Limits on the Stretch of Non-adaptive
Constructions of Pseudo-Random Generators

Josh Bronson!, Ali Juma?, and Periklis A. Papakonstantinou®*
! HP TippingPoint
josh.t.bronson@hp.com
2 University of Toronto
ajuma@cs.toronto.edu
3 ITCS, Tsinghua University
papakons@tsinghua.edu.cn

Abstract. The standard approach for constructing a large-stretch
pseudo-random generator given a one-way permutation or given a smaller-
stretch pseudo-random generator involves repeatedly composing the given
primitive with itself. In this paper, we consider whether this approach is
necessary, that is, whether there are constructions that do not involve com-
position. More formally, we consider black-box constructions of pseudo-
random generators from pseudo-random generators of smaller stretch or
from one-way permutations, where the constructions make only non-
adaptive queries to the given object. We consider three classes of such con-
structions, and for each class, we give a black-box impossibility result that
demonstrates a contrast between the stretch that can be achieved by adap-
tive and non-adaptive black-box constructions.

We first consider constructions that make constantly-many non-
adaptive queries to a given pseudo-random generator, where the seed
length of the construction is at most O(log n) bits longer than the length
n of each oracle query. We show that such constructions cannot achieve
stretch that is even a single bit greater than the stretch of the given
pseudo-random generator.

‘We then consider constructions with arbitrarily long seeds, but where or-
acle queries are collectively chosen in a manner that depends only on a por-
tion of the seed whose length is at most O(log n) bits longer than the length
n of each query. We show that such constructions making constantly-many
non-adaptive queries cannot achieve stretch that is w(logn) bits greater
than the stretch of the given pseudo-random generator.

Finally, we consider a class of constructions motivated by streaming
computation. Specifically, we consider constructions where the compu-
tation of each individual output bit depends only on the seed and on
the response to a single query to a one-way permutation. We allow the
seed to have a public portion that is arbitrarily long but must always be
included in the output, and a non-public portion that is at most O(logn)
bits longer than the length n of each oracle query. We show that such

* P.P. is supported in part by the NSF China Grant 61050110452, 60553001, 61073174,
61033001 and the National Basic Research Program of China Grant 2007CB807900,
2007CB807901.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 504 2011.
© International Association for Cryptologic Research 2011

Limits on the Stretch of Non-adaptive Constructions 505

constructions whose queries are chosen non-adaptively based only on the
non-public portion of the seed cannot achieve linear stretch.

1 Introduction

It is well known that if there exist pseudo-random generators obtaining even
one bit of stretch, then for every polynomial p(n), there exist pseudo-random
generators obtaining p(n) bits of stretch. The usual approach for constructing
a pseudo-random generator of large stretch from a pseudo-random generator
of smaller stretch involves composing the smaller-stretch generator with itself
repeatedly. Similarly, the usual approach for constructing a pseudo-random gen-
erators of large stretch from a one-way permutation involves composing the
one-way permutation with itself repeatedly.

In this paper, we consider whether there exist such constructions that do
not involve composition. To formalize this requirement about composition, we
consider constructions that only have oracle access to the given object (a smaller-
stretch pseudo-random generator or a one-way permutation) and query this
oracle non-adaptively. We refer to such constructions as non-adaptive (oracle)
constructions.

Given oracle access to a pseudo-random generator or a one-way per-
mutation is it possible to construct, via non-adaptive oracle queries, a
pseudo-random generator of large stretch?

We give a number of black-box impossibility results for non-adaptive oracle con-
structions of pseudo-random generators. Some of these arguments are rather
technically involved. Roughly speaking, we answer in the negative whether we
can obtain, with only a constant number of queries to a pseudo-random genera-
tor, a pseudo-random generator of much larger stretch, where answers to these
non-adaptive queries are combined arbitrarily. The challenge is to deal with this
arbitrary computation phase.

Non-adaptive constructions are conceptually related to streaming cryptogra-
phy; that is, computing private-key primitives with a device that uses small
space and accesses the seed a small number of times. One of the three non-
adaptive settings we consider in this paper is motivated by questions in streaming

cryptography.

Our results. Observe that if pseudo-random generators exist, then there exist
trivial non-adaptive oracle constructions of large-stretch pseudo-random gener-
ators: such constructions can simply ignore their oracle and directly compute
a large-stretch pseudo-random generator. Since we are interested in construc-
tions that use their oracle in a non-trivial way, we focus on constructions whose
pseudo-randomness is proven using a black-boz reduction [8] to the the security
(pseudo-randomness or one-wayness) of their oracle.

We consider three classes of such constructions, and give bounds on the stretch
that can be obtained by each class. For each class, our results demonstrate a

506 J. Bronson, A. Juma, and P.A. Papakonstantinou

contrast between the stretch that can be achieved by adaptive and non-adaptive
constructions. We show that, in some sense, whatever was already known re-
garding algorithms for non-adaptive constructions is the best we can hope for.
While we are primarily interested in constructions that are polynomial-time
computable, our bounds hold even for computationally-unbounded constructions
(where the number of oracle queries is still bounded).

— Class 1: Constructions with short seeds

Suppose we have a pseudo-random generator f : {0,1}" — {0,1}"+5(®) and
we wish to obtain a pseudo-random generator with larger stretch, say stretch
2-5(n). We can easily define such a generator G¥ : {0, 1} — {0, 1}*+25(") ag
follows: on input = € {0,1}", GI computes yo|[y1 = f(z) (where |yo| = s(n)
and |y1| = n), and outputs yo||f(y1). G can be formalized as a fully black-
box construction making two adaptive oracle queries, each of the same length
as G’s seed x, to an oracle mapping n bits to n + s(n) bits. This idea can
easily be extended to obtain, for every k € N, a fully black-box construction
making & adaptive oracle queries and achieving stretch k - s(n).

We show that fully black-box constructions making constantly-many
queries, each of the same length as their seed length n, must make adaptive
queries even to achieve stretch s(n) + 1, that is, even to achieve a one-bit
increase in stretch. We show that this also holds for constructions whose
seed length is at most O(logn) bits longer than the length n of each oracle
query.

— Class 2: Constructions with long seeds

What about constructions whose seed length is significantly longer than the
length of each oracle query? Can we also show that such constructions must
make adaptive oracle queries in order to achieve greater stretch than their
oracle? In fact, a very simple way for such a construction to make non-
adaptive oracle queries, yet achieve greater stretch than its oracle, involves
splitting up its seed into two or more portions, and using each portion as
an oracle query. For example, if f : {0,1}" — {0,1}"*! is pseudo-random,
then the generator G/ : {0,1}%" — {0, 1}?"+2 defined for all 21,22 € {0,1}"
as GY(21]|z2) = f(x1)||f(z2) is also pseudo-random. Observe that when
this construction is given an input chosen uniformly at random, the oracle
queries 1 and x5 are chosen independently (and uniformly at random); this
property is crucial for the construction’s security.

What about constructions where oracle queries cannot be chosen indepen-
dently and uniformly at random? Specifically, what if we consider construc-
tions where we place no restriction on the seed length, but insist that oracle
queries are collectively chosen in a manner that depends only on a portion
of the seed that is not too much longer than the length of each oracle query
(making it impossible to simply split up the seed into multiple queries)? While
this setting may seem unnatural at first, it is possible in this setting to ob-
tain a construction that makes constantly-many non-adaptive oracle queries
to a pseudo-random generator and achieves more stretch than its oracle; in-
deed, even a single query suffices. For example, if f : {0, 1} — {0,1}7+s(?)
is pseudo-random, then by the Goldreich-Levin theorem [6] we have that for

Limits on the Stretch of Non-adaptive Constructions 507

all functions m(n) € O(logn), the number generator G¥ : {0, 1}»m(+n
{0, 1}rm(mtntsm)+m(n) defined for all 1,72, ..., Ty(ny, = € {0,1}" as

GT (rilirall. . Nrmll2) = rallrall. 1w L @)1 @)z,)] - Armn) , 2)

is pseudo-random; the stretch of G¥ is m(n) bits greater than the stretch of
f. Also observe that the query made by G() depends only on a portion of the
seed of G() whose length is the same as the length of the query (indeed, the
query is identical to this portion of the seed). Using this Goldreich-Levin-
based approach, it is easy to see that adaptive black-box constructions whose
input length is much longer than the length n of each oracle query can obtain
stretch & - s(n) + O(logn) by making k queries to an oracle of stretch s(n),
even when the portion of the seed that is used to choose oracle queries has
length n.

We show that fully black-box constructions G() making constantly-many
queries of length n to a pseudo-random generator f : {0,1}" — {0, 1}7+s("),
such that only the rightmost n + O(logn) bits of the seed of G®) are used to
choose oracle queries, must make adaptive queries in order to achieve stretch
s(n) + w(logn). That is, such constructions making constantly-many non-
adaptive queries cannot achieve greater stretch than the stretch provided by
Goldreich-Levin with just a single query. This holds no matter how long a
seed is used by the construction G().

Class 3: Goldreich-Levin-like constructions

The final class of constructions we consider is motivated by the streaming
computation of pseudo-random generators. What is the relationship between
non-adaptivity and streaming? In what sense could one prove a black-box
lower bound that rules out streaming constructions of pseudo-random gener-
ator G of linear stretch using a one-way permutation 7?7 A black-box lower-
bound stated for a streaming device has to reference the many details of
the model. We wish to state a similar thing in a setting that abstracts out
a common property of streaming algorithms extended to have oracle access
to a one-way permutation. Can a streaming algorithm be adaptive (even
when we do not account for the space occupied by the oracle tape), in the
sense that a query depends on many bits of previous queries? Given that
a random input is incompressible, and the fact that we lack space (so as
to store) and passes over the input (so as to recompute), it is plausible to
consider non-adaptivity as a clean setting for studying black-box streaming
constructions.

We consider a class of constructions where the seed has a public portion
that is always included in the output, the choice of each oracle query does
not depend on the public portion of the seed, and the computation of each
individual output bit depends only on the seed and on the response to a sin-
gle oracle query. We refer to such constructions making non-adaptive oracle
queries as bitwise-nonadaptive constructions. It is not hard to see that such
constructions making polynomially-many adaptive queries to a one-way per-
mutation 7 : {0,1}™ — {0,1}" can achieve arbitrary polynomial stretch; the

508 J. Bronson, A. Juma, and P.A. Papakonstantinou

idea is to repeatedly compose 7 with itself, outputting a hardcore bit of 7 on
each composition. For example, using the Goldreich-Levin hardcore bit [6],
a standard way of constructing a pseudo-random generator G of polynomial
stretch p(n) is the following: On input r,z € {0,1}™,

G (rllz) = rll{r, &) |[{r, m(@))|(r, 7> @)]] . .. [[(r, 7P F" ()

where 7 = gomo...om, and (a, 5) denotes the standard inner product
of a and . Obsé;ggesthat the leftmost n bits of the seed of G are public
in the sense that they are included in the output. Also observe that each
of the remaining output bits of G is computed using only a single output
of w along with the input bits of G. Finally, observe that the queries made
to m do not depend on the public input bits of G, and the number of non-
public input bits is no greater than the length n of each oracle query. It
is natural to ask whether the adaptive use of 7™ in a construction of this
form is necessary. This is particularly interesting if we wish to compute G
in a streaming setting where we have small workspace, we are allowed to
produce the output bit-by-bit, and we are allowed to re-read the input once
per output bit.

We show that fully black-box bitwise-nonadaptive constructions G() mak-
ing queries of length n to a one-way permutation, such that the non-public
portion of the seed of G(*) is of length at most n 4+ O(logn), cannot achieve
linear stretch. This holds no matter the length of the public portion of the
seed of GO,

We conclude this paper with some remarks and observations about streaming
models for cryptography. Our treatment of streaming models mostly serves the
purpose of proposing some new research directions.

Related work. Black-box reductions were formalized by Impagliazzo and Rudich
[8], who observed that most proofs of security in cryptography are of this form.
Impagliazzo and Rudich also gave the first black-box impossibility results. In
their most general form, such results show that for particular security properties
P, and P, it is impossible to give a black-box construction of P; from P». The
same approach can also be applied to particular classes of black-box construc-
tions, such as those making some restricted number of oracle queries or those
that query their oracle non-adaptively. A large number of impossibility results
have been given using this framework. The results most closely related to the
problem we are considering are those of Gennaro et al [5], Viola [I3], Lu [I0],
and Miles and Viola [11].

Gennnaro et al [5] consider black-box constructions of pseudo-random gen-
erators from one-way permutations. They show that such constructions cannot
achieve w(logn) bits of stretch per oracle query of length n, even when queries
are chosen adaptively. Their result can be extended in a straightforward way to
show that for the second class of constructions we consider (and also for a more
general class where queries are allowed to depend on the entire seed), for every

Limits on the Stretch of Non-adaptive Constructions 509

k € N, constructions making k oracle queries to a pseudo-random generator of
stretch s(n) cannot achieve stretch k-s(n)+w(logn), even when these queries are
chosen adaptively. By contrast, recall that we show that for this class of construc-
tions, for every k € N, constructions making k non-adaptive oracle queries to a
pseudo-random generator of stretch s(n) cannot achieve stretch s(n) 4+ w(logn).

Viola [I3] considers black-box constructions of pseudo-random generators
from one-way functions where oracle queries are non-adaptive but chosen in
a computationally unbounded way, while the output of the construction is com-
puted from the query responses by an AC® (polynomial-size and constant-depth)
circuit. He shows that such constructions cannot achieve linear stretch. The class
of constructions considered by Viola is, in general, incomparable to the classes
we consider. His class is more general in terms of the numbers of queries allowed
and the way that queries are chosen: he places no bounds on the number of
queries, allows the queries to be chosen arbitrarily based on the seed (while we
require queries to be chosen in a computable manner), and places no restrictions
on the length of the queries relative to the length of the seed. On the other
hand, his class is more restrictive in terms of the computational power allowed
after the query responses are received: he only allows AC® computation, while
we allow unbounded computation.

Lu [10] considers the same class of constructions as Viola, except that Lu
allows the output to be computed from the query responses by a subexponential-
size constant-depth circuit (rather than an AC’ circuit). He shows that such
constructions cannot achieve linear stretch.

Miles and Viola [I1] consider black-box constructions of pseudo-random gen-
erators from pseudo-random generators of 1-bit stretch, where the oracle queries
are non-adaptive but chosen in a computationally unbounded way, while the
output of the construction consists simply of query response bits; that is, these
constructions are not allowed to perform any computation on query responses.
They show that such constructions cannot achieve linear stretch. Like the con-
structions considered by Viola [13] and Lu [I0], the class of constructions consid-
ered by Miles and Viola is, in general, incomparable to the classes we consider:
the constructions they consider are more general in the manner in which queries
are chosen (they place no restrictions on the length of queries relative to the
length of the seed), but much more restrictive in terms of the computational
power allowed after query responses are received.

In the positive direction, Haitner et al [7] give the first non-adaptive black-
box construction of a pseudo-random generator from a one-way function. Their
construction achieves sublinear stretch. They also give a non-adaptive black-box
construction achieving linear stretch, but this requires an exponentially-hard one-
way function. In both of these constructions, the oracle queries are collectively
chosen based on a portion of the seed that is significantly longer than the length
of each oracle query. By contrast, recall that all of our impossibility results are
for constructions where the oracle queries are collectively chosen based on a
portion of the seed that is no more than logarithmically-many bits longer than
the length of each oracle query.

510 J. Bronson, A. Juma, and P.A. Papakonstantinou

Organization. Section [l contains definitions and preliminaries. The impossibility
results for constructions with short seeds and long seeds are discussed in Sections
and [respectively. In Section Bl we state a restriction on the way that con-
structions choose oracle queries, and under this restriction we extend the results
of Sections Bl and [to constructions making polynomially-many queries. The
impossibility result for Goldreich-Levin-like constructions is found in Section [6l
Section [contains our remarks on streaming models in cryptography.

2 Preliminaries

Notation. We use “PPT” to denote “probabilistic polynomial time”. We denote
by (a), the n-bit binary string representation of @ € N, padded with leading zeros
when necessary. If the desired representation length is clear from the context,
we write (a) instead of (a),. If a > 2", then (a), denotes the n least significant
bits of the binary representation of a. We denote by z||y the concatenation of
strings x and y.

2.1 Pseudo-Random Generators and One-Way Functions

A length-increasing function G : {0,124 — {0,1}2(") is a pseudo-random
generator if for every PPT adversary M, we have

= — = < ¢
B MG =1 P M) =1 <1/

for all ¢ and sufficiently large n.
A function f : {0,1}41(™) — {0,1}%() is one-way if for every PPT adver-
sary M, we have lzr(: [f (M (f(x))) = f(x)] <1/n°for all ¢ and sufficiently
r—L1(n

large n.

2.2 Non-adaptive Constructions

Our impossibility results are for constructions that use their oracle in a non-
adaptive manner.

Definition 1 (Non-adaptive oracle machine). Let M) be a deterministic
oracle Turing machine. We say that M) is a non-adaptive oracle machine if
the oracle queries made by M) are determined by only the input to M), and,
in particular, do not depend on the responses to previous queries.

We will sometimes need to refer to the querying function of a non-adaptive oracle
machine.

Definition 2 (Querying function). Let ¢1(n), l2(n), and p(n) be polynomials,
and let MO : {0,130 — {0,1}2(") be a non-adaptive oracle machine that
makes p(n) oracle queries, each of length n. The querying function of MO,

Limits on the Stretch of Non-adaptive Constructions 511

denoted Qnr, is the function Qpr : {0,131 x {0, 1}1°8P(") — {0, 1}" such that
for all x € {0,1}*0") and 0 < i < p(n), the i-th oracle query made by M©)(z)
is Qu(z, (3)). When p(n) =1, the second argument to Qp s omitted.

If there exists a polynomial r(n) such that the queries made by MO depend
only on the rightmost r(n) bits of the input of M), then the r(n)-restricted
querying function of M), denoted Q?V(["), is the function Qr(") {0,1}7(™
{0, 1}leer() — 10,1} such that for all v € {0,1}1()=r() 4y € {0,137 and
0 < i < p(n), the i-th oracle query made by M) (v||w) is Qr(n)(, (3)).

2.3 Black-Box Reductions

Reingold, Trevisan, and Vadhan [12] give a classification of black-box security
reductions. Our impossibility results apply to what Reingold et al call fully-black
box reductions. We avoid defining such reductions in their full generality and
instead focus on security reductions for constructions of pseudo-random number
generators from pseudo-random generators of smaller stretch.

Definition 3 (Fully black-box reduction [8]). Let G : {0,1}4(—
{0,1}2(™) be a number generator whose construction has access to an oracle
for a length-increasing function mapping ¢} (n) bits to t5(n) bits. There is a fully
black-box reduction of the pseudo-randomness of G\) to the pseudo-randomness
of its oracle if there exists a PPT oracle machine M) such that for every func-
tion f:{0,1}4() — 0,1} and every function A : {0,1}2(") — {0,1}, if A
breaks the pseudo-randomness of G then M4 breaks the pseudo-randomness

of f.
Definition Bl can be modified in a straightforward way for constructions of
pseudo-random number generators from other primitives, such as from one-way
permutations.

An oracle construction whose security is proven using a black-box reduction
is called a black-box construction.

3 Constructions with Short Seeds

In this section, we consider constructions whose seed length is not more than
O(logn) bits longer than the length n of each oracle query. Recall that such
constructions making k adaptive queries to a given pseudo-random generator
can achieve stretch that is k times the stretch of the given generator. We show
that such constructions making constantly-many non-adaptive queries cannot
achieve stretch that is even a single bit longer than the stretch of the given
generator.

Theorem 1. Let k € N, and let ¢1(n) and f3(n) be polynomials such that
(1(n) < n+0(logn) and lo(n) > n. Let GO : {0, 1} — {0, 1} (nHE2(n)—n)+1
be a mon-adaptive oracle construction of a number generator, making k queries
of length n to an oracle mapping n bits to €2(n) bits. Then there is no fully
black-box reduction of the pseudo-randomness of G) to the pseudo-randomness
of its oracle.

512 J. Bronson, A. Juma, and P.A. Papakonstantinou

The approach we use to prove Theorem [I] does not seem to extend to the case
of polynomially-many (or even w(1)-many) queries. However, a similar approach
does work for polynomially-many queries when we place a restriction on the
many-oneness of the number generator’s querying function. We state this re-
striction in Section [l

We give an overview of the proof of Theorem [I] in Section [3] and we give
the proof details in the full version of this paper.

3.1 Proof Overview for Theorem [1]

A simpler case. We first consider the simpler case of constructions making just
a single query, where the query made is required to be the same as the construc-
tion’s input. That is, we consider constructions G*) : {0,1}* — {0, 1}¢(")+!
such that on every input € {0,1}", G makes query z to an oracle mapping n
bits to £2(n) bits. Fix such a construction G(). We need to show the existence
of functions f : {0,1}" — {0,1}%2(" and A : {0,1}%2(") — {0,1} such that A
breaks the pseudo-randomness of G but f is pseudo-random even with respect
to adversaries that have oracle access to f and A. Following the approach for
proving black-box impossibility results initiated by Impagliazzo and Rudich [§],
we actually define a joint distribution (F,.A) over pairs of functions, such that
with probability one over (f, A) «— (F,.A), A breaks the pseudo-randomness of
G' but f is pseudo-random even with respect to adversaries that have oracle
access to f and A.

Consider how we might define such a joint distribution (F,.4). The most
obvious approach is to let (F,.A) be the distribution defined by the following
procedure for sampling a tuple (f, A) — (F,A): randomly select f from the
(infinite) set of all functions that, for each n € N, map n bits to £2(n) bits; let
A be the function such that for every z € {0,1}%2("+1 A(z) = 1 if and only
if there exists an s € {0,1}" such that G¥(s) = z. Following this approach,
we have that with probability one over (f, A) — (F,.A), A breaks the pseudo-
randomness of G¥ but f is pseudo-random with respect to adversaries that have
oracle access to f alone. However, it is not necessarily the case that f is pseudo-
random with respect to adversaries that have oracle access to f and A. For
example, suppose construction G is such that for every x € {0,1}"~! and every
b e {0,1}, G/ (z||b) = f(=||b)||b. In this case, it is easy to use A to break f: on
input y € {0,1}%2(™ output 1 if and only if either A(y|[0) =1 or A(y||1) = 1.

To overcome this problem, we add some “noise” to A. We need to be careful
that we add enough noise to A so that it is no longer useful for breaking f, but
we do not add so much noise that A no longer breaks GY. Our basic aproach is
to modify A so that instead of only accepting G (s) for all s € {0,1}", A accepts
G7i() for all s, all i, and some appropriate collection of functions {fo, f1, f2,---}
where fo = f. How should this collection of functions be defined? Since we want
to make sure that A still breaks G/, and since we have that A accepts G/(s)
with probability 1 over s < {0,1}"™, we need to ensure that A accepts randomly
chosen strings with probability non-negligibly less than 1. For this, it suffices
to ensure that (# of n-bit strings s)*(# of functions f;) is at most, say, half

Limits on the Stretch of Non-adaptive Constructions 513

the number of strings of length ¢2(n) + 1. At the same time, to prevent A from
helping to break f, we would like it to be the case that, intuitively, A treats
strings that are mot in the image of f on an equal footing with strings that are
in the image of f. One way to accomplish these objectives, which we follow, is
to randomly select a permutation 7 on {0,1}2(") define f(x) = m(0%()~"||x)
for all z € {0,1}", and define A to accept G (s) for every y € {0, 1}f2(")—n
and every s € {0,1}". We formalize this as a joint distribution (F,.A, IT) over
tuples (f, A,) that are sampled in the manner just described.

It is easy to show that with probability one over (f, A, 7) < (F, A, IT), A does
indeed break G7. It is much more difficult to show that with probability one over
(f,A,m) — (F, A I), f is pseudo-random ever with respect to PPT adversaries
that have oracle access to f and A. We argue that it suffices to show that for
every PPT oracle machine D¢+), the probability over (f, A, 7) « (F,.A, IT) and
s « {0,1}™ that DA (f(s)) makes oracle query s to f is negligible. Now,
instead of only showing this for every PPT oracle machine D", we find it
more convenient to show this for every computationally unbounded probabilistic
oracle machine D(") that makes at most polynomially-many oracle queries. How
might we do so? We would like to argue that A does not help D to find s since
a computationally unbounded D can try to compute A by itself. More formally,
we would like to show that given D, we can build a D’ that, given input f(s)
and given oracle access only to f, simulates D on input f(s), answers f-queries
of D using the given oracle, and “makes up” answers to the A-queries of D
in a manner that ensures that the probability that the simulation of D makes
query s is very close to the probability that D>4)(f(s)) makes oracle query s.
Of course, D’ does not “know” m, so it is not immediately clear how it should
answer the A-queries of the simulation of D. If D’ simply randomly chooses its
own permutation 7' and answers A-queries using 7’ in place of the unknown
7, the simulation of D may “notice” this sleight of hand. For example, since D
is given f(s) as input, it might (depending on the definition of G) be able to
compute the value of G¥(s), and hence make query G/ (s) to A; if this query does
not produce response 1, D will “know” that queries are not being responded to
properly.

We address this by showing that D’ can still compute “most” of A on its own,
and that the “rest” of A is not helpful for finding s. Specifically, we split A into
two functions, A; and As, that together can be used to compute A. Function Ay
outputs 1 only on input G¥(s). For every (f2(n) + 1)-bit string z, Ag(z) = 1 if
and only if z # G¥(s) and A(z) = 1. We then argue that querying A; provides
very little help for finding s. Let X be the set of all strings x € {0, 1}" such that
G'(z) = G'(s). Roughly speaking, if X is large, then A; gives no information
about s beyond the fact that s € X. On the other hand, if X is small, then we
argue it is unlikely that an adversary making polynomially-many queries to Ay
will receive a non-zero response to any of its queries (in other words, it is unlikely
that query G/ (s) will be made). It remains to argue that D’ can compute A, on
its own. We show that if D’ randomly selects a permutation 7/, computes an A/,
based on 7’ (rather than 7), uses this A/ along with the given A; to answer the

514 J. Bronson, A. Juma, and P.A. Papakonstantinou

A-queries of the simulation of D, and answers the f-queries of the simulation
of D based on 7/(0(™)~"||.) (rather than using the given oracle f), then it is
unlikely that the simulation of D will make a query that “exposes” the fact that
its oracle queries are not being answered by f and A.

The general case. We extend the above argument to constructions G() :
{0,1}02(m) — {0, 1} +E()=n)+1 making constantly-many non-adaptive
queries, where the length £;(n) of the construction’s input is allowed to be
O(logn) bits longer than the length n of each oracle query. The high-level idea
is the same: we define a joint distribution (F,.A, IT) by specifying a procedure
for sampling a tuple (f, A,7) «— (F, A, II), and the way we sample 7 and f is
(almost) the same as before. But now we change the way A behaves. Our goal is
to follow the same style of argument as before. To accomplish this, we would still
like it to be the case that when we “split up” A into functions A; and As, there
is still at most one string accepted by A; (this helps us ensure that A; does
not provide too much information about s). Recall that before, when D’ was
run on an input f(s), the unique string accepted by A; was G/ (s). This made
sense because in the previous setting, the only input on which G() made oracle
query s was s itself. But in the current setting, for each s € {0,1}", there may
be many inputs z € {0, 1}61(”) on which G) makes oracle query s. We would
like to modify the definition of A so that rather than accepting G’“(y”')(x) for
every y € {0,112 =" and every x € {0,114 A accepts G™WII) () for every
y € {0,1}20)=" and 2 in some subset Good(n) C {0, 1}*1(") such that for every
s € {0,1}™, there is at most one z € Good(n) such that G) on input z makes
query s. But we cannot do exactly this (and still have that A breaks G/), since,
for example, there might be some string ¢ that G() queries no matter what its
input is.

Instead, we need to proceed very carefully, partitioning the set of strings ¢
of length n into those that are queried by G() for “many” of its inputs = €
{0,131 and those queried by G() for “at most a few” of its inputs = €
{0,1}1("), We call the former set Fized(n) and the latter set NotFized(n). We
then define a set Good(n) C {0,1}4(™) of inputs to G*) such that for no pair of
distinct inputs from Good(n) does G} make the same query ¢ € NotFized(n).
That is, each t € NotFized(n) is queried by G) for at most one of its inputs
x € Good(n). The challenge, of course, is ensuring that that the set Good(n)
defined this way is “large enough”.

We define A to accept G™WII) () for every y € {0,1}2() =" and every z €
Good(n). Now we can “split up” A into A; and Ay in a manner similar to what
we did before: on input f(s) to D', where s € NotFized(n), if there exists a
string € Good(n) such that G()(x) makes query s (note that there can be at
most one such string z by definition of Good(n)), then A; only accepts G/ (z),
and if there is no such string = then A; does not accept any strings; as before,
we define Ay to accept the remaining strings accepted by A. We then argue as
before about the (lack of) usefulness of A; and Ay for helping to find s. Finally,
we argue that our definition of Fized(n) ensures that this set will be of negligible

Limits on the Stretch of Non-adaptive Constructions 515

size, and hence it does not hurt to ignore the case s € Fized(n) (since this case
will occur with negligible probability).

4 Constructions with Long Seeds

In Section B we saw that black-box constructions G() making constantly-many
non-adaptive oracle queries, where the seed length of G() is not too much longer
than the length of each oracle query, cannot achieve even a single bit more
stretch than their oracle. In this section, we consider constructions whose seed
length is allowed to be much longer than the length of each oracle query, but
where the oracle queries are collectively chosen in a manner that depends only
on a portion of the seed whose length is not more than O(logn) bits longer than
the length n of each oracle query. Recall that such constructions making even
a single query to a given pseudo-random generator can achieve stretch that is
O(logn) bits longer than the stretch of the given generator [6]. Further, recall
that such constructions making k adaptive queries can achieve stretch that is
O(logn) bits longer than & times the stretch of the given generator. We show that
such constructions making constantly-many non-adaptive queries cannot achieve
stretch that is w(logn) bits longer than the stretch of the given generator.

Theorem 2. Let k € N, ¢ € RT, and m(n) € w(logn). Let {y(n), {1(n), and
lo(n) be polynomials such that £1(n) < n+ clogn. Let GO : {0, 1}fo(m)+a(n)
{0, 1}fo(m)+er(n)+(E2(n)=n)+mn) pe ¢ non-adaptive oracle construction of a num-
ber generator that makes k queries of length n to a number generator mapping
n bits to la(n) bits, such that for all r € {0,1}%°0) and x € {0,1}2(™) the
queries made by G on input (r||z) depend only on x. Then there is no fully
black-box reduction of the pseudo-randomness of G) to the pseudo-randomness
of its oracle.

As is the case for Theorem [l the approach we use to prove Theorem [21 does not
seem to extend to the case of polynomially-many (or even w(1)-many) queries.
However, a similar approach does work for polynomially-many queries when
we place a restriction on the many-oneness of the number generator’s querying
function. We state this restriction in Section [l

We give an overview of the proof of Theorem] in Section [£1] and we give
the proof details in the full version of this paper.

4.1 Proof Overview for Theorem

As in the proof of Theorem [I] it suffices to define a joint distribution (F,.A)
over pairs of functions, such that with probability one over (f, A) — (F,A), A
breaks the pseudo-randomness of G but f is pseudo-random even with respect
to adversaries that have oracle access to f and A. Unlike the previous proof,
we actually define distributions F and A that are independent — in fact, we
define A to be a degenerate distribution that assigns all probability to a fixed
function A. We define a set Good(n) C {0,1}*(") in a careful manner very

516 J. Bronson, A. Juma, and P.A. Papakonstantinou

similar to the proof of Theorem [0 but taking into account the fact that the
queries of G*) depend only on the rightmost £;(n) bits of its seed. The goal is
to ensure that Good(n) is sufficiently large and has the property that for every
string z € Good(n), every r € {0,1}%(") and every f € F, A accepts GY (r||x).
Simultaneously, we need to ensure that the total number of strings accepted
by A is sufficiently smaller than 2t (W (m)+(n)=n)+m®) and that f «— F is
pseudo-random with probability one even with respect to adversaries that have
oracle access to f and A.

If we define F in a very straightforward way (e.g. as the uniform distribution
over all 1-1 functions), the total number of strings that A will need to accept
(in order to accept G/ (r||z) for every f € F, every r, and every x € Good(n))
could be too large. The problem is that when deciding whether to accept a given
input, A is existentially quantifying over over a set that is (much) larger than
the set of its possible inputs. We need to minimize the number of different f € F
(while, of course, still ensuring that f « F is pseudo-random with probability
one even with respect to adversaries that have oracle access to f and A). At the
same time, we need to add some structure to the f € F to, intuitively, reduce
the amount of new information contained in the responses to the oracle queries
made by G/ when run on each r||z where € Good(n). The idea is that rather
than existentially quantifying over every r, every x € Good(n), and every f € F
when deciding whether to accept a particular input z, A will instead existentially
quantify over every r, every x € Good(n), and every possible value for the (small
amount of) new information (that is, the information not already determined by
x) contained in the responses to oracle queries made by G") when run on input
r||z.

Similarly to the proof of Theorem [I our procedure for constructing the set
Good(n) ensures that for every distinct x, 2’ € Good(n), each query ¢ made by
G, when run on an input whose rightmost bits are x, is either in some small
set Fized(n) or is distinct from every query ¢’ made by G when run on every
input whose rightmost bits are z’. This allows us to follow a two-step approach
to defining F. We first define a permutation h on {0,1}" that, for each = €
Good(n), maps the queries ¢ ¢ Fized(n) made by G, when run on an input whose
rightmost bits are x, to strings that differ in at most a small number of bits, and,
in particular, have a common (m(n)/2)-bit suffix. Roughly speaking, sampling
f «— F proceeds as follows. We randomly select a function f' : {0,1}" —
{0,1}*2(") that is the identity on its first n — m(n)/2 input bits, and is 1-1 on
its last m(n)/2 input bits, mapping them to ¢2(n) —n+m(n)/2 output bits. We
then define f = f’ o h. The actual definition of F that we use in the proof also
ensures that for every q € Fixzed(n), the value f(q) is independent of the choice
f < F (that is, f1(q) = fa(q) for all f1, fa € F).

Intuitively, this approach ensures that f < F has “just enough” randomness.
At the same time, this approach ensures that for every r and every z € Good(n),
the responses to oracle queries made by G (r||z) collectively contain at most
l3(n) —n +m(n)/2 bits of information that depend on the choice f — F.

Limits on the Stretch of Non-adaptive Constructions 517

We remark that it is crucial for this proof that 2"(™)/2 is super-polynomial.
It is for this reason that we cannot adapt the current proof in order to obtain a
significantly simpler proof of Theorem [T} in Theorem [the corresponding value
of m(n) (the additional stretch achieved by G()) is exactly 1

5 Moving beyond Constantly-Many Queries

In this section we consider extending Theorem [l and Theorem [2 to the case
of polynomially-many queries. We are able to do this for a restricted class of
constructions. We begin by defining the restriction we need to place on the
querying function of the construction.

Definition 4 (Many-oneness bounded almost everywhere). Let £(n) and
q(n) be polynomials, and let f: {0,1}*(") — {0,1}" be a function. f has many-
oneness bounded by g(n) almost everywhere if for all ¢ and sufficiently large n,
there are fewer than 2" /n¢ strings y € {0,1}" such that |f~(y)| > q(n).

Theorem 3. Let p(n), q(n), ¢1(n), and l3(n) be polynomials such that ¢1(n) <
n 4+ O(logn) and £3(n) > n. Let GO : {0,1}2() — [0, 1}a(m)+Em)—n)+1 pe
a non-adaptive oracle construction of a number generator, making p(n) queries
of length n to an oracle mapping n bits to la(n) bits, such that the querying
function of GO has many-oneness bounded by q(n) almost everywhere. Then
there is mo fully black-box reduction of the pseudo-randomness of G) to the
pseudo-randomness of its oracle.

Theorem 4. Let c € RT and m(n) € w(logn). Let p(n), g(n), lo(n), ¢1(n), and
lo(n) be polynomials such that £1(n) < n + clogn. Let GO : {0, 1}fo(m)+a(n)
{0, 1}fo(m)+br(m)+(E2(n)=n)+tmn) pe g non-adaptive oracle construction of a num-
ber generator that makes p(n) queries of length n to a number generator mapping
n bits to lo(n) bits, such that G©) has an £1(n)-restricted querying function whose
many-oneness is bounded by q(n) almost everywhere. Then there is no fully black-
boz reduction of the pseudo-randomness of GU) to the pseudo-randomness of its
oracle.

The proofs of Theorem [}l and Theorem @ follow the same basic structure as the
proofs of Theorem [I] and Theorem [2, respectively, but the procedure used to
define the set Good(n) in each proof is simpler as a result of the restriction on
the many-oneness of the querying function. For both Theorem [3] and Theorem
[the procedure begins by defining Fized(n) C {0,1}™ to be the set of strings
in the image of the querying function ()¢ whose many-oneness is not bounded
by ¢(n). Then, since the remaining strings in the image of Q¢ have bounded
many-oneness, it is easy to define a large set Good(n) C {0,1}*(") such that
for all distinct z,2’ € Good(n) and all 0 < 4,5 < p(n), either Q¢(z, (i) €
Fized(n) or Qg(z, (1)) # Qa(2', (j)). The idea is to proceed as follows: initially,
every x € {0,1}**(is a candidate for inclusion in Good(n); while there are
candidates remaining, select an arbitrary candidate z, add it to Good(n), and

518 J. Bronson, A. Juma, and P.A. Papakonstantinou

remove from consideration as candidates all =’ such that for some 0 < ¢,j <
p(n), we have Qg (x, (1)) ¢ Fized(n) and Qg(z, (i) = Qa(z’, (j)). For every x
added to Good(n) by this procedure, at most p(n)(g(n) — 1) are removed from
consideration, and hence at the end of this procedure Good(n) has size at least
26 /(p(n)(g(n) — 1) + 1). Further details about these proofs are omitted for
the sake of conciseness.

6 Goldreich-Levin-Like Constructions

In this section, we consider constructions where the seed has a public portion
that is always included in the output, such that the oracle queries are chosen
non-adaptively based only on the non-public portion of the seed. We further
require that the computation of each individual output bit depends only on the
seed and on the response to a single oracle query. We begin by formalizing this
class of constructions.

Definition 5 (Bitwise-nonadaptive construction). Let {y(n), ¢1(n), and
l5(n) be polynomials, and let GO : {0, 1}o(m+a(n) _, £ 1}be(m)+2(n) pe g non-
adaptive oracle machine. We say that G is bitwise-nonadaptive if there exist
uniformly-computable functions

QG’ — {QG,?’L . {07 1}el(n) X {07 1}10g€2(n) N {07 1}n}
and

B = {Bn {0,110 5 {0,119 % {0,1}™ x {0, 1}ls2(™) _, (0, 1}}

such that for all n, all r € {0,1}™) all x € {0,142 and all permutations
m: {0,1}" — {0,1}", we have G (r||lx) = 7[|bo||b1]|...[|bey(n)—1 where b; =
By(r, @, (i), 7(Qan(, (i) for 0 < i< la(n) — 1.

Observe that the Goldreich-Levin-based pseudo-random generator G™(r||z) =
r||m(x)||{r, z) is bitwise-nonadaptive.

We show that fully black-box bitwise-nonadaptive constructions G() making
queries to a one-way permutation, such that the non-public portion of the seed
of GO is no more that O(logn) bits longer than the length n of each oracle
query, cannot achieve linear stretch.

Theorem 5. Let a > 1, and let Ly(n), £1(n), and l2(n) be polynomials such
that £1(n) < n 4+ O(logn) and lo(n) > a - £1(n). Let GO : {0,1} o) +a(n)
{0, 1}60(”)“2(”) be a bitwise-nonadaptive number generator that makes queries
to a permutation on {0,1}™. Then there is no fully black-box reduction of the
pseudo-randomness of GU) to the one-wayness of its oracle.

To prove Theorem B we proceed in a manner similar to the proof of Theorem
2 building up a set Good'(n) whose purpose is similar to the set Good(n) in

Limits on the Stretch of Non-adaptive Constructions 519

that proof. The fact that each output bit of G depends only a single oracle
query simplifies the construction of Good'(n). Specifically, when constructing
Good' (n), we can ignore some of the “more difficult to deal with” queries made
by G(), since we can later define adversary A to also ignore these queries simply
by ignoring the corresponding output bits. This is what allows us to handle
linearly-many queries in the current setting, even though we could only handle
constantly-many queries in the proof of Theorem [
Proof details are deferred to the full version of this paper.

7 Some Remarks on Streaming Cryptography

The study of non-adaptivity in Goldreich-Levin-like constructions (Theorem [
is motivated by questions related to Streaming Models for Cryptography. In
some sense, impossibility results for non-adaptive black-box-constructions in-
dicate the impossibility of certain type of black-box streaming constructions.
We ask whether there is anything positive that can be said in the streaming
setting, perhaps using non-black-box techniques. In this section, we put forward
the main questions in streaming models for cryptography. Here is the main mo-
tivating question:

Starting from generic assumptions, is it possible to construct a one-way
function or a pseudo-random generator using O(logn) space and a small
(1,2,..., constant, polylog) number of passes over the seed?

Why logarithmic space? Observe that assuming the existence of 2" -hard one-
way functions (resp. one-way permutations), we can easily construct a one-way
function (resp. pseudo-random generator) that uses poly-logarithmic space and
reads its input once. By “2" -hard”, we mean functions that are hard to invert
with probability > 1/ 27" in time < 2"°. Computing such functions in logarithmic
space without the ability to recompute (by revisiting the input) seems counter-
intuitive. In fact, one can show that unconditionally this cannot be done with
any constant number of passes (see the full version of this paper). Are super-
constantly-many passes sufficient?

Motivation and related work. Streaming cryptography is motivated both from a
theoretical and a practical viewpoint. The practical impact is in settings where
on-line or streaming computation of a cryptographic primitive is needed. The-
oretical motivation comes from the general theme of computing cryptographic
primitives using rudimentary resources. Most relevant to streaming cryptogra-
phy is the seminal work of Applebaum, Ishai, and Kushilevitz [2JT[4l3], which
builds upon the work of Randomizing Polynomials (e.g. [9]), and shows the pos-
sibility of Cryptography in NC°: given a “cryptographic function” f, construct
a randomized encoding of f, which is a distribution {f} that (i) preserves the
security of f, and (ii) is much simpler to compute than f. This amazing technical
achievement brings the combinatorics of cryptographic functions to a simplified
setting, and opens the possibility of better understanding cryptographic primi-
tives and non-black-box techniques.

520 J. Bronson, A. Juma, and P.A. Papakonstantinou

Goals and observations. We wish to be able to state a theorem of the form:
if one-way functions exist then one-way functions computable in a streaming
manner exist. We believe that this is a difficult thing to show. A potentially
more feasible goal would be to show: if 2" -hard one-way functions exist then
log-space streaming cryptography exists. In fact, by relying on [II7], one can
easily obtain a mon-black-box construction of a one-way function computable in
O(logn) space with logo(l) n passes over the input, assuming that both (i) 2"'-
hard one-way functions exist, and (ii) log-space computable one-way functions
exist; see the full version of this paper for the details. The latter assumption refers
to functions that are just super-polynomially hard, computable with n®™) many
passes. It seems challenging to do the construction relying only on the existence
of 2" -hard one-way functions. One can take this further to conjecture that it is
possible to prove the following statement in some constructive way:

2" -hard one-way functions exist <= O(logn) streaming one-way func-
tions exist < one-way functions computable in NC° exist

This is a rather ambitious research direction. In particular, the right-to-left impli-
cation is a hardness amplification of some sort. Our intuition is that streaming
computation of functions, functions computable by NC° circuits of some re-
stricted form (e.g. of bounded treewidth), and 2" -hard one-way functions seem
to be related.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115-162
(2006) (also CCC 2005)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC°. SIAM J. Com-
put. 36(4), 845-888 (2006) (also FOCS 2004)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 92-110. Springer,
Heidelberg (2007)

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear
stretch in NC0. Comput. Complexity 17(1), 38{69 (2008); also In: Diaz, J., Jansen,
K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS,
vol. 4110, pp. 260-271. Springer, Heidelberg (2006)

5. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the effciency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217-246 (2005)

6. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC 1989, pp. 25-32. ACM, Berlin (1989)

7. Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in constructing pseu-
dorandom generators from one-way functions. In: STOC 2010, pp. 437-446. ACM,
New York (2010)

8. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC 1989 (1989)

9. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: Young, D.C. (ed.)
FOCS 2000, pp. 294-304. IEEE Computer Society, Los Alamitos (2000)

10.

11.

12.

13.

Limits on the Stretch of Non-adaptive Constructions 521

Lu, C.J.: On the complexity of parallel hardness amplification for one-way func-
tions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 462—481.
Springer, Heidelberg (2006)

Miles, E., Viola, E.: On the complexity of increasing the stretch of pseudorandom
generators. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 504-521. Springer,
Heidelberg (2011)

Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1-20.
Springer, Heidelberg (2004)

Viola, E.: On constructing parallel pseudorandom generators from one-way func-
tions. In: CCC 2005, pp. 183-197. IEEE Computer Society, Los Alamitos (2005)

	Limits on the Stretch of Non-adaptive Constructions of Pseudo-Random Generators
	Introduction
	Preliminaries
	Pseudo-Random Generators and One-Way Functions
	Non-adaptive Constructions
	Black-Box Reductions

	Constructions with Short Seeds
	Proof Overview for Theorem 1

	Constructions with Long Seeds
	Proof Overview for Theorem 2

	Moving beyond Constantly-Many Queries
	Goldreich-Levin-Like Constructions
	Some Remarks on Streaming Cryptography
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

