpins both the purity checking
and purity inference algorithms.

3. We report on experiments using our system on several packages from the Java Stan-
dard Library. Our results indicate that at least 40% of methods in these packages
are pure.

2 A Simple Purity System

We start by considering a simple purity system which is surprisingly effective in practice
and, crucially, employs modularly checkable annotations. We then highlight several
problems which stem from code found in the Java Standard Library. Later, in 3 we
refine this simple system to resolve these problems.

2.1 Overview

In the simple purity system, pure methods are indicated by a @Pure annotation. The
following characterises the meaning of purity within the system:

Definition 1 (Pure Method). A method is considered pure if it does not assign (directly
or indirectly) to any field or array cell that existed before it was called.

This implies that, for a method to be pure, any method it calls must also be pure. There-
fore, for any call-site, we must conservatively approximate the set of methods that may
be invoked. To check annotations modularly, we can only rely on the static type infor-
mation available at a given call-site. For example:

1 public void f (List<String> x) { x.add("Hello"); }

As we do not know what implementations of List may be supplied for x, we must
assume any is possible and, hence, that the invocation may dispatch to any implemen-
tation of List.add (). Thus, for method £ () above to be considered pure, every
implementation of List .add () must itself be pure.

The simple purity system must also follow a covariant typing protocol. This requires
that pure methods can only be overridden by methods which are also pure. The follow-
ing illustrates:

106 D.J. Pearce

1 class Parent {
» @Pure void f() {}

3}

4

sclass Child extends Parent {
s int x;

7 wvoid f£() { x=1; }

s}

If we considered Parent. f () in isolation, one would conclude it is pure. However,
Child. f () is clearly not pure, since it assigns field x. Thus, following the covariant
typing protocol, the purity checker must reject this code.

2.2 Modular Checking

We now give an informal argument as to why the annotations produced by the simple
purity system are modularly checkable. Essentially, there are three cases to consider:

(1) Direct Field Assignment. A method annotated @ Pure cannot assign to fields. This
can be easily checked by inspecting its implementation.

(2) Indirect Field Assignment. A method annotated @Pure may only call methods
which are themselves pure. This is checked by ensuring, for each call-site, the
method invoked is annotated @Pure. Since this is determined using static type
information, it may not be the actual method invoked (due to dynamic dispatch).
However, it is safe as the covariant typing protocol ensures all overriding methods
must be pure.

(3) Method Overriding. A method annotated @ Pure can only be overridden by meth-
ods which are also annotated @Pure. This ensures the covariant typing protocol is
followed and is easily checked by comparing the annotations on a method with
those it overrides.

The argument here is that: one can check a method annotated @Pure is indeed pure
simply by inspecting its implementation, and those signatures of methods it calls or
overrides. This follows the general approach to type checking, as adopted by e.g. Java’s
type checker.

2.3 Problem 1 — Iterator

We now consider several problems that arose when using the simple purity system on
real code. The first is that of java.util.Iterator. The following illustrates:

i public Test {
» private List<String> items;
;3 boolean has(String x) {

¢+ for(String i : items) ({
5 if(x == 1) { return true; }
6)

7 return false;
s 1}

JPure: A Modular Purity System for Java 107

At a glance, method Test .has () appears pure. But, this is not the case because the
for-loop uses an iterator. Roughly speaking, the loop is equivalent to the following:

1 boolean has (String x) {

» Iterator iter = items.iterator();
3 while(iter.hasNext()) {

4 String 1 = iter.next();

s if (x == 1) { return true; }

6 1}

7 return false;

s }

Here, i ter.next () iscalled to get the next item on the list. However, this method up-
dates its Tterator object and, hence, cannot be considered pure. In section 3 we re-
solve this by extending the system to make explicit the fact that i tems.iterator ()
only ever returns fresh — i.e. newly allocated — objects.

2.4 Problem 2 — Append

The second kind of problem one encounters with the simple system is illustrated by the
following, adapted from java.lang.AbstractStringBuilder:

1 class AbstractStringBuilder {

» char[] data;

3 int count; / number of items used

4+ AbstractStringBuilder append(String s){

6 ensureCapacity(count + s.length());
7 s.getChars (0, s.length(), data, count);

9 return this;
0 3}
Here, getChars () works by copying the contents of s into data at the correct po-

sition. Because of this, getChars () and, hence, append () cannot be considered
pure under Definition[Il So, why is this a problem? Well, consider the following:

1 String f(String x) { return x + "Hello"; }

Again, at a glance, this method appears pure. However, the bytecode generated for
this method indirectly calls AbstractStringBuilder.append () and, hence, it
cannot be considered pure.

Clearly, we want methods such as £ () above to be considered pure. In section §3] we
achieve this by extending the system to determine that: firstly, the StringBuilder
object created for the string append is fresh; secondly, that the array referred to by data
is in the locality of that StringBuilder object. When an object (the child) is in the
locality of another (the parent), we have a guarantee that the child is fresh if the parent
is fresh. Thus, assignments to the array referenced by data are permitted as it is known
to be fresh (since the StringBuilder objectis fresh).

108 D.J. Pearce

3 Our Improved Purity System

In this section, we detail our purity system which improves upon the simple approach
outlined in §l Our system is implemented in a tool called JPure, and we report on
experiments using it in §3l

3.1 Freshness and Locality

Let us recall the first problem encountered with the simple purity system, as discussed
in 2.3t

| @Pure boolean has (String x) {

» Iterator iter = items.iterator();
3 while(iter.hasNext()) {

4+ String 1 = iter.next();

s 1if(x == 1) { return true; }

6)

7 return false;

s }

To show that this method is pure under Definition [l requires two guarantees:

1. That items.iterator () always returns a fresh (i.e. newly allocated) object.
2. That iter.next () can only modify the localilty (i.e. local state) of the
Iterator object.

Intuitively, the idea is that, when an object is fresh, so is its locality. Then, by Defini-
tion [T} state in its locality can be modified as it did not exist prior to the method (i.e.
has ()) being called. In §3.2] we will give a more precise definition of locality.

To indicate a method returns a fresh object, or that it only ever modifies an object’s
locality, we employ two additional annotations: @Fresh and @Local. Thus, for the
Collection and Iterator interfaces, we would add the following annotations:

1 interface Collection {

2 @Fresh Object iterator();
3

4}

s interface Iterator {

6 @Pure boolean hasNext () ;
7 @Local Object next();

8

90}

Here, @Fresh implies all implementations of iterator () must return a fresh ob-
ject and, furthermore, must be pure (as, for brevity, we say @Fresh implies @Pure).
Likewise, since hasNext () is annotated @Pure, its implementations must be pure.
Finally, the @Local annotation on next () implies its implementations may only
modify the Tterator’s locality.

JPure: A Modular Purity System for Java 109

3.2 Understanding Locality

To make our notions of freshness and locality more precise, we must consider which
parts of an object they apply to. For example, an Iterator instance returned from
iterator () may be freshly allocated; but, it is almost certainly not the case that all
objects reachable from it are (e.g. the items being iterated over). Thus, we need some
way to determine how much of an object’s reachable state is included in its locality.

Definition 2 (Locality). The locality of an object includes every field defined by its
class and, for those annotated @Local, the locality of the referenced object.

Fields of primitive type are always in the locality of their containing object. For
fields of reference type, the field itself is always in the locality, but the referenced object
may or may not be (depending on whether the field is annotated @Local or not). Our
definition of locality is, in some ways, similar to the notion of ownership (see e.g. [418]);
however, we are able to exploit some counter-intuitive properties of pure methods to get
a simpler, more flexible system.

Figure [l illustrates the main ideas. For an instance of TypedList, its locality in-
cludes the fields length, data and elementType. The locality of the object refer-
enced by data is also included, whilst that referred to by elementType is not. The
presence of an @Local annotation on copy () indicates it is a local method:

Definition 3 (Local Method). A local method may modify the locality of any parame-
ter annotated @Local but, in all other respects, must remain pure. The method receiver
(i.e. this) is treated as a special parameter, with @Local placed on the method itself.

By Definition 8l copy () may modify the locality of this and, by Definition 1] any
state created during its execution.

The following rules clarify in more detail what a local method conforming to Defi-
nition[3]is permitted to do:

iclass TypedList {

» private int length;

3 private @Local Object[] data;
4+ private Type elementType;

¢ @Local public TypedList (Type type, int maxSize) {

7 length = 0;

8 data = new Object[maxSize];

9 elementType = type;

0}

11

12 @QLocal public void copy (TypedList dst) {

13 length = dst.length;

14 type = dst.type;

15 data = new Object[dst.length];

16 for (int i=0;i!=length;++1) { datal[i] = dst.datalil; }

17} }

Fig. 1. An example illustrating the main aspects of locality

110 D.J. Pearce

Rule 1. A local method may assign fresh objects to any field in the locality of a param-
eter annotated @Local.

Rule 2. A local method may assign any reference to a field in the locality of a parameter
annotated @Local, provided that field is not itself annotated @Local.

To better understand these rules, consider them in the context of Figure[Il The assign-
ment to data on Line 15 is permitted under Rule (1) above. Similarly, the assignments
to length and type on Lines 13 and 14 are permitted under Rule (2) since they are
both in the locality of this, but are not annotated @Local. Finally, the assignment
to elements of data on Line 16 is permitted under Rule (2). This is because elements
of an array object are treated as though they were fields. Since these “fields” cannot be
annotated with @Local, Rule (2) must apply.

3.3 Locality Invariants

The rules for checking local methods given in the previous section may seem strange,
but they are needed to preserve the locality invariants:

Locality Invariant 1 (Construction). When a new object is constructed, its locality is
always fresh.

The purpose of Locality Invariant 1 is to ensure we can safely modify the locality of
fresh objects within pure methods.

Locality Invariant 2 (Preservation). When the locality of a fresh object is modified,
its locality must remain fresh.

The purpose of Locality Invariant 2 is to ensure that the locality of a fresh object remains
fresh, even after modifications to it. Without this guarantee, we become limited in how
we can subsequently modify this locality. For example:

iclass Link {

» private @Local Link next;

3

+ public @Local void set(Link link) {
s this.next = link; //violates invariant 2
6 }

;7 public @Fresh Link create() {

s Link ¢ = new Link();

v c.set(this.next) ;

0w c.next.set (null); //problem

1 return c;

12} }

Here, method set () violates Locality Invariant 2 by assigning an arbitrary reference
to field next. This is a problem because the locality of a fresh Link may no longer
be fresh after this assignment (i.e. if the 1ink assigned is not fresh). This problem
manifests itself in create () as, after set () is called on Line 9, the locality of the
object referenced by c is no longer entirely fresh (i.e. ¢ . next is not fresh). As a result,
the call to set () on Line 10 causes a side-effect — meaning create () should not
be considered pure (recall @Fresh implies @Pure).

JPure: A Modular Purity System for Java 111

3.4 The Law of Locality

Locality can be regarded as a simplified form of ownership suited to purity analysis.
Unlike ownership we can be more flexible regarding object aliasing. In particular, the
seemingly counter-intuitive law of locality is useful:

Definition 4 (Law of Locality). When checking @Local annotations, one can safely
assume parameters are not aliased.

This law seems strange, but it relates to the overall goal of purity analysis. To understand
it better, consider the following:

rvoid £ (T a, @QLocal T b) { b.field = 0; }

Here, it is clear that b must be annotated @Local, since its locality is modified. How-
ever, the question is: should a be annotated @Local as well? Given that a and b could
be aliased on entry, it seems as though we should assume they are. However, under the
law of locality, we can assume they are not.

So, why does the law of locality work? Well, the key lies in the way @Local anno-
tations are used to show methods are pure. Consider the following:

1 @Pure void g() { T x = new T(); f(x,x); }

This method is considered pure precisely because the object passed in for parameter b
is fresh. Thus, if a and b are aliased on entry to £ () we have one of two things: either,
the caller is impure (in which case it doesn’t matter); or, the object passed in for b is
fresh. In the latter, it immediately follows that a is fresh — hence, neither the Locality
Invariants nor Definition[Tlare violated by the assignment in £ ().

4 Implementation

We have implemented the purity system outlined in §3] as part of a tool called JPure,
which supports purity checking and purity inference. The former can be done efficiently
in a modular fashion. The latter performs a source-to-source translation of Java source
code, whilst annotating it with @Pure, @Local and @Fresh annotations where ap-
propriate. Both tools employ an intraprocedural analysis to determine the freshness and
locality of variables within a method. The purity inference propagates that information
interprocedurally using Static Class Hierarchy Analysis [11]] to ensure annotations re-
main modularly checkable. In this section, we formalise the dataflow analysis which
underpins both modes of operation.

4.1 Intermediate Language

Before presenting the details of our analysis, we first introduce an Intermediate Lan-
guage (IL) to base this on. The IL is small and compact, and we deliberately omit many
features of the Java language. Despite this, it provides a useful vehicle for presenting
the key aspects of our analysis.

112 D.J. Pearce

The syntax of our intermediate language is given in Figure 2l The IL uses unstruc-
tured control-flow, and employs only very simple statements. We also assume our vari-
ables are class references, and ignore other types altogether (since they are of no con-
cern here). Likewise, we provide only very limited forms of expression in i £ condi-
tions. A simple IL program is given below:

1 void meth (Object x) {
> Object vy;

3y = new MyClass();

4 if (x == null) goto labell;
5 Yy = X;

¢ labell:

» y.£0);

s }

Our intraprocedural analysis will determine that method £ () may be called on the
object referred to by x. If this method is impure, the entire method must be impure; or,
if this method has a @Local receiver, then x will be annotated @L.ocal; otherwise,
if £() is @Pure then the whole method may be annotated @Pure (i.e. provided the
MyClass constructor is).

4.2 Overview

The intraprocedural analysis employs an abstract environment, I', which conservatively
models the freshness and locality of visible objects. This maps variables to a set of
abstract references which range over {7, €, lx, {y,...}. Here, 7 indicates an unknown
object, € indicates a fresh object or primitive value and, finally, ¢,,¢,, ... are named
objects. One named object is provided for each parameter, and represents the object it
referenced on entry. The analysis tracks how these flow through the method, in a manner
similar to an intraprocedural pointer analysis.

Figure[3lillustrates the analysis operating on a simple local method, copy () . Recall
from Definition 3] that, since the method is annotated @Local, it is entitled to modify
the locality of the receiver (i.e. this), but in all other respects must remain pure.

The intraprocedural analysis assumes the following abstract environment holds on
entry to copy () (i.e. immediately after Line 4):

T|(4) = {this — {lenss}, sTC — {larc}}

At this stage, 1 and t are undefined and, hence, not present in the abstract environment.
Thus, we see that this references named object fiy;5s, and src references £syc. The
abstract environment immediately following the assignment to 1 on Line 6 is:

Fl(G) = {thiS — {Ethis}7 SrcC H— {Esrc}7 l— {6}}

Here, 1 maps to the special value e which represents both primitive values (as in this
case) and fresh objects. The abstract environment immediately following the assign-
ment to t on Line 8§ is:

l“l (8) = {this — {gthis}a SIrcC H— {gsrc}a l— {6},1’, = {?}}

JPure: A Modular Purity System for Java 113

Intermediate Language Syntax:
M:=Tmn(T x) { Object v [L:] S}

Su=v=w|v=c|v[Tf =w|v=w[T|f | v=unT:](w) | v = new [T¢](w)
| return v | if(v==w) goto L | goto L

c=null,...,—1,0,1,...

T:=C|int

T =T —T

Fig. 2. Syntax for a simple intermediate language. Here, C represents a valid class name, whilst ¢
represents a constant. We only consider class reference and int types, since these are sufficient
to illustrate the main ideas. Finally, field accesses and method calls are annotated with the static
type of the field/method in question.

1 class LL { int length; Object data; @Local LL next;

> wvoid set (LL next) { this.next = next; }
3

L 1 i LL .
4 @.oca void copy (src) .{ this dst 1 c
5 if (src == null) goto exit2;
6 int 1 = src.length; o—.|[|1

this | ‘dst

7 this.length = 1; true - l | I/l/l
8 Object t = src.data; [5’ if(src == nuill)] i i
N this.data = t; falsel O—PI this | dst |/|/|
10 t = this.next; 6: 1 = src.length

1 o—]blllhis |ldst | 2 |/|
7: this.length = 1]

1 O—Pllthis |ldst | 3 I/I
8: t = src.data]

1 o—»llthis|ldst | & | ? |
9: this.data =t]

l o—»llthis |ldst | 3 | ? |
10: t = this.next

1 o—]hlllhis |ldst | g |lthis|

11: t.copy(src.next)]

11 t.copy(src.next);

(

12 exit2:
: éFresh Object clone() { E
(
(
(

15 int tmp = this.length;
16 LL t = new LL (tmp);

17 t.copy (this) ;

18 return t;

v}

20 @Local LL(int n) {

21 this.length = n;

2 if(n > 0) goto labell:

2 this.next = null; 1 Lihis |ldst | 3 |lthis|
24 goto exitl; —>[12: return

25 labell:

26 this.next = new LL(n-1);

27 exitl:

8 }}

Fig. 3. A simple linked list example which contains (among other things) a local method copy,
which updates the locality of the receiver this. Alongside, the result of our intraprocedural
analysis are shown for this method.

114 D.J. Pearce

In the above, ? represents an unknown object reference, and indicates that there is no
information available at this point about the object t refers to. Nevertheless, this un-
known reference can be safely assigned to this.data on Line 9 under Rule (2) from
3.2

The second assignment to t on Line 10 is treated differently from the first, because
field next is annotated @Local. The abstract environment immediately following this
assignment is:

'] (10) = {this — {lnis},src — {lorc}, L — {e},t — {lenis}}

This captures the fact that t still refers to an object in the locality of fp;s. This is
needed to determine that the subsequent invocation, t .copy (src.next), is safe.
That is, since copy () is permitted to modify the locality of its receiver and, at this
point, t refers to an object within this locality, the invocation t . copy (src.next)
is permitted.

4.3 Abstract Semantics

The effect of a statement on an abstract environment is determined by its abstract se-
mantics, which we describe using transition rules. These summarise the abstract envi-
ronment immediately after the instruction in terms of that immediately before it. The
abstract semantics for the intraprocedural analysis are given in Figure[dl Here, I'[v — ¢]
returns an abstract environment identical to T, except that v now maps to ¢. Similarly,
T'[v] returns the abstract reference for v in T. Several helper functions and constants are
used in the semantics:

— isFresh(m, Ts) — true iff the given method (determined by its name m and
static type T¢) is annotated @Fresh.
— isImpure (m, T¢) — true iff the given method (determined by its name m and

static type T¢) is impure. That is, it is neither annotated with @Pure, nor any of its
parameters are marked with @Local. Note, $ indicates a constructor.

— isLocal (£, T) — true iff the given field (determined by its name f and static
type T) is annotated @Local.

— isLocal (i, m, T¢) — true iff the parameter at position i in the given method
(determined by its name m and static type T¢) is annotated @Local.

- isLocalOrFresh (1s)—trueiff the parameters identifiedin 1s C{¢4, ... ly, €}
are annotated @Local in the method being analysed. Note, ? € 1s is not permitted.

— thispetn — expands to (m, T¢) where m is the name of the method being analysed,
and T is its type.

As another example, let us consider how the intraprocedural analysis applies to the
method clone () from Figure[3l This is annotated @Fresh which implies: firstly, it
must return an object that did not exist prior to its invocation; secondly, it may not mod-
ify any state that existed prior to its invocation (since @Fresh implies @Pure).

The intraprocedural analysis assumes the following abstract environment holds on entry
toclone():
'l (14) = {this — {lenis}}

JPure: A Modular Purity System for Java 115

c € {null,...,—1,0,1,...}

tf(v=c,T) — Iv - {e}] ¢

tf(v=w,T) — T'[v > T'[w]] [S-V]

—isImpure(m, T¢)
isFresh(m, Ts) = ¢ = {€} —isFresh(m, T¢) = ¢ = {7}
isLocal(u,m, Tt) = isLocalOrFresh(I'[u])
isLocal(wy,m, T¢) = isLocalOrFresh(T[w]) [S-M]

isLocal(wy,m, T¢) = isLocalOrFresh(T'[w,])
tf(v=um[T¢](w),T) — T[v — ¢]

T = int T # int -—isLocal(f,T)

st(v=w(T,T) — Ty (] 0T se(v=wfre,r) — v {71570

isLocalOrFresh(T'[w]) isLocalOrFresh(T[v])
T # int isLocal(f,T) [S-F3] isLocal(f,T) = T'[w] = {e} [S-W]
tf(v=w.[T|£,T) — T'[v — T[w]] tf(v.[T[f=w,T) — T

—isImpure($, T:)
isLocal(wy, $, Ts) = isLocalOrFresh(I'[w])

[S-N]
isLocal(wy, $, Ts) = isLocalOrFresh(T[u,])
tf(v=new[T¢](w),T) — T[v — {e}]
tf(if(v==w) gotoL,T') — T [5-11 tf(gotoL,I) — T [5-G]
isFresh(thispewn) = T'[v] = ¢ [S-R]

tf(return v,T) — T

Fig. 4. Abstract semantics for checking the correctness of methods annotated @Pure, @Fresh
or @Local. The rules assume the method being analysed has at least one of these annotations.

Then, by application of rule S-F1, it computes the following to hold immediately after
Line 15:
'] (15) = {this — {linis}, tmp — {e}}

At this point, a call to the LL (int) constructor is encountered. Constructors are treated
like other methods, and may be annotated with @Pure, @Local or not at all (i.e. if
they are impure). The LL (int) constructor is annotated with @Local, and is treated
in the same way as a local method. Hence, it is permitted to modify the locality of this

116 D.J. Pearce

(but must remain pure in all other respects). Therefore, rule S-N applies here, and so
the following is determined to hold immediately after Line 16:

T|(16) = {this — {linsc}, tmp — {€}, t — {€}}

Recall that clone () must be pure (since @Fresh implies @Pure), and that the
LL (int) constructor is @Local (hence, it may modify state). Rule S-N safely em-
bodies these requirements as, in a constructor, this is (by definition) fresh.

Finally, the analysis applies rule S-M to determine the abstract environment immedi-
ately after Line 17. This is identical to T" | (16) as copy (LL) has no return value. The
analysis then applies rule S-R to confirm the return value is indeed fresh.

4.4 Dataflow Equations

We formalise the intraprocedural analysis in the usual way by providing dataflow equa-
tions over the control-flow graph:

rf@=||rlm

m—n

Il (n) = t£(S(n), I (n))

Here, m and n represent nodes in the control-flow graph, and m — n the directed edge be-
tween them. Similarly, tf denotes the transfer function, whose operation is determined
by the semantics of Figure[] whilst S(n) gives the statement at node n. The abstract en-
vironment immediately before node n is given by I'T (n), whilst that immediately after
is given by T | (n). Finally, we define the meet of two abstract environments as follows:

ryur, = {X — ¢1 U qbg | X € dom(l"l) Udom(l"g) N (bl = Fl[X] A\ (bg = FQ[X]}

To be complete, we must detail the initial store used in the dataflow analysis. This is
defined as follows:

r7(0) ={x+ {l} | x € Params} U {this — €}

Here, Params is the set of all parameters accepted by the method being analysed.
Furthermore, we assume that node 0 is the entry point of the control-flow graph. Ob-
serve that the analysis assumes parameters are unaliased on entry. Whilst this may seem
unsound, it is safe under the law of locality (see §3.4).

4.5 Purity Checking

As discussed previously, our purity system breaks into two components: a purity
checker and a purity inference. The former checks the annotations in a given pro-
gram are used correctly; the latter infers @Pure, @Local, and @Fresh annotations
on legacy code.

In this section, we consider the purity checker in more detail. This checks each
method in isolation from others using the rules from §3.2and the intraprocedural anal-
ysis discussed earlier. For any method m, the purity checker ensures a covariant typing

JPure: A Modular Purity System for Java 117

protocol is followed for @Fresh and @Pure annotations, and a contra-variant proto-
col is followed for @Local annotations. This is done by examining the annotations on
those methods overridden by m (which is the same approach used in the Java compiler
for checking generic types).

For methods annotated with @Pure, @Fresh or @Local, the intraprocedural anal-
ysis is used to check the annotations are properly adhered to. In this case, the rules of
Figure d are treated in a similar manner to normal typing rules. If the analysis can con-
struct a valid abstract environment before and after each statement, then the method is
considered safe (with respect to its purity annotations). Or, if it is unable to do this, an
error is reported.

4.6 Purity Inference

The purity inference is also based on the intraprocedural analysis; however, the rules
from Figure M are treated differently and information may be propagated interproce-
durally. For example, some rules (e.g. S-F3) require that fields be annotated @Local,
whilst others (e.g. S-W) can require that parameters be annotated @Local. Other rules
(e.g. S-R) are indifferent on whether an annotation actually has to be present or not.

In order to uncover as much purity as possible, the inference adopts a greedy ap-
proach. Initially, it assumes all methods are annotated @Fresh or @Pure (depend-
ing on their return type) and all fields are annotated @Local. Then, it processes each
method in turn and, upon encountering something which invalidates these assumptions,
downgrades them as necessary. For example, consider the following method:

1void f (Counter t) { t.count =1 }

The inference initially assumes f () is @Pure. Upon encountering the assignment on
Line 2 this assumption becomes untenable under rule S-W (which requires t be fresh
or annotated @Local). Since t is not fresh, it removes the @Pure annotationon £ (),
and replaces it with a @Local annotation on t.

When the annotations on a method are downgraded, this can have a knock-on effect
for other methods. In particular, if one method g () calls £ () and, subsequently, it
transpires that £ () is not @Pure, then this implies g () is no longer @ Pure. To address
this, the purity inference propagates information interprocedurally using static class
hierarchy analysis. The following example illustrates:

1 class Parent {

» wvoid f(Test x, Test y) { g(x) }
3 wvoid g(Test z) { z.field = 1; }
4}

sclass Child extends Parent {

6 int field;

7 wvoid f(Test u, Test v) { }

s }

Let us assume the inference initially visits Parent. f (), then Parent.g (). The

inference will conclude that Parent. £ () is @Pure, since Parent.g () is assumed
@Pure. However, when subsequently examining Parent.g () it will realise that

118 D.J. Pearce

z must be annotated @Local. At this point, it identifies all potential call sites of
Parent.qg () using Static Class Hierarchy Analysis [11]. The method Parent. f ()
contains one such call-site and, hence, is re-examined. As a result, Parent. f () is
downgraded from being @Pure and, instead, x is annotated @Local. The inference
must ensure all @Local annotations adhere to a contravariant typing protocol. There-
fore, it propagates the new @Local annotation up the class hierarchy, resulting in u
being annotated @Local in Child. £ ().

A similar strategy is employed for propagating information about other annotations,
such as @Fresh and @Local on fields, interprocedurally. The inference will continue
doing this until no further changes are necessary (i.e. it has reached a fixed-point).
Finally, since the inference only relies on static class hierarchy analysis, the resulting
annotations are guaranteed to be modularly checkable.

5 Experimental Results

We have implemented our analysis as part of a tool called JPure. This is open source and
freely available from http://www.ecs.vuw.ac.nz/~djp/Jjpurel Our main
objective with the tool is to develop a set of modularly checkable purity annotations
for the Java Standard Library. We are interested in this because it represents the first,
and most difficult, obstacle facing any purity system based on annotations.

Our experimental data is presented in Figure [3l Here, column “#Method” counts
the total number of (non-synthetic) methods; “#Pure” counts the total number of pure
methods (i.e. those annotated @Pure, or those annotated with @Fresh but with no
@Local parameters); “#Local” counts the total number of methods with one or more
parameters annotated @Local, compared with the total number accepting one or more
parameters of reference type; “#Fresh” counts the total number of methods guaranteed
to return fresh objects, compared with the total number which return a reference type.

When generating this data, our system assumed all classes being inferred (i.e. all
those in the packages shown in Figure [5) were internal, and all others were external.
Then, since annotations were not generated for external classes, their methods were
conservatively regarded as impure. Thus, we would expect to see greater amounts of
purity if more of the standard library were considered in one go (i.e. because some
internal methods call out to external methods).

One issue is the treatement of native methods, which our inference assumed were
pure. Whilst this is not ideal, it remains for us to manually identify native methods with
side-effects. We would not expect this to affect the data since it mostly relates to /O,
and methods such as Writer.write () were inferred as impure anyway.

5.1 Discussion

The results presented in Figure |5/ show surprising amounts of purity can be uncovered
using our purity inference and (modularly) checked with our purity checker. Recall the
inference assumed methods in external packages (i.e. packages other than those listed)
were impure. By analysing more of the standard library in one go, we may uncover
more purity in those packages listed (since they call methods in external packages).

http://www.ecs.vuw.ac.nz/~djp/jpure

JPure: A Modular Purity System for Java 119

pkg #Methods #Pure #Local #Fresh

java.lang 1624 995 (61.2%) 103/599 (17.1%) 113/520 (21.7%)
java.util.prefs 202 75 (B7.1%) 57125 (4.0%) 25/80 (31.2%)
java.lang.management 130 105 (80.7%) 0/16 (0.0%) 34/60 (56.6%)
java.lang.instrument 15 15 (100.0%) 0/9 (0.0%) 3/5 (60.0%)
java.util.concurrent 525 142 (27.0%) 16/242 (6.6%) 15/164 (9.1%)
java.util.regex 371 181 (48.7%) 32/181 (17.6%) 24/70 (34.2%)
java.util 2151 647 (30.0%) 171/1043 (16.3%) 108 /745 (14.4%)

java.util.concurrent.atomic 170 41 (24.1%) 8/80 (10.0%) 3/21 (14.2%)
java.util.concurrent.locks 98 39 (39.7%) 1/35 (Q2.8%) 8/15 (53.3%)

java.io 1017 374 (36.7%) 111/491 (22.6%) 22/153 (14.3%)
java.util.zip 255 131 (51.3%) 36/90 (40.0%) 6/23 (26.0%)
java.lang.annotation 17 10 (58.8%) 1/8 (12.5%) 2/10 (20.0%)
java.util.jar 134 39 (29.1%) 3/75 (4.0%) 8/44 (18.1%)
java.util.logging 238 49 (20.5%) 8/140 (5.7%) 2/69 (2.8%)
Total 6947 2843 (40.9%) 495 /3134 (15.7%) 373 /1979 (18.8%)

Fig. 5. Experimental data on packages from the Java Standard Library

An interesting question is whether or not we could more purity in these packages
by further extending our system. By manually inspecting the inferred annotations, we
found a few surprises. In particular, neither java.lang.Object.equals () nor
java.lang.Object.hashCode () were inferred as @Pure. This was surprising
as: firstly, we did not expect implementations of these methods to have side-effects; sec-
ondly, these methods are so widely used that their impurity must be having a
large knock-on effect. Through a detailed examination of methods which override
java.lang.Object.equals (), we identified various reasons why it could not be
annotated @Pure. For example, java.util.GregorianCalendar.equals ()
has side-effects. A common pattern in such methods is to use one or more fields as
a cache. The first time the method is called, objects are created and assigned to these
fields, whilst subsequent invocations reuse them. This causes a problem for our system,
since the field assignment forces the method to be local or — worse still — impure (e.g.
if the fields are static).

6 Related Work

Interprocedural side-effect analysis has a long history, with much of the early work fo-
cused on compiler optimisation for languages like C and FORTRAN [7/17]. The use
of pointer analysis as a building block quickly became established, and remains criti-
cal for many modern side-effect and purity systems (e.g [26/30/22]). In such cases, the
precision and efficiency of the side-effect analysis is largely determined by that of the
underlying pointer analysis. Numerous pointer analyses have been developed which of-
fer different precision-time trade-offs (see e.g. [27U33125]]). Almost all of these perform
whole-program analysis and, as such, are inherently unmodular.

There are several good examples of side-effect systems built on top of pointer analy-
sis. Salcianu and Rinard employ a combined pointer and escape analysis, and generate

120 D.J. Pearce

regular expressions to characterise externally mutated heap locations [30]. Rountev’s
system is designed to work with incomplete programs [26]. It assumes a library is
being analysed, and identifies methods which are observationally pure to its clients.
Side-effects are permitted on objects created within library methods, provided they do
not escape. The system uses fragment analysis [28]] to approximate the possible in-
formation flow and is parameterised on the pointer analysis algorithm. Thus, it could
be considered a modularly checkable system, provided the underlying pointer analysis
was. A critical difference from our work, is the lack of a concept comparable to locality
for succinctly capturing side-effects. Instead, raw points-to information feeds the anal-
ysis, meaning that any modularly checkable annotations used would necessarily reflect
this — making them cumbersome for a human to maintain. In experiments conducted
with this system, around 22% of methods were found to be side-effect free. Nguyen and
Xue adopt a similar approach for dealing with dynamic class loading [23]]. Benton and
Fischer present a lightweight type and effect system for Java, which characterises ini-
tialisation effects (i.e. writes to object state during construction) and quiesing fields (i.e.
fields which are never written after construction) [2]]. Their approach is parameterised
on the pointer analysis algorithm. As above, this means that, while it could be consid-
ered modularly checkable, it would require cumbersome annotations that were hard to
maintain. Finally, they demonstrate that realistic Java programs exhibit a high-degree
of mostly functional behaviour.

Systems have also been developed which do not rely on interprocedural analysis.
Instead, they typically rely on Static Class Hierarchy Analysis (SCHA) [11] to approx-
imate the call-graph, as we do. The advantage of this, as discussed in {IJ is that it
lends itself more easily to modular checking. Clausen developed a Java bytecode op-
timiser using SCHA which exploits knowledge of side-effects [9]. In particular, it de-
termines whether a method’s receiver and parameters are pure, read-only, write-only
or read-write. Here, pure is taken to mean: is not accessed at all. Cherem and Rugina
describes a mechanism for annotating methods with summaries of heap effects in Java
programs [6]. In principle, these could be checked modularly, although they did not
directly address this. An interprocedural, context-sensitive analysis is also provided for
infering summaries. This differs from our work, in that it is more precise, but generates
larger, and significantly harder to understand, annotations.

Aside from compiler optimisations, another important use of purity information lies
with specification and assertion languages. The issue here is that, in the specification of
a method, one cannot invoke other methods unless they are pure. The Java Modelling
Language (JML) provides a good example [20]. Here, only methods marked pure may
be used in pre- and post-conditions. In [[19] a simple approach to checking the purity
of such methods is given — they may not assign fields, perform I/O or call impure
methods. However, as discussed in §2] this is insufficient for real-world code, such as
found in Java’s standard libraries. Barnett et al. also considered this insufficient in prac-
tice and, instead, proposed a notion of observational purity [[1]. Thus, a pure method
may have side-effects, provided they remain invisible to callers. They permit field writes
in pure methods, provided those fields are annotated as secret. JML supports an anno-
tation — modi fies — which identifies the locations a method may modify. The ES-
C/Java tool attempts to statically check JML annotations [[14]. Catafio identified that it

JPure: A Modular Purity System for Java 121

does not check modifies clauses, and presented an improved system [5]. However,
their system ignores the effect of pointer aliasing altogether. Spec# is another speci-
fication language which requires methods called from specifications be pure [10]. Fi-
nally, Nordio et al. employ pure methods to model pre- and post-conditions for function
objects [124].

There are numerous other works of relevance. In [18]], an interprocedural pointer
analysis is used to infer side-effect information for use in the Jikes RVM. This enabled
upto a 20% improvement in performance for a range of benchmarks. Zhao et al. took
a simpler approach to infering purity within Jikes [36]. Whilst few details were given
regarding their method, it appears similar to that outlined in §21 However, they achieved
a 30% speedup on a range of benchmarks. In [[13], pure methods are used in verify
atomocity of irreducible procedures. However, no mechanism for checking their purity
was given, and instead the authors assume an existing analysis that annotates methods
appropriately. Finifter er al. adopt a stricter notion of purity, called functional purity,
within the context of Joe-E — a subset of Java [12]]. A method is considered function-
ally pure if it is both side-effect free, and deterministic. Here, methods are allowed to
return different objects for the same inputs, provided that they are equivalent, and their
reachable object graphs are isomorphic. The authors report on their experiences identi-
fying (manually) pure methods in several sizeable applications. DPJizer infers method
effect summaries and annotates the program accordingly [32]. This is used to help port-
ing of Java programs to DPJ — a language for writing safe parallel programs [16]. DPJ
provides a type system that guarantees noninterference of parallel tasks.

Finally, Xu et al. consider a dynamic notion of purity, rather than the more com-
mon static approach [35]]. They examined the number of methods which exhibit pure
behaviour on a given program run. They considered different strengths of purity, and
found that, while weak definitions exposed significant purity, this information was not
always that useful in practice.

7 Conclusion

We have presented a novel purity system that is specifically designed to generate and
maintain modularly checkable purity annotations. The system employs only three an-
notations, @Pure, @Local and @Fresh, but remains sufficiently flexible for many
real-world examples. The key innovation lies in the concepts of locality and, particu-
larly, in the locality invariants and the law of locality. We have evaluated our system
against several packages from the Java Standard Library, and found that over 40% of
methods were inferred as pure.

Acknowledgments. Thanks to Art Protin for useful feedback on an earlier draft.

References

1. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: Useful abstractions in spec-
ification. In: Proc. FTFJP, pp. 11-19 (2004)

2. Benton, W.C., Fischer, C.N.: Mostly-functional behavior in Java programs. In: Jones, N.D.,
Miiller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 29-43. Springer, Heidelberg
(2009)

122

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D.J. Pearce

Bierhoff, K., Aldrich, J.: Lightweight object specification with typestates. In: ESEC/SIG-
SOFT FSE, pp. 217-226. ACM Press, New York (2005)

Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In: Proc.
POPL, pp. 213-223. ACM Press, New York (2003)

Catailo, N., Huisman, M.: CHASE: A static checker for IML’s Assignable clause. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp.
26-40. Springer, Heidelberg (2002)

Cherem, S., Rugina, R.: A practical escape and effect analysis for building lightweight
method summaries. In: Adsul, B., Vetta, A. (eds.) CC 2007. LNCS, vol. 4420, pp. 172-186.
Springer, Heidelberg (2007)

Choi, J.-D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In: Proc. POPL, pp. 232-245. ACM Press, New
York (1993)

Clarke, D., Potter, J., Noble, J.: Ownership Types for Flexible Alias Protection. In: Proc.
OOPSLA, pp. 48—64. ACM Press, New York (1998)

Clausen, L.R.: A Java bytecode optimizer using side-effect analysis. Concurrency - Practice
and Experience 9(11), 1031-1045 (1997)

Darvas, A., Leino, K.R.M.: Practical reasoning about invocations and implementations of
pure methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 336—
351. Springer, Heidelberg (2007)

Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using static
class hierarchy analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 77-101.
Springer, Heidelberg (1995)

Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable functional purity in Java. In: Proc.
CCS, pp. 161-174. ACM Press, New York (2008)

Flanagan, C., Freund, S.N., Qadeer, S.: Exploiting purity for atomicity. In: Proc. ISSTA, pp.
221-231. ACM Press, New York (2004)

Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
static checking for Java. In: Proc. PLDI, pp. 234-245. ACM Press, New York (2002)
Heydon, A., Levin, R., Yu, Y.: Caching function calls using precise dependencies. In: Proc.
PLDI, pp. 311-320 (2000)

Jr., RL.B., Adve, V.S, Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey, J.,
Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
Java. In: Proc. OOPSLA, pp. 97-116. ACM Press, New York (2009)

Landi, W., Ryder, B.G., Zhang, S.: Interprocedural side effect analysis with pointer aliasing.
In: PLDI, pp. 56-67 (1993)

Le, A., Lhoték, O., Hendren, L.: Using inter-procedural side-effect information in JIT opti-
mizations. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443, pp. 287-304. Springer, Heidelberg
(2005)

Leavens, G.T.: Advances and issues in JML. In: Presentation at Java Verification Workshop
(2002)

Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools sup-
porting detailed design in Java. In: OOPSLA Companion, pp. 105-106 (2000)

Lencevicius, R., Holzle, U., Singh, A.K.: Query-based debugging of object-oriented pro-
grams. In: Proc. OOPSLA, pp. 304-317. ACM Press, New York (1997)

Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for points-to and
side-effect analyses for Java. SIGSOFT Softw. Eng. Notes 27(4), 1-11 (2002)

Nguyen, P.H., Xue, J.: Interprocedural side-effect analysis and optimisation in the presence
of dynamic class loading. In: Proc. ACSC, pp. 9-18 (2005)

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

JPure: A Modular Purity System for Java 123

Nordio, M., Calcagno, C., Meyer, B., Miiller, P., Tschannen, J.: Reasoning about function
objects. In: Vitek, J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 79-96. Springer, Heidelberg
(2010)

Pearce, D.J., Kelly, PH.J., Hankin, C.: Efficient field-sensitive pointer analysis for C. ACM
TOPLAS 30 (2007)

Rountev, A.: Precise identification of side-effect-free methods in Java. In: Proc. ICSM, pp.
82-91. IEEE Computer Society, Los Alamitos (2004)

Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using annotated con-
straints. In: Proc. OOPSLA, pp. 43-55 (2001)

Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of polymorphism
in Java software. In: Proc. ICSE, pp. 210-220 (2003)

Rountev, A., Ryder, B.G.: Points-to and side-effect analyses for programs built with pre-
compiled libraries. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 20-36. Springer,
Heidelberg (2001)

Salcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199-215. Springer, Heidelberg (2005)

Tkachuk, O., Dwyer, M.B.: Adapting side effects analysis for modular program model check-
ing. SIGSOFT Softw. Eng. Notes 28(5), 188-197 (2003)

Vakilian, M., Dig, D., Bocchino, R.L., Overbey, J., Adve, V.S., Johnson, R.: Inferring method
effect summaries for nested heap regions. In: Proc. ASE, pp. 421432 (2009)

Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using Binary
Decision Diagrams. In: Proc. PLDI, pp. 131-144. ACM Press, New York (2004)

Willis, D., Pearce, D.J., Noble, J.: Caching and incrementalisation in the java query language.
In: Proc. OOPSLA, pp. 1-18. ACM Press, New York (2008)

Xu, H., Pickett, C.J.F., Verbrugge, C.: Dynamic purity analysis for Java programs. In: Proc.
PASTE, pp. 75-82. ACM Press, New York (2007)

Zhao, J., Rogers, 1., Kirkham, C., Watson, I.: Pure method analysis within jikes rvm. In: Proc.
ICOOOLPS (2008)

	JPure: A Modular Purity System for Java
	Introduction
	A Simple Purity System
	Overview
	Modular Checking
	Problem 1 — Iterator
	Problem 2 — Append

	Our Improved Purity System
	Freshness and Locality
	Understanding Locality
	Locality Invariants
	The Law of Locality

	Implementation
	Intermediate Language
	Overview
	Abstract Semantics
	Dataflow Equations
	Purity Checking
	Purity Inference

	Experimental Results
	Discussion

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

