Semantic Recognition of Ontology Refactoring

Gerd Groner, Fernando Silva Parreiras, and Steffen Staab

WeST — Institute for Web Science and Technologies
University of Koblenz-Landau
{groener,parreiras,staab}@uni-koblenz.de

Abstract. Ontologies are used for sharing information and are often col-
laboratively developed. They are adapted for different applications and
domains resulting in multiple versions of an ontology that are caused
by changes and refactorings. Quite often, ontology versions (or parts of
them) are syntactical very different but semantically equivalent. While
there is existing work on detecting syntactical and structural changes
in ontologies, there is still a need in analyzing and recognizing ontology
changes and refactorings by a semantically comparison of ontology ver-
sions. In our approach, we start with a classification of model refactorings
found in software engineering for identifying such refactorings in OWL
ontologies using DL reasoning to recognize these refactorings.

1 Introduction

Ontologies share common knowledge and are often developed in distributed en-
vironments. They are combined, extended and reused by other users and knowl-
edge engineers in different applications. In order to support reuse of existing
ontologies, remodeling and changes are unavoidable and lead to different ontol-
ogy versions. Quite often, ontology engineers have to compare different versions
and analyze or recognize changes. In order to improve and ease the understand-
ability of changes, it is more beneficial for an engineer to view a more abstract
and high-level change description instead of a large number of changed axioms
(elementary changes) or ontology version logs like in [I]. Combinations of ele-
mentary syntactic changes into more intuitive change patterns are described as
refactorings [2] or as composite changes [3].

However, the recognition of refactorings (or changes in general) is difficult due
to the variety of possible changes that may be applied to an ontology. Especially
if the comparison of different ontology versions is not only realized by a pure
syntactical comparison, e.g. a comparison of triples of an ontology, but rather
by a semantic comparison of entities in an ontology and their structure.

The need to detect high-level changes is already stated in [I/4U5]. High-level
understanding of changes provides a foundation for further engineering support
like visualization of changes and extended pinpointing focusing on entailments
of refactorings rather than individual axiom changes. In order to tackle the
described problem, the following issues need to be thoroughly investigated: (i) A
high-level categorization of ontology changes like the well established refactoring

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 273 2010.
© Springer-Verlag Berlin Heidelberg 2010

274 G. Groner, F. Silva Parreiras, and S. Staab

patterns in software engineering. (ii) An automatic recognition of refactorings
for OWL ontologies that goes beyond mere syntactic comparisons.

The recognition of refactorings is a challenging task due to the variety of
possible changes and insufficient means for a semantic comparison of ontology
versions. In particular, we identify the issue that we require a semantic com-
parison of different versions of classes rather than their syntactical comparison.
Semantic comparison allows for taking available background knowledge into ac-
count while abstracting from elementary changes.

There are different approaches that detect ontology changes by a syntactical
comparison like in [4J6] or the combination of adding and deleting RDF-triples
to high-level changes in [5]. A structural comparison using matching algorithms
is considered in [7]. More related to our research is the work on version reasoning
for ontologies in [8f9]. However, their focus is on integrity checking, entailment
propagation between versions and consistency checking of ontology mappings.

In this paper, we tackle the problem of refactoring recognition using descrip-
tion logics (DL) reasoning in order to semantically compare different versions of
an OWL DL ontology. We apply the semantic comparison in heuristic algorithms
to recognize refactoring patterns. Extrapolating from [2I3] we have defined dif-
ferent refactoring patterns of how OWL ontologies may evolve.

We organize this paper as follows. Sect. 2] motivates the problem of schema
changes and describes shortcomings of existing approaches. In Sect. Bl we give
an overview of the considered refactoring patterns and describe in detail two of
them. The comparison of ontology versions and the recognition of the refactoring
patterns using DL reasoning is demonstrated in Sect.[d and Bl The evaluation is
given in Sect.[fl We analyze related work in Sect. [followed by the conclusion.

2 An Ontology Refactoring Scenario

In order to clarify the problem we tackle, we start with a motivating example that
highlights the problem followed by some argumentation in favor of a semantic
version comparison for recognizing refactorings.

2.1 DMotivating Example

In this section, we consider an ontology change from version V to V/ including
multiple elementary changes. An example is displayed in Fig. Qland[2l Snippets of
the corresponding ontology versions are depicted below. In order to highlight the
changed axioms in the example, we mark axioms that are deleted from version
V with (d) and axioms that are added are marked with (a) at the end of the line.
Person, Employee, Project, ContactData and Department are OWL classes,
Employee is a subclass of Person. The properties name, SSN, telephone and
address are datatype properties with range string and project, department and
contact are object properties.

We recognize three refactorings from version V' to V1. First: the pattern Move
Of Property moves a datatype property restriction SSN from class Employee to

Semantic Recognition of Ontology Refactoring 275

ContactData

address

name

SSN/0..1 telephone
| string | I string I

department

SSN /1. *

Employee C Person

Employee C 3 department.Department

Employee C Person Employee C 3>1SSN.string (a)
Employee C 3 project. Project (d) Person € 3 name.string
Employee C 3 department. Department Person C 3<1 SSN.string (a)
Employee C 3= SSN.string (d) Person C 3 contact.ContactData (a)
Person C 3 name.string ContactData C 3 telephone.string (a)
Person C 3 address.string (d) ContactData C 3 address.string (a)
Person C 3 telephone.string (d) Department C 3 project. Project (a)
Fig. 1. Ontology Version V Fig. 2. Ontology Version V/

its superclass Person. In version V there are implicitly two cardinality restric-
tions in the property restriction 3—; SSN.string. This is semantically equiva-
lent with the restrictions 3<; SSN.string and 3> SSN.string. The datatype
property restriction with the maximal cardinality restriction is moved to the
superclass Person. Second: Extract Class moves the datatype properties address
and telephone to a newly created class ContactData that does not contain fur-
ther properties. In version V7 the class Person has a further object property
restriction on contact with range ContactData. Third: Move Of Property moves
an object property project from the class Employee to the class Department.

As demonstrated in the ontology excerpt below the diagrams, the refac-
torings are syntactically represented by a number of added and deleted ax-
ioms from version V to V/. E.g., the movement of the property SSN from
Employee to its superclass is represented in the ontology by the deleted axiom
Employee T 3_; SSN.string and the added axioms Person T J<; SSN.string
and Employee C 3>; SSN.string. In order to improve the understanding and
recognition of changes between ontology versions, we argue that it is more in-
tuitive for the ontology engineer to characterize changes at a higher abstraction
level like by the recognition of refactorings instead of indicating a large collec-
tion of added and deleted axioms. For instance, consider the second mentioned
refactoring which extracts the datatype properties address and telephone to the
newly created class ContactData. Obviously, such a high-level change charac-
terization is more intuitive for an ontology engineer than a listing of changed
axioms. In this refactoring at least two axioms are deleted and three axioms are
added to the ontology.

276 G. Groner, F. Silva Parreiras, and S. Staab

2.2 Discussion of Shortcomings

We already argued for the need of a semantic comparison of the versions rather
than a syntactic or a purely structural comparison. This is mainly due to the
various possibilities of defining classes in OWL compared to RDF(S) like class
definitions using intersection, union or property restrictions. We give two exam-
ples of shortcomings for syntactical and structural comparisons.

Consider again the third refactoring (Move Of Property) from Fig. [l and 2
Breaking down this refactoring to axiom changes, we would delete the ax-
iom Employee T 3 project.Project and add the axiom Department C
3 project.Project. Now, we slightly extend this refactoring. Suppose there are
two subclasses of Department, Internal Department and External Department
and the property restriction 3 project.Project is moved to both subclasses
Internal Department and External Department rather than to the superclass
Department. In this case, the ontology contains two new axioms and one is
still removed. If there is a further axiom in the ontology describing that each
department is either an internal or an external department (Department =
Internal Department U External Department) and there is no other depart-
ment, we can conclude that after the refactoring project is still a property of
Department. Hence, we identify a refactoring that moves a property (project)
from a class to another class (Department) but without changing an axiom that
contains the class itself.

As a second example, we demonstrate shortcomings of structural (and frame-
based) comparisons which compare classes and their connections, i.e. domain
and range of properties. Consider again the move of the datatype property SSN
with maximal cardinality restriction from the class Employee to Person. Here,
we compare the class Employee in both versions. The cardinality restriction that
restricts the class Employee to exactly one SSN is explicitly stated in version V.
Semantically, in version V7 the restriction for class Employee is exactly the same
due to inheritance and the conjunction of the minimal and maximal restrictions
which also results in exactly one SSN property. This equivalence of the class
Employee in both versions is not detected by a purely structural comparison.

3 Modeling and Categorizing Refactoring Patterns

A first step towards the recognition of refactoring patterns is the categoriza-
tion of well-known patterns, adopted from [2] and also presented as composite
changes for ontology evolution in RDF(S) [3]. Hereafter, we demonstrate two
such refactoring patterns in detail.

3.1 Modeling Foundations and Assumptions

For a more compact notation, we describe a class in version V' with C' and we
use C7 to refer to this class in version V/. The class of the range of an object
property restriction is called the referenced class. A refactoring pattern is an

Semantic Recognition of Ontology Refactoring 277

abstract description of an ontology change or evolution that is applied to realize
a certain ontology remodeling. The kind of remodeling is mainly a collection of
best practise ontology remodeling steps. A refactoring is an instantiation of a
refactoring pattern, i.e. a concrete change of an ontology.

Our recognition approach works correctly for a slightly restricted subset of
OWL DL where we add two restrictions (Def. [I]). The second restriction is also
known from OWL Lite (cf. [I0]). Both restrictions are necessary in order to
avoid exponential computation complexity or even infinite computations in the
proposed algorithms that are used in Sect. like the ExtractReferenceClasses-
Algorithm, e.g., if there are further object property restrictions that appear in
the range of another object property restriction.

Definition 1 (Language Restrictions). We restrict OWL DL (SHOIN (D))
by the following additional conditions:

1. In each property restriction Ip.E and Vp.E, E is a named class. The same
condition is also required for cardinality restrictions.
2. Individuals are not allowed in class definitions, i.e. no oneOf constructor.

3.2 Overview of Refactoring Pattern

We start with an overview of the analyzed refactoring patterns and describe how
they change an ontology (cf. Table[Il). They are adopted from [23].

The first group of refactorings (No. 1-6) extract or merge classes and move
properties to or from the extracted or deleted class. Extract Subclass and Extract
Superclass are specializations of Extract Class. The refactorings in the second
group (No. 7-9) move properties between existing classes. In No. 8 and 9, the
properties are moved within a class hierarchy. Finally, the third group collects
refactorings that add, delete or modify object property restrictions. Either the
inverse object property is added or removed to a class description (No. 10, 11)
or in No. 12 cardinality restrictions are modified.

3.3 Detailed Refactoring Descriptions

In this subsection, we give detailed descriptions of two refactoring patterns
(Extract Class and Move of Property) and example representations in OWL in
order to substantiate our approach. The recognition algorithms and the results
for these two examples are given later on in Sect.dl A comprehensive descrip-
tion of the other considered patterns from Table [l and the recognition of them
is presented in [I1]. A refactoring pattern consists of the following elements:

1. Each pattern has a Name (cf. pattern overview in Table [I).

2. The Problem Description characterizes a modeling structure of an ontology
and indicates when this pattern is applicable.

3. The Solution describes how the problem is (or could be) solved. This contains
the required remodeling steps in order to realize the refactoring.

4. The Fxample demonstrates the technical details of this refactoring.

278 G. Groner, F. Silva Parreiras, and S. Staab

Table 1. Analyzed Refactoring Patterns

No. Pattern Name Description
1. Extract Class Properties of a class are extracted to a newly created class.
2. Extract Subclass Properties of a class are extracted to a newly created subclass.
3. Extract Superclass Properties of a class are extracted to a newly created superclass.
4. Collapse Hierarchy A subclass and its superclass are merged to one class.
5. Extract Hierarchy = A class is divided into a class hierarchy. Properties are

extracted to the newly created sub- and superclasses.
6. Inline Class A class that is referenced by another

class is deleted and all its properties are

moved to the class that had referenced this class.
7. Move Of Property At least one property is moved from a class

to a referenced class.

8. Pull-Up Property At least one property is moved from a class to its superclass.
9. Push-Down Property At least one property is moved from a class to its subclass.
10. Unidirectional An object property restriction is added to the target
to bidirectional class of an existing object property restriction,
Reference where the object property is the inverse property.
11. Bidirectional to The inverse property restriction of an object property
unidirectional Ref. restriction is removed.
12. Cardinality The cardinality restriction of a property
Change restriction is changed.

Extract Class Refactoring Pattern. An example of the Extract Class refac-
toring and the corresponding DL representation is already given in the running
example from Fig. [l and 2lin Sect.

Problem Description. In version V', there is a named class C with property
restrictions containing the properties p1, ..., p,. An ontology engineer identifies
some of the properties p;,, ..., 0i, ({Piys---,0i, } € {P1,...,0n}) that are related
to this class but should be grouped together and extracted into a new class D.
Finally, a property restriction from class C' to the new class D is needed.

Solution. A new class D is created and all the selected property restrictions on
Diys- -+, Di, are moved from C' to D. An axiom for the object property restriction
on p to the new class D is added, e.g. the axiom C'C 3 p.D.

Ezample. In the example of Fig. [l and [2 the engineer identifies the property
restrictions containing the properties address and telephone of the class Person
in V' that should be extracted to a new class. The new class ContactData is cre-
ated in version V7 and the identified property restrictions are added by adding
axioms to the new class like ContactData C 3 address.string. The correspond-
ing axioms of the moved properties are removed from the class definition of the
class Person. Finally, the object property restriction to the new class is added
to Person, e.g., by the new axiom Person T 3 contact.ContactData.

Move of Property Refactoring Pattern. An example of the Move Of Prop-
erty refactoring and the corresponding description of the ontologies in OWL are
already described in the running example of Sect. 2] (Fig. [l and ().

Semantic Recognition of Ontology Refactoring 279

Problem Description. A named class C has a property restriction on the property
p and on the object property r, with the named class D in the range of the
definition. The ontology engineer would like to move this property restriction
from the class C to the referenced class D.

Solution. The identified property restriction on the property p is moved to the
class D. The range of this moved property p is unchanged.

Example. In the example of Fig. [l and [2] the property project should be moved
from the class Employee to Department. The class Department is already ref-
erenced by Employee with the object property department. In version V/, the
corresponding axiom Employee T dproject.Project is deleted and the axiom
Department C dproject. Project is added to the ontology.

4 DL-Reasoning for Ontology Comparison

In this section, we describe the usage of DL reasoning in order to semantically
compare ontology versions. We distinguish between three types of comparisons:
(i) A syntactic comparison checks whether for a class or property in the ontology
V there is an entity with the same name in V7. (ii) The structural comparison
compares classes and their structure, i.e. sub- and superclass relations and object
property restrictions of this class. Hence, a class with all ”connected” classes
is compared in both versions. (iii) In a semantic comparison, classes of both
versions are compared using subsumption checking, testing the equivalence, sub-
and superclass relations between a class by comparing the interpretations.

4.1 Combining Knowledge Bases

The first step towards a semantic version comparison (Sect. [L2)) is to allow
reasoning on two versions of an ontology, e.g., by checking class subsumption
of classes from two versions. This requires a renaming of classes that appear
in both versions with the same name, otherwise we can not compare them by
reasoning. Hence, we start with comparing the names of classes and properties
of both versions and rename them. We build a combined, additional knowledge
base that captures both, the original version V' and the new version V/. This
combined ontology is only a technical mean that is used in order to enable
a semantic comparison of classes that appear in both versions. The ontology
versions V' and V/ remain unchanged and the semantics given by both versions
is also not affected.

For each named class C' that occurs in both versions V and V/, we build the
combined knowledge base as follows: (i) The class C' is renamed, e.g., C; for the
class in version V' and a class Cy for the class in version V7. (ii) Both classes
C, and C5 are subclasses of the superclass C'. With this step, we guarantee that
Cy and Oy are still related to each other. C; and Cy are not disjoint. (iii) In
every class expression (anonymous class) if C; occurs as a class in the range of
a property restriction, the class C; is replaced by its superclass C.

280 G. Groner, F. Silva Parreiras, and S. Staab

4.2 Semantic Version Comparison

We distinguish between the name or label of a class (C') and the intensional
description of the class, i.e. the object and datatype properties that describe
the class. The extension of a class, i.e. the set of inferred instances of this class,
is denoted using semantic brackets [C]. A statement like [C] C A means the
subsumption C' C A can be inferred.

We use C' as a representation of the class C' in a conjunctive normal form,
ie.C=Cyn...NC, where Vi = 1,...,n there is an axiom in the ontology
C C C; and C; is a class expression. Hence, C' is subsumed by each C;. In order
to ease the comparison of classes in two versions, we apply a normalization and
reduction of C' resulting in a reduced conjunctive normal form C.

Definition 2 (Reduced Conjunctive Normal Form). A class definition in
conjunctive normal form C' is reduced to C' by the following steps:

1. Nested conjunctions are flattened, i.e. AN (BMC) becomes AN BNC.

2. Negations are normalized such that in all negations ~C', C' is a named class.

3. If BC A can be inferred and AUB is a class expression in C’, the expression
is replaced by A in C.

The main advantage of the normalization is a unique representation that can
be assumed for the class definition C' which is exploited in the comparison later
on. This unique representation is ensured by Lemma/[Il The reduced conjunctive
normal form C is used in the comparison algorithms later on. We will see, that
we are only interested in class expressions C; that are either property restrictions
or named superclasses.

Lemma 1 (Uniqueness of the Reduced Conjunctive Normal Form).

C =Cyn...NCy, is a class in conjunctive normal form and C' is the reduced con-
Junctive normal form of the class C. For each class expression C; (i=1,...,n)
one of the following conditions hold: (i) C; is a named class, (ii) C; is a datatype
or object property restriction or (i1i) C; is a complex class definition that can
neither be a named superclass of C' nor a property restriction.

Proof. Tt is easy to see whether C; satisfies the first or second condition, i.e.
either C; is a named class or a property restriction (including qualified property
restrictions). In the following, we prove the third condition, assumed that C;
is neither a named class nor a property restriction. We consider the remaining
possible class constructors that are allowed according to the language restriction
from Def. [l We show that either the third condition is satisfied or the expression
is not allowed after the reduction:

— if C; = =D then C; cannot be a named superclass of C' and (iii) is satisfied.

— C; = =VR.D or C; = =3R.D is not allowed after the reduction according

No. 2 in Def.

C; = DN E is not allowed as restricted in No. 1 in Def. P (flattening).

— C; = DU FE then C; cannot be a named superclass of C'. Trivial equivalent
representations like C; = DU E and F C D are not allowed (cf. No. 3). O

Semantic Recognition of Ontology Refactoring 281

Algorithm: Diff(Class C, Ontology versions V', V/)
Input: Class C' and two ontology versions (V, V)
Output: Set of class expressions that subsume C7 in V7 but not C' in V'

1: /* Compute the new additional class expressions in C7 of V7 */

2:D =10

3: for each asserted class expression A of C7 (C1C A is asserted in V/) do
4: if [C] € AinV then

5: D := D uU {A}

6: end if

7: end for

8: Return D.

Fig. 3. The Diff-Algorithm

We use two algorithms to compare versions V' and V7. The Diff-Algorithm
(Fig. B) computes all class expressions that subsume the class C/ in version
V1, but not C' in V. To compute the diﬁ"elrenc7 the Diff-Algorithm is used
twice. Dif f(C,V, V') returns all class expressions that subsume C7 in V7. Class
expressions that subsume C of V' are the result of Dif f(C, V1, V). Cis a class
in reduced conjunctive normal form, the expression A is a conjunct that appears
in Cr. We can extract the conjuncts due to the normal form representation. In
line 4, it is checked whether the subsumption is inferred in version V.

The Common-Algorithm in Fig. [extracts the common class expressions of
a class C' in both versions. Therefore, the subsumption of the class expressions
from one version compared with the other is checked in both directions, i.e. D
are class expressions from version V' that are subsumed by V7 and D;/ vice versa.
D is the intersection of D; and Dy/ and consists of all class expressions A from
C in both versions. As in the Diff-Algorithm, A is a conjunct of the reduced
conjunctive normal forms (C, C7).

We use the ExtractReferenceClasses-Algorithm from Fig. B to obtain the
classes that are referenced by a class, i.e. we are looking for the class in the range
of a property restriction in a class definition. The algorithm uses set operations
and returns a set of classes. However, in the considered refactoring patterns,
only one class is extracted. If multiple classes are extracted from one class, this
is considered as multiple refactorings in succession. The input class expression C'
is an object property restriction like Jcontact.Contact Data (line 2). The result
is the class that is referenced (R in line 4), e.g., ContactData.

The method get Property returns the object property (object property name)
of the given object property restriction (class expression) C. Such methods are
provided by OWL-APIs like [13]. The referenced class can not directly be ex-
tracted from the expressions using API operations, since in general the expression
could be more complex than just a single OWL class as in our applications with
language restrictions. Therefore, we have to implement this algorithm. Methods

! This definition is different from the stronger definition of DL difference of [12], where
the difference requires that the minuend is subsumed by the subtrahend.

282 G. Groner, F. Silva Parreiras, and S. Staab

Algorithm: Common(Class C, Ontology versions V, V)
Input: Class C' and two ontology versions (V, V)
Output: Set of class expressions that subsume C in V and C7 in V7

1: /* Common class expressions D of C' and C’ in both ontology versions V', V7 */
2: /* Dy are class expressions of C in V subsumed in V7, and D1/ are class expressions
of C7in V1 subsumed in V. */
D; := Qand D1/ = 0
for each asserted class expression A of C' (C'C A is asserted in V) do

if [C/] C Ain V/then

D1 = Dl U {A}

end if
: end for
9: for each asserted class expression A of C1 (C1C A is asserted in V/) do
10: if [C]C Ain V then

11: D11 := Dy U {A}
12: end if
13: end for

14: Return D := D; N Dy!/.

Fig. 4. The Common-Algorithm

Algorithm: ExtractReferenceClasses(Class expression C, Ontology version V)
Input: Class expression C that is an object property restriction,
e.g., Jeontact.ContactData and an ontology version (V')
Output: Set of classes which are referenced by the object property restriction C
(e.g., the class ContactData)

D := 0 /* for the referenced classes */
if IsObjectPropertyRestriction(C) then
for each class R of version V do
if [C] C 3 getProperty(C). R then
D := D U {R}
end if
end for
end if
: Return D.

Fig. 5. The ExtractReferenceClasses-Algorithm

like IsObject PropertyRestriction or IsPropertyRestriction are provided by
APIs as well. For property restrictions with universal quantifiers, the referenced
class can be extracted likewise, but this is not required in our approach.

The Diff- and Common-Algorithm compute for a class C, the class expressions
C; that subsume C. These class expressions are expressions C; of the reduced
conjunctive normal form C. Hence, all class expressions of the result of the Diff-
and Common-Algorithm are in reduced conjunctive normal form too.

The focus of our approach is to recognize the introduced refactorings rather
than identifying arbitrary ontology changes. Hence, we can neglect some of the

Semantic Recognition of Ontology Refactoring 283

class expressions that are in the result of the Diff- and Common-Algorithm.
All the considered refactoring patterns only change sub- and superclass rela-
tions and property restrictions in class definitions. Therefore, the only relevant
class expressions in the result set of the Diff- and Common-Algorithm are those
class expressions that are named classes (representing superclasses) and property
restrictions. According to Lemma[I, we can easily determine whether a class ex-
pression C; of the result of the algorithms is a superclass, a property restriction
or another complex class expression that can be neglected in the comparison.

5 Refactoring Pattern Recognition

In this section, we demonstrate the recognition of the already introduced refac-
toring patterns Extract Class and Move of Property. The recognition description
of the other patterns can be found in [11].

Extract Class. This refactoring is illustrated in Fig. [l and 2l One recognizes
the refactoring according to the algorithm in Fig. [6l

The algorithm in Fig. [0l returns the extracted class if the refactoring is suc-
cessfully recognized, otherwise the result is the empty class (L). The algorithm
works as follows. All named classes C' and C7 that exist in both versions and
are different are compared (line 2). In line 3 the difference is computed. For
instance, the set D consists of all class expressions which are only in [C/] of V7
but not in V. C7 of V7 contains exactly one additional object property restriction
to another class, i.e. a change only extracts one class. Therefore, we require that
D, is a singleton (line 4) and that D; is an object property restriction (line 6).

Algorithm: Recognize-ExtractClass(Ontology versions V, V1)
Input: Ontology versions V and V7
Output: Extracted Class F

1. F:=1

2: for all classes C and C’ that are different in version V' and V'’ do

3. Dy = Diff(C,V,Vs) AND Dy := Diff(C,V1,V)

4: if |Di| =1 then

5: Dy, € Dq:

6: if IsObjectPropertyRestriction(D;1) then

7: RC := EuxtractReferenceClasses(D1, V1)

8: if RC|=1ANDV Dy, € D, : 3 RC € RC : [RC] C Dy AND
YV Dy € Dy : IsPropertyRestriction(Dz) then

9: E = RC

10: end if

11: end if

12: end if

13: end for

14: Return FE

Fig. 6. Algorithm for Recognizing Extract Class

284 G. Groner, F. Silva Parreiras, and S. Staab

Algorithm: Recognize-MoveOfProperty(Ontology versions V, V7)
Input: Ontology versions V and V7
Output: Set of moved property restrictions P

1: P:=0
2: for all classes A and A/ in version V and V7 that are different do

3: for all referenced classes B and B/ do

4: if B and B are also different in version V' and V/ then

5: Ci1 :=Common(A,V,VI) AND Cy := Common(B,V,V1) AND

6: A = Diff(A,V,V1) AND Ay := Diff(A,V1,V) AND

7 By := Diff(B,V,Vi) AND B, = Diff(B,V1,V)

8: if A4 = 0 AND By = (0 AND A, = B; AND VE € A, :
IsPropertyRestriction(E) then

9: P = A

10: end if

11: end if

12: end for

13: end for

14: Return P

Fig. 7. Algorithm for Recognizing Move of Property

In line 7, the new class that is referenced by C' is extracted. In line 8, we ensure
that property restrictions are only moved to one class, i.e. RC is a singleton.
Finally, it is required that all property restrictions are moved correctly to the
new class RC (subsumption in line 8). The second and third conditions in line 8
ensure that only property restrictions and no other class expressions are moved
and that they are moved to the correct class RC. The result is the referenced
class RC' (RC is a singleton).

The recognition algorithms for other extract and merge class refactorings work
in the same way. E.g., to recognize an Extract Subclass refactoring, we just replace
the referenced class (RC') by the corresponding subclass. The recognition result
for the example in Fig. [l and Blis as follows:

D; = {3contact.ContactData} (object property restriction in V7/)

Dy = {Jaddress.string, telephone.string} (property restrictions in V)
RC = {ContactData} (only one restriction in Dy (Jeontact.ContactData))
RC = ContactData and [RC] T Dy is inferred for all Dy € Do

Move of Property. The algorithm in Fig. [l recognizes the Move of Property
refactoring by the following steps. In lines 2-4, it is checked for all classes whether
the classes A and A7 are different in both versions V and V'’ and the referenced
classes (range of property) B and B/ are also different in V' and V. The common
and different class expressions of class A and B in both versions are computed
(lines 5-7). If all property restrictions are moved correctly from class A to B
the four conditions of line 8 have to be satisfied. Finally, the moved property
restrictions are the result of the algorithm (line 9 and 14). Algorithms to detect

Semantic Recognition of Ontology Refactoring 285

the other move refactorings like the movement of property restrictions within a
class hierarchy work similarly. The recognition of the Move of Property example
from Fig. [l and 2 is as follows:

Common property restrictions of the classes Employee and Department:
C1 = {321 SSN.string, 3 department.Department}, Co = {}
Department is referenced by Employee: 3 department. Department € Cy
Moved property restrictions (from Employee to Department):
Ay = {}, Ay = {3 project.Project}, By = {3 project.Project} and Bs = {}

6 Evaluation and Discussion

Analysis: We evaluated refactorings for the described refactoring patterns on
two ontologies. The DOLCE Lite Plus ontology@ is the smaller ontology with an
average version size of 240 classes and 360 subclass axioms. For each pattern,
8 concrete refactorings were applied. The second ontology is a bio-medical on-
tology OBH with an average size of 1200 classes, 1700 subclass axioms, and 14
concrete refactorings for each pattern. For both ontologies, we changed the orig-
inal ontology V by adding and deleting classes, properties and axioms according
to the pattern description and applied our recognition algorithms. All recog-
nized refactorings were correctly recognized. The performance result is depicted
in Table 2

For the evaluation, we used the Pellet 2.0.0 reasoner in Java 1.6 on a computer
with 2.5 GHz CPU and 2 GB RAM. In Table 2l only the time for the recognition
is displayed. The time for matching and combining the ontologies (first step of
the comparison) is on average 570 msec for the models with about 240 classes
and 2900 msec for models with an average size of 1200 classes.

Limitations: We identified the following limitations that are further challenges
for future work. (i) The refactoring patterns are adopted from existing work
on ontology evolution (cf. [3]), but also on object-oriented modeling (cf. [2]).
Therefore, we only recognize those elementary ontology changes that are speci-
fied in the refactoring recognition. However, there might be a couple of further
ontology changes that are not considered in our approach. For instance, we do
not consider changes of the property range yet which would lead to difficul-
ties in the current approach in the combination step (cf. Sect.). (ii) We need
a language restriction as described in Definition [l and reduction according to
Definition Bl Otherwise, we can not ensure the recognition.

Lessons Learned: Although the proposed semantic comparison between classes
of different versions is the main benefit of our work, the comparison is rather a
structural-semantic comparison than a purely semantical comparison. The Diff-
and Common-Algorithms iterate and compare class expressions that are either
superclasses or property restrictions which is a structural class comparison. The

2 http://www.loa-cnr.it/DOLCE. html
3 http://obi-ontology.org/page/Main_Page

http://www.loa-cnr.it/DOLCE.html
http://obi-ontology.org/page/Main_Page

286 G. Groner, F. Silva Parreiras, and S. Staab

Table 2. Analyzed Refactoring Patterns

No. Refactoring Recognition (Avg. 240) Recognition (Avg. 1200)
Avg.[msec] Max.[msec|] Avg.[msec] Max.[msec]
1. Extract Class 493 605 2050 2520
2. Extract Subclass 412 480 1910 2430
3. Extract Superclass 473 580 1860 2540
4. Collapse Hierarchy 1062 1154 2260 2480
5. Extract Hierarchy 886 1042 2170 2410
6. Inline Class 1042 1075 2330 2590
7. Move Attribute 1085 1240 2680 3230
8. Pull-Up Attribute 864 1065 2150 2840
9. Push-Down Attribute 840 957 2820 3360
10. Unidirectional 1170 1254 1820 2140
to bidirectional Ref.
11. Bidirectional 1135 1174 1950 2280
to unidirectional Ref.
12. Cardinality Change 1180 1265 1740 1870

algorithms work properly even for more expressive OWL languages that do not
satisfy the restrictions and reductions. However, we need these restrictions in
order to guarantee a correct recognition.

7 Related Work

We group the related work into three categories. Firstly, the syntactical com-
parisons are analyzed. Secondly, related work on structural comparisons is pre-
sented. Finally, we consider OWL reasoning for ontology comparison.

The detection of changes of RDF knowledge bases is considered in [14]. High-
level changes of RDF-graphs and version differences (RDF triples) are repre-
sented and detected in [5]. They categorize elementary changes like add and
delete operations to high-level changes which are similar to refactoring patterns.
Basically, they analyze the difference of RDF-triples of two RDF-graphs instead
of OWL ontologies and the detection is based on a (syntactical) triple compar-
ison, i.e. the high-level change is detected if all its required low-level changes
(RDF-triples) are recognized.

Related work on ontology mappings and the computation of structural differ-
ences between OWL ontologies is given in [ZJI5I16]. In [7] a fix-point algorithm
is used for comparing and mapping related classes and properties based on their
names and structure (references to other entities). A heuristic matching is ap-
plied to detect structural differences. Benefits of the heuristics are mainly the
identification of related classes and properties if their names have changed.

A framework for tracking ontology changes is introduced in [I7]. It is im-
plemented as a plug-in for Protégé [18] that creates a change and annotation

Semantic Recognition of Ontology Refactoring 287

ontology to record the changes and meta information on changes. This change
ontology is used to display the applied changes to the user. Similarly, change
logs are used to manage different ontology versions in [I]. The change logs are
realized by a version ontology that represents instances for each class, property
and individual of the analyzed ontology. The usage of version ontologies (meta
ontology) for change representation is also proposed in [19].

More closely related to our work are the approaches on DL reasoning apply-
ing semantic comparison for versioning and ontology changes in OWL. OWL
ontology evolution is analyzed in [20]. However, the focus of this work is not on
detecting changes. They tackle inconsistency detection caused by already iden-
tified changes and in case of an inconsistency, additional changes are generated
to result again in a consistent ontology. In [9] and [21], OWL reasoning on mod-
ular ontologies is considered in order to tackle the problem of consistency on
mappings between ontologies. While the focus in [21] is on reasoning for consis-
tency of ontology mappings and different from our work, in [9] the problem of
consistency management for ontology modules is considered. The ontology mod-
ules are connected by conjunctive queries instead of merging based on syntactic
matching as in our work. Although, subsumption checking is used to compare
classes of versions, a classification and especially a recognition of refactoring
pattern or complex changes is missing. The main difference to the related work
on semantic comparison is the ability of our approach on recognizing ontology
refactoring patterns based on change operations in OWL ontologies.

8 Conclusion and Future Work

In this paper, we have demonstrated a structural-semantic comparison approach
to recognize specified refactoring patterns using standard DL reasoning. We pro-
vide technical information on the version comparison and recognition algorithms.
One can apply the results of this work for schema versioning, semantic differ-
ence and conflict detection. Additionally, it paves the way for application of
reasoning technologies in change prediction of ontologies as well as for guidance
in versioning and evolution of ontologies. In future, we plan to cover additional
refactoring patterns and plan to extend our approach by a heuristic mapping
between classes and properties to handle name changes.

Acknowledgements. This work has been supported by the EU Project MOST
(ICT-FP7-2008 216691).

References

1. Plessers, P., Troyer, O.D.: Ontology Change Detection Using a Version Log. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 578-592. Springer, Heidelberg (2005)

2. Fowler, M., Beck, K., Brant, J., Opdyke, W.: Refactoring: Improving the Design
of Existing Code. Addison-Wesley, Reading (1999)

288

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

G. Groner, F. Silva Parreiras, and S. Staab

Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evo-
lution Management. In: Gémez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 285-300. Springer, Heidelberg (2002)

. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology Versioning and

Change Detection on the Web. In: Gémez-Pérez, A., Benjamins, V.R. (eds.) EKAW
2002. LNCS (LNATI), vol. 2473, pp. 197-212. Springer, Heidelberg (2002)

. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On

Detecting High-Level Changes in RDF/S KBs. In: Bernstein, A., Karger, D.R.,
Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC
2009. LNCS, vol. 5823, pp. 473-488. Springer, Heidelberg (2009)

. Noy, N.F., Kunnatur, S., Klein, M.C.A., Musen, M.A.: Tracking Changes During

Ontology Evolution. In: Mcllraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 259-273. Springer, Heidelberg (2004)

. Noy, N.F., Musen, M.A.: PROMPTDIFF: A Fixed-Point Algorithm for Comparing

Ontology Versions. In: AAAI/TAAI, pp. 744-750 (2002)

. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In:

AAAT, pp. 1408-1413 (2007)

. Stuckenschmidt, H., Klein, M.: Reasoning and Change Management in Modular

Ontologies. Data & Knowledge Engineering 63(2), 200-223 (2007)

Horrocks, 1., Patel-Schneider, P.F., Harmelen, F.V.: From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. J. of Web Semantics 1, 7-26 (2003)
Groner, G., Staab, S.: Categorization and Recognition of Ontology Refactor-
ing Pattern. Technical Report 9/2010, University of Koblenz-Landau (2010),
http://www.uni-koblenz.de/~groener/documents/TR092010.pdf

Teege, G.: Making the Difference: A subtraction Operation for Description Logics.
In: 4th Int. Conference on Knowledge Representation (KR), pp. 540-550 (1994)
The OWL API (2010), http://owlapi.sourceforge.net

Zeginis, D., Tzitzikas, Y., Christophides, V.: On the Foundations of Computing
Deltas between RDF Models. In: Aberer, K., Choi, K.-S., Noy, N., Allemang,
D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 637-651. Springer, Heidelberg (2007)

Klein, M., Noy, N.: A Component-Based Framework for Ontology Evolution. In:
Proc. of the IJCAI 2003 Workshop on Ontologies and Distributed Systems. CEUR-
WS, vol. 71. Citeseer (2003)

Ritze, D., Meilicke, C., Svdb-Zamazal, O., Stuckenschmidt, H.: A Pattern-based
Ontology Matching Approach for Detecting Complex Correspondences. In: Proc.
of Int. Workshop on Ontology Matching, OM (2009)

Noy, N., Chugh, A., Liu, W., Musen, M.: A Framework for Ontology Evolution
in Collaborative Environments. In: Cruz, 1., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 544-558. Springer, Heidelberg (2006)

Protégé - Ontology Editor (2010), http://protege.stanford.edu

Palma, R., Haase, P., Wang, Y., dAquin, M.: D1.3.1 Propagation Models and
Strategies. Technical report, NeOn Project Deliverable 1.3.1 (2007)

Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. In: Gémez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182-197. Springer,
Heidelberg (2005)

Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning Support for Mapping
Revision. J. Log. Comput. 19(5), 807-829 (2009)

http://www.uni-koblenz.de/~groener/documents/TR092010.pdf
http://owlapi.sourceforge.net
http://protege.stanford.edu

	Semantic Recognition of Ontology Refactoring
	Introduction
	An Ontology Refactoring Scenario
	Motivating Example
	Discussion of Shortcomings

	Modeling and Categorizing Refactoring Patterns
	Modeling Foundations and Assumptions
	Overview of Refactoring Pattern
	Detailed Refactoring Descriptions

	DL-Reasoning for Ontology Comparison
	Combining Knowledge Bases
	Semantic Version Comparison

	Refactoring Pattern Recognition
	Evaluation and Discussion
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

