
D. Giannakopoulou and F. Orejas (Eds.): FASE 2011, LNCS 6603, pp. 401–415, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Search-Based Design Defects Detection by Example

Marouane Kessentini1, Houari Sahraoui1, Mounir Boukadoum2,
and Manuel Wimmer3

1 DIRO, Université de Montréal, Canada
{Kessentm, sahraouh}@iro.umontreal.ca

2 DI, Université du Québec à Montréal, Canada
mounir.boukadoum@uqam.ca

3 Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. We propose an automated approach to detect various types of design
defects in source code. Our approach allows to automatically find detection
rules, thus relieving the designer from doing so manually. Rules are defined as
combinations of metrics/thresholds that better conform to known instances of
design defects (defect examples). In our setting, we use and compare between
different heuristic search algorithms for rule extraction: Harmony Search,
Particle Swarm Optimization, and Simulated Annealing. We evaluate our
approach by finding potential defects in two open-source systems. For all these
systems, we found, in average, more than 75% of known defects, a better result
when compared to a state-of-the-art approach, where the detection rules are
manually or semi-automatically specified.

Keywords: Design defects, software quality, metrics, search-based software
engineering, by example.

1 Introduction

Many studies report that software maintenance, traditionally defined as any
modification made on a system after its delivery, consumes up to 90% of the total cost
of a software project [2]. Adding new functionalities, correcting bugs, and modifying
the code to improve its quality (by detecting and correcting design defects) are major
parts of those costs [1]. There has been much research devoted to the study of bad
design practices, also known in the literature as defects, antipatterns [1], smells [2], or
anomalies [3]. Although bad practices are sometimes unavoidable, they should
otherwise be prevented by the development teams and removed from the code base as
early as possible in the design cycle.

Detecting and fixing defects is a difficult, time-consuming, and to some extent,
manual process [5]. The number of outstanding software defects typically exceeds the
resources available to address them [4]. In many cases, mature software projects are
forced to ship with both known and unknown defects for lack of the development
resources to deal with everyone. For example, in 2005, one Mozilla developer

402 M. Kessentini et al.

claimed that “everyday, almost 300 bugs and defects appear . . . far too much for only
the Mozilla programmers to handle”. To help cope with this magnitude of activity,
several automated detection techniques have been proposed [5, 7].

The vast majority of existing work in defect detection relies on declarative rule
specification [5, 7]. In these settings, rules are manually defined to identify the key
symptoms that characterize a defect, using combinations of mainly quantitative,
structural, and/or lexical indicators. However, in an exhaustive scenario, the number
of possible defects to characterize manually with rules can be very large. For each
defect, the metric combinations that serve to define its detection rule(s) require a
substantial calibration effort to find the right threshold value to assign to each metric.
Alternatively, [5] proposes to generate detection rules using formal definitions of
defects. This partial automation of rule writing helps developers to concentrate on
symptom description. Still, translating symptoms into rules is not obvious because
there is no consensual symptom-based definition of design defects [8]. When a
consensus exists, the same symptom could be associated with many defect types,
which may compromise the precise identification of defect types. These difficulties
explain a large portion of the high false-positive rates found in existing research [8].

The previous difficulties contrast with the ease of finding defect repositories in
several companies, where defects that are manually identified and corrected are
documented. This observation is at the origin of the work described herein. We start
from the premise that defect repositories contain valuable information that can be
used to mine regularities about defect manifestations, subsequently leading to the
generation of detection rules. More concretely, we propose a new automated approach
to derive rules for design defect detection. Instead of specifying rules manually for
detecting each defect type, or semi-automatically using defect definitions, we extract
them from valid instances of design defects. In our setting, we view the generation of
design defect rules as an optimization problem, where the quality of a detection rule is
determined by its ability to conform to a base of examples that contains instances of
manually validated defects (classes).

The generation process starts from an initial set of rules that consists of random
combinations of metrics. Then, the rules evolve progressively according to the set’s
ability to detect the documented defects in the example base. Due to the potentially
huge number of possible metric combinations that can serve to define rules, a
heuristic approach is used instead of exhaustive search to explore the space of
possible solutions. To that end, we use and compare between three rule induction
heuristics : Harmony Search (HS) [9], Particle Swarm Optimization (PSO) [28] and
Simulated Annealing (SA) [27] to find a near-optimal set of detection rules.

We evaluated our approach on defects present in two open source projects:
GANTTPROJECT [11] and XERCES [12]. We used an n-fold cross validation
procedure. For each fold, six projects are used to learn the rules, which tested on the
remaining seventh project. Almost all the identified classes in a list of classes tagged
as defects (blobs, spaghetti code and functional decomposition) in previous projects
[17] were found, with a precision superior to 75%.

The remainder of this paper is structured as follows. Section 2 is dedicated to the
problem statement. In Section 3, we describe the overview of our proposal. Then
Section 4 describes the principles of the different heuristic algorithms used in our
approach and the adaptations needed to our problem. Section 5 presents and discusses

 Search-Based Design Defects Detection by Example 403

the validation results. A summary of the related work in defect detection is given in
Section 6. We conclude and suggest future research directions in Section 7.

2 Problem Statement

To understand better our contribution, it is important to define clearly the problem of
defect detection. In this section, we start by giving the definitions of important
concepts. Then, we detail the specific problems that are addressed by our approach.

2.1 Definitions

Design defects, also called design anomalies, refer to design situations that adversely
affect the development of software. As stated by Fenton and Pfleeger [3], design
defects are unlikely to cause failures directly, but may do it indirectly. In general, they
make a system difficult to change, which may in turn introduce bugs.

Different types of defects, presenting a variety of symptoms, have been studied in
the intent of facilitating their detection [1] and suggesting improvement paths. The
two types of defects that are commonly mentioned in the literature are code smells
and anti-patterns. In [2], Beck defines 22 sets of symptoms of common defects,
named code smells. These include large classes, feature envy, long parameter lists,
and lazy classes. Each defect type is accompanied by refactoring suggestions to
remove it. Brown et al. [1] define another category of design defects, named anti-
patterns, that are documented in the literature. In this section, we define the following
three that will be used to illustrate our approach and in the detection tasks of our
validation study.

• Blob: It is found in designs where one large class monopolizes the
behavior of a system (or part of it), and other classes primarily
encapsulate data.

• Spaghetti Code: It is a code with a complex and tangled control structure.
• Functional Decomposition: It occurs when a class is designed with the

intent of performing a single function. This is found in code produced by
non-experienced object-oriented developers.

For both types of defects, the initial authors focus on describing the symptoms to look
for, in order to identify occurrences of these defects.

From the detection standpoint, the process consists of finding code fragments in
the system that violate properties on internal attributes such as coupling and
complexity. In this setting, internal attributes are captured through software metrics
and properties are expressed in terms of valid values for these metrics [3]. The most
widely used metrics are the ones defined by Chidamber and Kemerer [14]. These
include the depth of inheritance tree DIT, weighted methods per class WMC and
coupling between objects CBO. Variations of this metrics, adaptations of procedural
ones as well as new metrics were also used such as the number of lines of code in a
class LOCCLASS, number of lines of code in a method LOCMETHOD, number of
attributes in a class NAD, number of methods NMD, lack of cohesion in methods
LCOM5, number of accessors NACC, and number of private fields NPRIVFIELD.

404 M. Kessentini et al.

2.2 Problem Statement

Although there is a consensus that it is necessary to detect design anomalies, our
experience with industrial partners showed that there are many open issues that need
to be addressed when defining a detection tool. Design anomalies have definitions at
different levels of abstraction. Some of them are defined in terms of code structure,
others in terms of developer/designer intentions, or in terms of code evolution. These
definitions are in many cases ambiguous and incomplete. However, they have to be
mapped into rigorous and deterministic rules to make the detection effective.

In the following, we discuss some of the open issues related to the detection.
How to decide if a defect candidate is an actual defect? Unlike software bugs,

there is no general consensus on how to decide if a particular design violates a quality
heuristic. There is a difference between detecting symptoms and asserting that the
detected situation is an actual defect.

Are long lists of defect candidates really useful? Detecting dozens of defect
occurrences in a system is not always helpful. In addition to the presence of false
positives that may create a rejection reaction from development teams, the process of
using the detected lists, understanding the defect candidates, selecting the true
positives, and correcting them is long, expensive, and not always profitable.

What are the boundaries? There is a general agreement on extreme
manifestations of design defects. For example, consider an OO program with a
hundred classes from which one implements all the behavior and all the others are
only classes with attributes and accessors. There is no doubt that we are in presence of
a Blob. Unfortunately, in real life systems, we can find many large classes, each one
using some data classes and some regular classes. Deciding which ones are Blob
candidates depends heavily on the interpretation of each analyst.

How to define thresholds when dealing with quantitative information? For
example, the Blob detection involves information such as class size. Although, we can
measure the size of a class, an appropriate threshold value is not trivial to define. A
class considered large in a given program/community of users could be considered
average in another.

How to deal with the context? In some contexts, an apparent violation of a design
principle is considered as a consensual practice. For example, a class Log responsible
for maintaining a log of events in a program, used by a large number of classes, is a
common and acceptable practice. However, from a strict defect definition, it can be
considered as a class with abnormally large coupling.

In addition to these issues, the process of defining rules manually is complex, time-
consuming and error-prone. Indeed, the list of all possible defect types can be very
large. And each type requires specific rules.

To address or circumvent the above mentioned issues, we propose to use examples
of manually found design defects to derive detection rules. Such example are in
general available and documents as part of the maintenance activity (version control
logs, incident reports, inspection reports, etc.). The use of examples allows to derive
rules that are specific to a particular company rather than rules that are supposed to be
applicable to any context. This includes the definition of thresholds that correspond to
the company best practices. Learning from examples aims also at reducing the list of
detected defect candidates.

 Search-Based Design Defects Detection by Example 405

3 Approach Overview

This section shows how, under some circumstances, design defects detection can be
seen as an optimization problem. We also show why the size of the corresponding
search space makes heuristic search necessary to explore it.

3.1 Overview

We propose an approach that uses knowledge from previously manually inspected
projects in order to detect design defects, called defects examples, to generate new
detection rules based on a combinations of software quality metrics. More specifically,
the detection rules are automatically derived by an optimization process that exploits
the available examples.

Figure 1 shows the general structure of our approach. The approach takes as inputs
a base of examples (i.e., a set of defects examples) and a set of quality metrics, and
generates as output a set of rules. The generation process can be viewed as the
combination of metrics that best detect the defects examples. In other words, the best
set of rules is that who detect the maximum number of defects.

Fig. 1. Approach overview

As showed in Figure 2, the base of examples contains some projects (systems) that
are inspected manually to detect all possible defects. In the training process, these
systems are evaluated using the generated rules in each iterations of the algorithm.A
fitness functions calculates the quality of the solution (rules) by comparing the list of
detected defects with expected ones in the base.

Fig. 2. Base of examples

406 M. Kessentini et al.

As many metrics combinations are possible, the rules generation is a combinatorial
optimization problem. The number of possible solutions quickly becomes huge as the
number of metrics increases. A deterministic search is not practical in such cases,
hence the use of heuristic search. The dimensions of the solution space are the metrics
and some operators between them: union (metric1 OR metric2) and intersection
(metric1 AND metric2). A solution is determined by the assignment of a threshold
value to each metric. The search is guided by the quality of the solution according to
the number of detected defects comparing to expected ones in the base.

To explore the solution space, we use different heuristic algorithms that will be
detailed in Section 4.

3.2 Problem Complexity

Our approach assigns to each metric a corresponding threshold value. The number m
of possible threshold value is very large. Furthermore, the rules generation process
consists of finding the best combination between n metrics. In this context, (n!) m
possible solutions have to be explored. This value can quickly become huge. A list of
5 metrics with 6 possible thresholds necessitates exploring at least 1206 combinations.
Considering these magnitudes, an exhaustive search cannot be used within a
reasonable time frame. This motivates the use of a heuristic search if a more formal
approach is not available or hard to deploy.

4 Search-Based Design Defect Detection by Example

We describe in this section the adaptation of three different heuristic algorithms to the
design defects rules generation problem. To apply it to a specific problem, one must
specify the encoding of solutions and the fitness function to evaluate a solution’s
quality. These two elements are detailed in subsections 4.1 and 4.2 respectively.

4.1 Solution Representation

One key issue when applying a search-based technique is finding a suitable mapping
between the problem to solve and the techniques to use, i.e., in our case, generating
design defects rules. As stated in Section 3, we view the set of potential solutions as
points in a n-dimensional space where each dimension corresponds to one metric or
operator (union or intersection). Figure 3 shows an illustrative example which describes
this rule: if (WMC≥4) AND (TCC≥7) AND (ATFD≥1) Then Defect_Type(1)_detected.
The WMC, TCC and ATFD are metrics defined as [14]:

• Weighted Method Count (WMC) is the sum of the statical complexity of all
methods in a class. We considered the McCabe’s cyclomatic complexity as a
complexity measure.

• Tight Class Cohesion (TCC) is the relative number of directly connected
methods.

• Access to Foreign Data (ATFD) represents the number of external classes
from which a given class accesses attributes, directly or via accessor-
methods.

 Search-Based Design Defects Detection by Example 407

• We used three types of defects : (1) blob, (2) spaghetti code and (3)
functional decomposition.

The operator used as default is the intersection (and). The other operator (union) can
be used as a dimension. The vector presented in Figure 3 generates only one rule.
However, a vector may contain many rules separated by the dimension “Type”.

Fig. 3. Solution Representation

4.2 Evaluating Solutions

The fitness function quantifies the quality of the generate rules. As discussed in
Section 3, the fitness function must consider the following aspect:

• Maximize the number of detected defects comparing to expected ones in the
base of examples

In this context, we define the fitness function of a solution as

∑
=

=
p

i
iaf

1

 (1)

Where p represents the number of detected classes. ai has value 1 if the ith detected
classes exists in the base of examples, and value 0 otherwise.

4.3 Search Algorithms

4.3.1 Harmony Search (HS)
The HS algorithm is based on natural musical performance processes that occur when
a musician searches for a better state of harmony, such as during jazz improvisation
[9]. Jazz improvisation seeks to find musically pleasing harmony as determined by an
aesthetic standard, just as the optimization process seeks to find a global solution as
determined by a fitness function. The pitch of each musical instrument determines the
aesthetic quality, just as the fitness function value is determined by the set of values
assigned to each dimension in the solution vector.

In general, the HS algorithm works as follows:

Step 1. Initialize the problem and algorithm parameters.
The HS algorithm parameters are specified in this step. They are the harmony
memory size (HMS), or the number of solution vectors in the harmony memory;
harmony memory considering rate (HMCR); bandwidth (bw); pitch adjusting rate
(PAR); and the number of improvisations (K), or stopping criterion.

408 M. Kessentini et al.

Step 2. Initialize the harmony memory.
The initial harmony memory is generated from a uniform distribution in the ranges
[ximin,ximax] (i = 1,2, . . .,N) , as shown in Equation 1 :

HM =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1-HMS
N

 HMS
21

1
N

1
2

1
1

 x. x

.

.

 x. . x

HMSx

x

 (2)

Step 3. Improvise a new harmony.
Generating a new harmony is called improvisation. The new harmony vector x’ =
(x’1, x’2,…, x’N) is determined by the memory consideration, pitch adjustment and
random selection.
Step 4. Update harmony memory.
If the fitness of the improvised harmony vector x’ = (x’1, x’2,…, x’N) is better than the
worst harmony, replace the worst harmony in the IHM with x’.
Step 5. Check the stopping criterion: If the stopping criterion (maximum number of
iterations K) is satisfied, computation is terminated. Otherwise, step 3 is repeated.

4.3.2 Particle Swarm Optimization (PSO)
PSO is a parallel population-based computation technique [31]. It was originally
inspired from the flocking behavior of birds, which emerges from very simple
individual conducts. Many variations of the algorithm have been proposed over the
years, but they all share a common basis. First, an initial population (named swarm)
of random solutions (named particles) is created. Then, each particle flies in the
n-dimensional problem space with a velocity that is regularly adjusted according to
the composite flying experience of the particle and some, or all, the other particles.
All particles have fitness values that are evaluated by the objective function to be
optimized. Every particle in the swarm is described by its position and velocity. A
particle position represents a possible solution to the optimization problem, and
velocity represents the search distances and directions that guide particle flying. In
this paper, we use basic velocity and position update rules defined by [31]:

)(()2)(()1 idXgdPRandCidXidPrandCidVWidV −∗∗+−∗∗+∗=
 (3)

idVidXidX += (4)

At each time (iteration), Vid represents the particle velocity and Xid its position in the
search space. Pid (also called pbest for local best solution), represents the ith particle’s
best previous position, and Pgd (also called gbest for global best solution), represents
the best position among all particles in the population. w is an inertia term; it sets a
balance between the global and local exploration abilities in the swarm. Constants c1
and c2 represent cognitive and social weights associated to the individual and global
behavior, respectively. There are also two random functions rand() and Rand()

 Search-Based Design Defects Detection by Example 409

(normally uniform in the interval [0, 1]) that represent stochastic acceleration during
the attempt to pull each particle toward the pbest and gbest positions. For a n-
dimensional search space, the ith particle in the swarm is represented by a n-
dimensional vector, xi=(xi1,xi2,…,xid). The velocity of the particle, pbest and gbest are
also represented by n-dimensional vectors.

4.3.3 Simulated Annealing (SA)
SA [19] is a search algorithm that gradually transforms a solution following the
annealing principle used in metallurgy.

After defining an initial solution, the algorithm iterates the following three steps:

1 Determine a new neighboring solution,
2 Evaluate the fitness of the new solution
3 Decide on whether to accept the new solution in place of the current one

based on the fitness gain/lost (∆cost).

When ∆cost < 0, the new solution has lower cost than the current solution and it is
accepted. For ∆cost > 0 the new solution has higher cost. In this case, the new
solution is accepted with probability e -∆cost /T. The introduction of a stochastic element
in the decision process avoids being trapped in a local minimum solution. Parameter
T, called temperature, controls the acceptance probability of a lesser good solution. T
begins with a high value, for a high probability of accepting a solution during the
early iterations. Then, it decreases gradually (cooling phase) to lower the acceptation
probability as we advance in the iteration sequence. For each temperature value, the
three steps of the algorithm are repeated for a fixed number of iterations.

5 Validation

To test our approach, we studied its usefulness to guide quality assurance efforts on
an open-source program. In this section, we describe our experimental setup and
present the results of an exploratory study.

5.1 Goals and Objectives

The goal of the study is to evaluate the efficiency of our approach for the detection of
design defects from the perspective of a software maintainer conducting a quality
audit. We present the results of the experiment aimed at answering the following
research questions:

RQ1: To what extent can the proposed approach detect design defects?
RQ2: What types of defects does it locate?

To answer RQ1, we used an existing corpus of known design defects to evaluate the
precision and recall of our approach. We compared our results to those produced by
an existing rule-based strategy [5]. To answer RQ2, we investigated the type of
defects that were found.

410 M. Kessentini et al.

5.2 System Studied

We used two open-source Java projects to perform our experiments: GanttProject
(Gantt for short) v1.10.2, and Xerces-J v2.7.0.

Table 1. Program statistics

Systems Number of classes KLOC

GanttProject v1.10.2 245 31
Xerces-J v2.7.0 991 240

Table 1 summarizes facts on these programs. Gantt�is a tool for creating project

schedules by means of Gantt charts and resource-load charts. Gantt enables breaking
down projects into tasks and establishing dependencies between these tasks. Xerces-J
is a family of software packages for parsing and manipulating XML. It implements a
number of standard APIs for XML parsing.

In our experiments, we used some of the classes in Gantt as our example set of
design defects. These examples are validated manually by a group of experts [17]. We
choose the Xerces-J and Gantt libraries because they are medium sized open-source
projects and were analysed in related work. The version of Gantt studied was known
to be of poor quality, which lead to a new major version. Xerces-J on the other hand
has been actively developed over the past 10 years and its design has not been
responsible for a slowdown of its development.

In [5], Moha et al. asked three groups of students to analyse the libraries to tag
instances of specific antipatterns to validate their detection technique, DECOR. For
replication purposes, they provided a corpus of describing instances of different
antipatters including: Blob classes, Spaghetti code, and Functional Decompositions.
Blobs are classes that do or know too much. Spaghetti Code (SC) is code that does not
use appropriate structuring mechanisms. Functional Decomposition (FD) is code that
is structured as a series of function calls. These represent different types of design
risks. In our study, we verified the capacity of our approach to locate classes that
corresponded to instances of these antipatterns. Thus, Xerces-J is then analyzed using
some defects examples from Gantt and vice-versa.

The obtained results were compared to those of DECOR [5]. For every antipattern
in Xerces-J and Gantt, they published the number of antipatterns detected, the number
of true positives, the recall (number of true positives over the number of design
defects) and the precision (ratio of true positives over the number detected). Our
comparison is consequently done using precision and recall.

5.3 Results

Tables 2, 3 and 4 summarize our findings. The results show that HS performs
comparing to PSO and SA. In fact, the two global search algorithms HS and PSO are
suitable to explore large search space. For Gantt, our precision average is 87%.
DECOR on the other hand has a combined precision of 59% for its detection on the

 Search-Based Design Defects Detection by Example 411

Table 2. HS results

System Precision Recall
Gantt Spaghetti: 82%

Blob: 100%
F.D: 87%

Spaghetti: 90%
Blob: 100%
F.D: 47%

Xerces-J Spaghetti:82%
Blob:93%
F.D:76%

Spaghetti:84%
Blob:94%
F.D:60%

Table 3. PSO results

System Precision Recall
Gantt Spaghetti: 79%

Blob: 100%
F.D: 82%

Spaghetti: 94%
Blob: 100%
F.D: 53%

Xerces-J Spaghetti:89%
Blob:91%
F.D:73%

Spaghetti:81%
Blob:92%
F.D:68%

Table 4. SA results

System Precision Recall
Gantt Spaghetti: 81%

Blob: 100%
F.D: 80%

Spaghetti: 95%
Blob: 100%
F.D: 51%

Xerces-J Spaghetti:77%
Blob:91%
F.D:71%

Spaghetti:80%
Blob:92%
F.D:69%

same set of antipatterns. For Xerces-J, our precision average is of 83%. For the same
dataset, DECOR had a precision of 67%. However, the recall score for both systems
is less than DECOR. In fact, the rules defined in DECOR are large and this is
explained by the lower score in terms of precision, In the context of this experiment,
we can conclude that our technique is able to accurately identify design anomalies
more accurately than DECOR (RQ1).

We noticed that our technique does not have a bias towards the detection of
specific anomaly types. In Xerces-J, we had an almost equal distibution of each
antipattern. On Gantt, the distribution is not as balanced. This is principally due to the
number of actual antipatterns in the system.

The detection of FDs using only metrics seems difficult. This difficulty is why
DECOR includes an analysis of naming conventions to perform its detection. Using
naming convention means that their results depend on the coding practices of a
development team. Our results are however comparable to theirs while we do not
leverage lexical information. The complete results of our experiments, including the
comparison with DÉCOR, can be found in [18].

412 M. Kessentini et al.

5.4 Discussion

The reliability of the proposed approach requires an example set of bad code. It can
be argued that constituting such a set might require more work than identifying,
specifying, and adapting rules. In our study, we showed that by using Gantt or
Xerces-J directly, without any adaptation, the technique can be used out of the box
and this will produce good detection and recall results for the detection of antipatterns
for the two systems studied.

The performance of this detection was superiour to that of DECOR. In an industrial
setting, we could expect a company to start with Xerces-J or Gantt, and gradually
migrate its set of bad code examples to include context-specific data. This might be
essential if we consider that different languages and software infrastructures have
different best/worst practices.

Another issue is the rules generation process. The detection results might vary
depending on the used rules which are generated randomly though guided by a meta-
heuristic. To ensure that our results are relatively stable, we compared the results of
multiple executions for rules generation. We observed an average recall and precision
more than 80% for both Gantt and Xerces-J with the three different heuristic search
algoithms. Furthermore, we found that the majority of defects detected are found in
every execution. We consequently believe that our technique is stable, since the
precision and recall scores are approximately the same for different executions.

Another important advantage comparing to machine learning techniques is that our
search algorithms do not need both positive (good code) and negative (bad code)
examples to generate rules like for example Inductive Logic Programming [19].

Finally, since we viewed the design defects detection problem as a combinatorial
problem addressed with heuristic search, it is important to contrast the results with the
execution time. We executed our algorithm on a standard desktop computer (Pentium
CPU running at 2 GHz with 2GB of RAM). The execution time for rules generation
with a number of iteration (stopping criteria) fixed to 500 is less than three minutes
(2min36s). This indicates that our approach is scalable from the performance
standpoint. However, the execution time depends to the number of used metrics and
the size of the base of examples. It should be noted that more important execution
times may be obtained in comparison with using DECOR. In any case, our approach
is meant to apply to situations where manual rule-based solutions are normally not
easily available.

6 Related Work

Several studies have recently focused on detecting design defects in software using
different techniques. These techniques range from fully automatic detection to guided
manual inspection. The related work can be classified into three broad categories:
metric-based detection, detection of refactoring opportunities, visual-based detection.

In first category, Marinescu [7] defined a list of rules relying on metrics to detect
what he calls design flaws of OO design at method, class and subsystem levels. Erni
et al. [20] use metrics to evaluate frameworks with the goal of improving them. They
introduce the concept of multi-metrics, as an n-tuple of metrics expressing a quality

 Search-Based Design Defects Detection by Example 413

criterion (e.g., modularity). The main limitation of the two previous contributions is
the difficulty to define manually threshold values for metrics in the rules. To
circumvent this problem, Alikacem et al. [21] express defect detection as fuzzy rules
with fuzzy label for metrics, e.g., small, medium, large. When evaluating the rules,
actual metric values are mapped to truth value for the labels by means of membership
functions. Although no thresholds have to be defined, still, it is not obvious to decide
for membership functions.

The previous approaches start from the hypothesis that all defect symptoms could
be expressed in terms of metrics. Actually, many defects involve notions that could
not quantified. This observation was the foundation of the work of Moha et al. [5]. In
their approach, named DECOR, they start by describing defect symptoms using an
abstract rule language. These descriptions involve different notions such as class roles
and structures. The descriptions are later mapped to detection algorithms. In addition
to the threshold problem, this approach uses heuristics to approximate some notions
with results in an important rate of false positives. Khomh et al. [4] extended DECOR
to support uncertainty and to sort the defect candidates accordingly. Uncertainty is
managed by Bayesian belief networks that implement the detection rules of DECOR.
The detection outputs are probabilities that a class is an occurrence of a defect type.

In our approach, all the above mentioned problems related to the use of rules and
metrics do not arise. Indeed, the symptoms are not explicitly used, which reduces the
manual adaptation/calibration effort.

In the second category of work, defects are not detected explicitly. They are
implicitly because, the approaches refactor a system by detecting elements to change
to improve the global quality. For example, in [22], defect detection is considered as
an optimization problem. The authors use a combination of 12 metrics to measure the
improvements achieved when sequences of simple refactorings are applied, such as
moving methods between classes. The goal of the optimization is to determine the
sequence that maximize a function, which captures the variations of a set of metrics
[23]. The fact that the quality in terms of metrics is improved does not necessary
means that the changes make sense. The link between defect and correction is not
obvious, which make the inspection difficult for the maintainers. In our case, we
separate the detection and correction phase. In [8, 26], we have proposed an approach
for the automatic detection of potential design defects in code. The detection is based
on the notion that the more code deviates from good practices, the more likely it is
bad. Taking inspiration from artificial immune systems, we generated a set of
detectors that characterize different ways that a code can diverge from good practices.
We then used these detectors to measure how far code in assessed systems deviates
from normality.

7 Conclusion

In this article, we presented a novel approach for tackling the problem of detecting
design defects. Typically, researchers and practitioners try to characterize different
types of common design defects and present symptoms to use in order to locate them
in a system. In our work, we show that we do not need this knowledge to perform
detection. Instead, all we need is some examples of design defects to generate

414 M. Kessentini et al.

detection rules. Interestingly enough, our study shows that our technique outperforms
DECOR [5], a state of the art, metric-based approach, where rules are defined
manually, on its test corpus.

The proposed approach was tested on open-source systems and the results were
promising. The detection process uncovered different types of design defects was
more efficiently than DECOR. The comparison between three heuristic algorithm
shows that HS give better results than PSO and SA. Furthermore, as DECOR needed
an expert to define rules, our results were achieved without any expert knowledge,
relying only on the bad structure of Gantt to guide the detection process.

The benefits of our approach can be summarized as follows: 1) it is fully
automatable; 2) it does not require an expert to manually write rules for every defect
type and adapt them to different systems; 3) the rule generation process is executed
once; then, the obtained rules can be used to evaluate any system.

The major limitations of our approach are: 1) the generated rules are based on
metrics, and some defects may require additional or different knowledge to be
detected; 2) the approach requires the availability of a code base that is representative
of bad design practices, and where all the possible design defects are already detected.

As part of our future work, we plan to explore the second step: correction of
detected design defects (refactoring). Furthermore, we need to extend our base of
examples with other bad-designed code in order to take into consideration different
programming contexts.

References

1. Brown, W.J., Malveau, R.C., Brown, W.H., McCormick III, H.W., Mowbray, T.J.: Anti
Patterns: Refactoring Software, Architectures, and Projects in Crisis, 1st edn. John Wiley
and Sons, Chichester (March 1998)

2. Fowler, M.: Refactoring – Improving the Design of Existing Code. 1st edn. Addison-
Wesley, Reading (June 1999)

3. Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd edn.
International Thomson Computer Press, London (1997)

4. Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H.: A Bayesian Approach for the
Detection of Code and Design Smells. In: Proc. of the ICQS 2009 (2009)

5. Moha, N., Guéhéneuc, Y.-G., Duchien, L., Meur, A.-F.L.: DECOR: A method for the
specification and detection of code and design smells. Transactions on Software
Engineering (TSE), 16 pages (2009)

6. Liu, H., Yang, L., Niu, Z., Ma, Z., Shao, W.: Facilitating software refactoring with
appropriate resolution order of bad smells. In: Proc. of the ESEC/FSE 2009, pp. 265–268
(2009)

7. Marinescu, R.: Detection strategies: Metrics-based rules for detecting design flaws. In:
Proc. of ICM 2004, pp. 350–359 (2004)

8. Kessentini, M., Vaucher, S., Sahraoui, H.: Deviance from perfection is a better criterion
than closeness to evil when identifying risky code. In: Proc. of the International
Conference on Automated Software Engineering, ASE 2010 (2010)

9. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering
optimization: harmony search theory and practice. Comput. Method Appl. M 194(36-38),
3902–3933 (2005)

 Search-Based Design Defects Detection by Example 415

10. Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.W.: The harmony search heuristic algorithm for
discrete structural optimization. Eng Optimiz 37(7), 663–684 (2005)

11. http://ganttproject.biz/index.php
12. http://xerces.apache.org/
13. Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, Reading (1996)
14. Gaffney, J.E.: Metrics in software quality assurance. In: Proc. of the ACM 1981

Conference, pp. 126–130. ACM, New York (1981)
15. Mantyla, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical study of

bad smells in code. In: Proc. of ICSM 2003. IEEE Computer Society, Los Alamitos (2003)
16. Wake, W.C.: Refactoring Workbook. Addison-Wesley Longman Publishing Co., Inc.,

Boston (2003)
17. http://www.ptidej.net/research/decor/index_html
18. http://www.marou ane-kessentini/FASE10.zip
19. Raedt, D.: Advances in Inductive Logic Programming, 1st edn. IOS Press, Amsterdam

(1996)
20. Erni, K., Lewerentz, C.: Applying design metrics to object-oriented frameworks. In: Proc.

IEEE Symp. Software Metrics. IEEE Computer Society Press, Los Alamitos (1996)
21. Alikacem, H., Sahraoui, H.: Détection d’anomalies utilisant un langage de description de

règle de qualité, in actes du 12e colloque LMO (2006)
22. O’Keeffe, M., Cinnéide, M.: Search-based refactoring: an empirical study. Journal of

Software Maintenance 20(5), 345–364 (2008)
23. Harman, M., Clark, J.A.: Metrics are fitness functions too. In: IEEE METRICS, pp. 58–69.

IEEE Computer Society Press, Los Alamitos (2004)
24. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model Transformation as an

Optimization Problem. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

25. Kirkpatrick, D.S., Gelatt, Jr., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671680 (1983)

26. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and
resources. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2001), pp. 81–86
(2001)

	Search-Based Design Defects Detection by Example
	Introduction
	Problem Statement
	Definitions
	Problem Statement

	Approach Overview
	Overview
	Problem Complexity

	Search-Based Design Defect Detection by Example
	Solution Representation
	Evaluating Solutions
	Search Algorithms

	Validation
	Goals and Objectives
	System Studied
	Results
	Discussion

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

