On Invertible Sampling and Adaptive Security

Yuval Ishai''*, Abishek Kumarasubramanian?,

Claudio Orlandi®**, and Amit Sahai®***

! Technion and UCLA
yuvali@cs.technion.ac.il
> UCLA
{abishekk,sahai}@cs.ucla.edu
3 Aarhus University
claudio@cs.au.dk

Abstract. Secure multiparty computation (MPC) is one of the most
general and well studied problems in cryptography. We focus on MPC
protocols that are required to be secure even when the adversary can
adaptively corrupt parties during the protocol, and under the assumption
that honest parties cannot reliably erase their secrets prior to corruption.

Previous feasibility results for adaptively secure MPC in this setting
applied either to deterministic functionalities or to randomized func-
tionalities which satisfy a certain technical requirement. The question
whether adaptive security is possible for all functionalities was left open.

We provide the first convincing evidence that the answer to this ques-
tion is negative, namely that some (randomized) functionalities cannot
be realized with adaptive security.

We obtain this result by studying the following related invertible sam-
pling problem: given an efficient sampling algorithm A, obtain another
sampling algorithm B such that the output of B is computationally in-
distinguishable from the output of A, but B can be efficiently inverted
(even if A cannot). This invertible sampling problem is independently
motivated by other cryptographic applications. We show, under strong
but well studied assumptions, that there exist efficient sampling algo-
rithms A for which invertible sampling as above is impossible. At the
same time, we show that a general feasibility result for adaptively secure
MPC implies that invertible sampling is possible for every A, thereby
reaching a contradiction and establishing our main negative result.

1 Introduction

Secure multiparty computation (MPC) is one of the most fundamental problems
in cryptography. The goal of MPC is to allow two or more parties to compute

* Supported in part by ISF grant 1310/06, BSF grant 2008411, and NSF grants
0830803, 0716835, 0627781.
** This work was done while the author was visiting UCLA.
*** Supported in part by NSF grants 0916574, 0830803, 0716389, and 0627781, an
equipment grant from Intel, and an Okawa Foundation Research Grant.

M. Abe (Ed.): ASIACRYPT 2010, LNCS 6477, pp. 4664482,2010.
© International Association for Cryptologic Research 2010

On Invertible Sampling and Adaptive Security 467

some functionality (a deterministic or randomized mapping from inputs to out-
puts) while emulating an ideal evaluation of the functionality in which a trusted
trusted party receives all inputs and delivers all outputs. This is formally cap-
tured by simulation-based security definitions, which (roughly speaking) require
that whatever an adversary can achieve by attacking the real execution of the
protocol can also be achieved by a simulator which attacks the above ideal eval-
uation process.

Since the introduction of MPC in the 1980s [42I28/5/T5], many security defini-
tions have been proposed and feasibility results shown. In particular, significant
research efforts have been invested in realizing adaptively secure MPC proto-
cols, whose security is required to hold in the presence of an adversary that
can corrupt parties adaptively at any point during the protocol. When consider-
ing adaptive security, it is typically assumed that honest parties cannot reliably
erase their secrets. This is an assumption we make throughout this work. The
main challenge in proving the security of cryptographic protocols in this setting
is that when a new party is corrupted, the simulator needs to provide an expla-
nation of the internal randomness for this party that has to be consistent with
the simulated view so far and with the party’s input.

Adaptively secure protocols in this setting were first constructed by Canetti,
Feige, Goldreich and Naor [13] in a standalone model and then by Canetti, Lin-
dell, Ostrovsky and Sahai [I4] in the universal composability (UC) model [9].
These protocols applied to all deterministic functionalities, but in the case of ran-
domized functionalities they were restricted to so called adaptively well-formed
functionalities [14]. Intuitively, randomized functionalities can present the follow-
ing problem: when the adversary corrupts all the parties in the real executio7
he learns the private randomness of all parties. However in the ideal world, if the
ideal functionality tosses some coins that are kept private and used during the
computation, the ideal adversary (the simulator) will never learn these private
coins, even after corrupting every party. The presence of private randomness
in the ideal world makes it problematic to realize randomized functionalities
in which the randomness cannot be efficiently computed from the inputs and
outputs. The “adaptively well formed” functionalities satisfy the syntactic re-
quirement that they reveal all their internal randomness when all parties are
corrupted. (In other words, securely realizing such functionalities does not pose
the challenge of hiding the internal randomness of the functionality from the
adversary.) The question for general functionalities was left open.

In this paper we show that, under strong but well studied computational
assumptions, there exist functionalities which cannot be realized with adaptive

L At first glance, it may seem strange to require any security when all parties involved
in a protocol are eventually corrupted. However, this is important when protocols
are meant to be composed (even sequentially). For instance, a sub-protocol of a
larger protocol may involve only a small subset S of the participants of the larger
protocol. In such a situation, guaranteeing security of the larger protocol when
(only) the players in S are corrupted would require analyzing the security of the
sub-protocol when all the participants of the sub-protocol are corrupted.

468 Y. Ishai et al.

security. Concretely, our main negative result relies on the following two assump-
tions: (1) the existence of so-called extractable one-way functions [TOTTIIS] (this
is a common generalization of several “knowledge-of-exponent” style assump-
tions from the literature [T93114139]), and (2) the existence of non-interactive
zero-knowledge (NIZK) proofs for NP [6/7].

Our negative result applies to almost every model of adaptively secure compu-
tation without erasures from the literature. This includes stand-alone security in
the semi-honest and malicious models (under the definition of [§]), UC-security
in the CRS model (under the definition of [I4]) or even to security in the OT-
hybrid model, where every functionality can be unconditionally realized with
non-adaptive UC-security [35034]. Our negative result does not apply to the
case where only a strict subset of the parties can be corrupted (in particular,
to MPC with an honest majority). The existence of uncorrupted parties allows
the simulator to avoid the need for “explaining” the output of the functionality
by providing its internal randomness. Our negative result also does not apply to
adaptive security in the standalone model without post-execution corruption [§];
this (nonstandard) notion of adaptive security does not support even sequential
composition. See Section below.

Invertible sampling. A key concept which we use to obtain our negative result
and is of independent interest is that of invertible sampling (Definition 1 of [20]).
Suppose we are given an efficient sampling algorithm A. Can we always obtain
an alternative efficient sampling algorithm B such that the output of B is indis-
tinguishable from the output of A, but B can be efficiently inverted in the sense
that its randomness can be efficiently computed based on its output? Here we
refer to a distributional notion of inversion, namely an inversion algorithm B~
is successful if the pair (r/, B(r")) is computationally indistinguishable from the
pair (B~(B(r)), B(r’)) where 7’ is a uniform random input for B. We refer to the
hypothesis that every efficient A admits an efficient B as above as the invertible
sampling hypothesis (ISH). While our study of ISH is primarily motivated by its
relevance to adaptive security, this question is independently motivated by other
cryptographic applications (such as settling the relation between public-key en-
cryption and oblivious transfer); see Section [f] for details.

The ISH may seem easy to refute under standard assumptions. Indeed, if we
require the outputs of A and B to be identically distributed, then ISH could be
refuted based on the existence of any pseudorandom generator G: Let A output
G(r). The existence of B as above would allow one to distinguish between G(r)
(for which B~! will find an inverse under B with overwhelming probability)
and a uniformly random string of the same length (which with overwhelming
probability has no inverse under B). However, the case where the outputs of B
and A should only be computationally indistinguishable appears to be much more
challenging. In particular, note that a pseudorandom distribution does admit an
invertible alternative sampler: the sampler B just outputs a uniformly random
string. Since this output is computationally indistinguishable from the actual
distribution, it is consistent with the above formulation of ISH.

On Invertible Sampling and Adaptive Security 469

We show, under the assumptions described above, that there exist efficient
sampling algorithms A for which the ISH fails. At the same time, we show that a
general feasibility result for adaptively secure MPC implies that invertible sam-
pling is possible for every A, thereby reaching a contradiction and establishing
our main negative result.

More precisely, we show that general adaptively secure computation implies
(and in fact, is equivalent to) a stronger version of ISH in which the sam-
pling algorithms A, B are given an input x in addition to their random input,
and where the inversion algorithm B! should be successful on every input z.
This stronger flavor of ISH is ruled out by the assumptions mentioned above,
namely the existence of extractable one-way functions and NIZK proof systems
for NP. To rule out the weaker variant of ISH (with no input z) we need to
use somewhat stronger assumptions: a non-standard (but still plausible) vari-
ant of an extractable one-way function, and the existence of non-interactive
witness-indistinguishable (NIWT) protocols for NP without a common reference
string [22/112930].

1.1 Our Techniques

We now give some intuition on our construction of an efficient sampling algorithm
A for which ISH does not hold. For this purpose, it is convenient to first describe
a relativized world (defined via a randomized oracle) in which such A provably
exists. As a first attempt, suppose that we have an oracle computing a random
function f : {0,1}" — {0,1}2". Now, consider the efficient sampling algorithm
A which outputs a random image of f, namely A(r) = f(r). (Note that A is
efficient given oracle access to f.) Similarly to the previous PRG example, such
an algorithm is not enough to refute the computational version of ISH: indeed,
the alternative sampler B can simply output a uniformly random string of length
2n. The high level idea for ruling out such an alternative sampler is to make the
outputs of f efficiently verifiable. Formally, we add to f an additional oracle g
which decides whether a given string y € {0, 1}?" is in the image of f. (A similar
oracle was used by Wee [4]] in the seemingly unrelated context of separating
two notions of computational entropy.)

We now informally argue that ISH is false relative to the randomized oracle
(f,9). Let A(r) = f(r) as before. Assume towards a contradiction that an alter-
native sampling algorithm B(r’) as required by ISH exists. We argue that B can
be used to efficiently invert f on a random output y = f(x), which remains hard
even when given the decision oracle g. By the computational indistinguishability
requirement, it suffices (in order to reach a contradiction) to successfully invert f
on a random output 3’ sampled by B. Moreover, since indistinguishability holds
relative to the verification oracle g we are guaranteed that (with overwhelming
probability) ¢’ as above will be in the image of f.

The inversion algorithm for f, when given 3’ sampled by B, uses the inversion
algorithm B™! guaranteed by ISH to obtain a preimage ' of 4’ under B. Since
f is a random function, it is impossible to efficiently find an image 3y’ of f
without querying f on the corresponding pre-image. (Jumping ahead, this is

470 Y. Ishai et al.

the step where our explicit non-relativized construction will rely on a knowledge
assumption.) Thus, the inversion algorithm can use 7’ to extract a preimage x of
y' under f by running B on 7’ until it queries f on a point x such that f(x) =y.

To obtain an explicit version of the above A we use extractable one-way func-
tions to implement f and a NIZK proof for proving range membership to emulate
the role of g (the latter is similar to the use of NIZK proofs in [37I32]; see Sec-
tion[[2)). For technical reasons that have to do with the common reference string
required by the NIZK proof system, we cannot use this approach to refute the
basic version of ISH described above. For this, we need to employ a somewhat
more complicated proof strategy and apply NIWI proofs instead of NIZK proofs.
See Section] for details.

1.2 Related Work

Adaptively secure MPC (without erasures) was first realized in [I3] for the stand-
alone case. In [§], a variant of the notion of adaptive security that guarantees
sequential composition was introduced: we refer to the variant from [8] which
requires security against post execution corruption (PEC). Namely, after the sim-
ulation is complete, the environment can ask the adversary to corrupt additional
parties and simulate their views. This variant is used in [8] to prove sequential
composition. In fact, a separation between adaptive security with PEC and with-
out it has been shown in [12]. We stress that the negative results from [12] apply
to specific protocols rather than functionalities. That is, [12] builds protocols
which are shown to be adaptively secure in one setting but not adaptively se-
cure in another setting, but does not show any functionality which cannot be
realized with adaptive security, as opposed to our impossibility result.

In the UC security framework [9] the main feasibility result for securely realiz-
ing adaptively well-formed functionalities against an adaptive adversary was ob-
tained in [14] (see also [17J25]). This work also suggested the following plausible
candidate for a randomized functionality which cannot be realized with adaptive
security: on input a security parameter k, output the product of two random k-
bit primes. However, we do not know how to relate the possibility of realizing this
functionality with adaptive security to any well-studied assumption.

If one is willing to assume that honest parties can reliably erase their data,
security against adaptive adversaries becomes a much easier task. Our negative
results do not apply to this alternative model, and general feasibility results in
this model were obtained in [336].

The Invertible Sampling Hypothesis is related to questions of oblivious sam-
pling that have been studied in other cryptographic contexts. For instance, the
question of generating a public key for an encryption scheme without learning
how to decrypt is related to the goal of constructing an oblivious transfer proto-
col from a public-key encryption scheme [23I26]; virtually any non-committing
encryption scheme [2I12012516] requires some form of oblivious sampling of public
keys; in a recent result [2I] the question of whether ISH holds has been infor-
mally asked, in the context of turning UC-secure protocols in the common refer-
ence string model into semi-honest secure stand-alone protocols. If the common

On Invertible Sampling and Adaptive Security 471

reference string is a random string, the problem trivially reduces to having one
party publish a random string. If the CRS instead is sampled using some generic
distribution, is not clear whether a semi-honest party can sample the common
reference string without learning the trapdoor. See Section [0l for a further dis-
cussion of these additional connections of ISH with cryptography.

The knowledge of exponent assumption was introduced in [19], and since then
other specific knowledge of exponent assumptions have been proposed [4l39],
until in some recent work [TTJTO/IR] the abstract notion of extractable functions
has been introduced. Our impossibility results rely on assumptions of this type.
The use of knowledge assumptions in security proofs has received criticism in
the cryptographic community, especially because such assumptions seem hard
to disprove [38] (even though in [4] a “wrong” knowledge assumption from [31]
has been disproved). As far as we know, our work is the first to apply such
assumptions towards negative results in cryptography.

Finally, our use of NIZK and NIWI proofs for NP was inspired by the use
of NIZK in [37] to construct a class of distributions where efficient learning
with an evaluator is possible but coming up with a generator that approximates
the given distribution is infeasible, and by [41I32] in the context of separating
conditional HILL and Yao entropies. Note, however, that none of these works
made use of knowledge assumptions; such assumptions appear to be crucial to
our techniques.

2 Preliminaries

Notation. We use n as a length parameter; all probability distributions we con-
sider in this work will be over strings of length polynomial in n. We let U,, denote
the uniform distribution over {0,1}". We use x < X to denote the process of
sampling x from the distribution X. If X is a set, z «+ X denotes a uniform
choice of x from X. For any distribution X and algorithm A, we denote by A(X)
the probability distribution on the outputs of A taken over the coin tosses (if
any) of A and an independent random choice of the input z from X.

We use the standard notation {Cy;Cs;...;Cp, : D} to denote the distribu-
tion of D obtained as a result of the sampling process defined by the sequence
of instructions Ci, ..., Cy,. For example, {a < X;b «— A(a) : (a,b)} denotes the
distribution of pairs (a, b) obtained by first picking a from X and then obtaining
b by running A on a. Similarly, we use Pr[Cy;Ca;...;Cy, : E] to denote the
probability of event F in the probability space defined by the sequence of in-
structions C1, .. ., Cy,. For instance, Pr[a < X;b — Y : a # b] is the probability
that when a is chosen according to X and b is independently chosen according
to Y, a and b are not equal.

We assume that the reader is familiar with the concepts of negligible function,
one-way function, pseudorandom gemerator, and non-interactive zero-knowledge
proof system. Suitable definitions can be found in the full version or in [27].

By default we assume efficient algorithms to be uniform and efficient distin-
guishers to be nonuniform. We will use €(-) to denote an unspecified negligible
function.

472 Y. Ishai et al.

Let I C {0,1}* be an arbitrary infinite index set. We say that two distribution
ensembles { X, }wer and {Y, twer are computationally indistinguishable if for
every polynomial-size circuit family C, there exists a negligible function € such
that for every w € I,

| Pr[Cluy)(Xw) = 1] = Pr[Cly|(Ya) = 1] < €(Jw]).

Sampling algorithms. We will view any probabilistic polynomial time (PPT)
algorithm A as defining an efficient sampling algorithm (or sampler for short).
We let A(w) denote the output distribution of A on input w and A(w;ra) denote
the output when the random input (i.e., sequence of coin-tosses) is given by ra.
Without loss of generality, we can associate with every efficient A a polynomial
£(-) such that ra is a random input of length £(|w]). Under this convention, A(w)
is distributed identically to A(w; Ug(|w|)). We will use this convention throughout
the paper. Finally, we will sometimes be interested in the special case of samplers
over a unary input alphabet; in this case A defines a sequence of distributions
{A(ln)}neN

We say that a sampling algorithm A is inverse-samplable if there exists a PPT
inversion algorithm which, given an input w and a sample y from the output
A(w), outputs a random input r for A which is consistent with w, y. Moreover, the
choice of r should be “correctly distributed” in the sense that (w,y,r) should be
computationally indistinguishable from (w, A(ra), 7a) where ra < Up(jy|)- (Such
a distributional inversion requirement is similar in spirit to the definition of a
distributionally one-way function [33].)

Definition 1 (Inverse-Samplable Algorithm). We say that an efficient sam-
pling algorithm A is inverse-samplable if there exists a PPT inverter algorithm A™"
such that the distribution ensembles {ra < Upw)) : (ra; A(w;a)) b wefo,13+ and
{ra « Ugw) : (Afl(w7A(w;rA)),A(w;rA))}we{o’l}* are computationally indis-
tinguishable.

3 Invertible Sampling Hypothesis

The Invertible Sampling Hypothesis (ISH) is concerned with the possibility of
inverse-sampling arbitrary efficiently samplable distributions. It is easy to see
that if one-way functions exist, then there are efficient sampling algorithms which
are not inverse-samplable. Thus, we settle for the hope that for every efficient
sampling algorithm A there exists an efficient and inverse-samplable algorithm
B whose output is computationally indistinguishable from that of A. The ISH
captures the above hope. We will also consider a weaker variant of ISH, referred
to as weak ISH, which restricts the sampler A to have a unary input alphabet.
This is formalized below.

Hypothesis 1 (Invertible Sampling Hypothesis: ISH). For every efficient
sampling algorithm A there exists an efficient sampling algorithm B satisfying
the following two requirements.

On Invertible Sampling and Adaptive Security 473

1. Closeness: The distribution ensembles {A(w)}weqo,13+ and {B(w)}we(o,13+
are computationally indistinguishable.
2. Invertibility: B is inverse-samplable (see Definition).

Hypothesis 2 (Weak ISH). The weak ISH is defined exactly as ISH above,
except that the inputs w for A and B are restricted to be unary (i.e., are of the
form 1™).

Clearly, ISH implies Weak ISH. The weaker flavor of ISH is somewhat more
natural in that it refers to the traditional notion of a sampling algorithm (defining
a single probability distribution for each length parameter n) as opposed to the
more general notion of a probabilistic algorithm. Moreover, the weak ISH suffices
for the motivating applications discussed in Section[6l However, it turns out that
the stronger flavor can be refuted under more standard assumptions and that
ruling out this flavor suffices for obtaining our main negative result on adaptively
secure MPC. Thus, in the following we will consider both variants of ISH.

We will start (in Section]) by refuting the weak ISH assuming the existence of
a strong variant of extractable one-way functions as well as NIWI proof systems
for NP. We will then (Section [) refute the original and stronger variant of
ISH under the weaker assumptions that standard extractable one-way functions
(generalizing various “knowledge-of-exponent assumptions” from the literature)
exist, as well as NIZK protocols for NP in the CRS model. At a high level,
refuting the stronger flavor of ISH is easier because the additional “external”
input allows us to introduce randomness over which the alternative sampler B
has no control. This randomness can be used for choosing the CRS for a NIZK
proof or random parameters for a family of extractable one-way functions.

4 Conditional Refutation of Weak ISH

As already discussed in the introduction, any pseudorandom generator G :
{0,1}™ — {0,1}" provides a nontrivial example of a sampling algorithm for
which weak ISH holds. Indeed, if A(1") outputs G(ra) where ra «— U,, then
B(1™) can simply output rg where rg < Usy,.

This example suggests that in order to provide a counterexample for the
(weak) ISH, it does not suffice for the computation performed by the sampler to
be one-way and for its output support to be sparse, but its output should also be
verifiable (a feature missing in the aforementioned example). Jumping ahead, ver-
ifiability will be achieved via variants of non-interactive zero-knowledge. It turns
out that even the “sparseness” requirement needs to be significantly strengthened
in order to rule out the possibility of directly sampling an output without know-
ing a corresponding input. Classes of sparse one-way functions with a similar
property were studied in [I94J39] under the umbrella of “knowledge assump-
tions.” Crudely speaking, a knowledge assumption for a function f states that
if any efficient algorithm A outputs a point in image(f), then the only way A
could have computed this image is by choosing an = and computing f(z) (here
it is necessary that image(f) be sparse). Thus the algorithm “knows” x. This is

474 Y. Ishai et al.

formally captured by requiring the existence of an efficient algorithm that can
extract x from A’s input and randomness.

A brief outline of our refutation of weak ISH is as follows. Suppose a function
f is both “extractable” and one-way. Given an algorithm which produces valid
points in image(f), if we can obtain the randomness that it used, then we can use
f’s “knowledge extractor” to find pre-images and thus break the one-wayness
of f. However to obtain this randomness, we need the algorithm to be inverse-
samplable. Since weak ISH hypothesizes the existence of such an algorithm we
can invert f and contradict its one-wayness.

Next, we formally prove that weak ISH is false assuming the existence of a
strong notion of an Extractable One-Way Function (EOWF) and the assumption
that Non-Interactive Witness Indistinguishable Proofs (NIWT) exist for all of NP.

We start by defining the two primitives we rely on. An extractable one-way
function is a one-way function f with the following extraction property: for any
efficient A which, on random input r 4, attempts to output an element y in the
image of f, there is an efficient extractor K 4 which given the random input 74
of A succeeds in finding a preimage 2 € f~!(y) with roughly the same success
probability. Formally:

Definition 2 (Extractable One-Way Function (EOWF)). Let f be a one-
way function. We say that f is an extractable one-way function if for every PPT
algorithm A with running time £(n) there is a PPT extractor algorithm K such
that for every n:

Prira < Uppy;y = A(1"ra);o — Ka(1",r4)
(f(z) =y) Vv (Va', f(2') #y)] = 1 — e(n)

for some negligible function e.

We note that the above definition appears stronger than similar definitions from
the literature in that it requires f to be a single, explicit one-way function, as
opposed to a keyed collection of functions. In particular, EOWF as above can not
be instantiated using concrete knowledge assumptions from the literature such
as the ones in [19/4]39]. However, it still seems plausible that (length-flexible
versions of) practical cryptographic functions satisfy the above definition. In
Section Bl we will rely on a more standard notion of EOWF (which allows f to
depend on a random key and captures previous assumptions from the literature)
in order to refute the strong variant of ISH.

Next we need the notion of non-interactive witness indistinguishable (NIWI)
proof systems [I29I30]. A NIWTI proof is used to efficiently prove that an input
x is in some NP-language L without allowing the verifier to distinguish between
any two possible witnesses. While the latter witness indistinguishability property
is weaker than the zero-knowledge property of NIZKs, it turns out that it is
sufficient for our purposes. The important advantage of NIWI proofs is that they
can be implemented (under stronger assumptions) without a trusted common
reference string, which is inherently required for NIZK proofs.

On Invertible Sampling and Adaptive Security 475

Definition 3 (Non-Interactive Witness Indistinguishable Proof Sys-
tem [22/1129]). Let L be any NP language, and Ry a fized witness relation
for L. Then P = (P, V) is called a non-interactive witness indistinguishable
(NIWTI) proof system for Ry, if P and V are PPT algorithms and the following
conditions hold for some negligible function e:

1. Completeness. For all (x,w) € Ry,
Pr[r < P(z,w);b— V(x,m) : b=1] > 1 — €(|z]).
2. Soundness. For all x & L, for all proof strings m*
Pr[V(z,7*) = 1] < €(|z]).

3. Witness Indistinguishability (WI). For every polynomial-size circuit family
Chr, and every x,wo,wy such that (x,wy) € Ry and (z,w1) € Ry,

| Pr(Clay (P (2, wo)) = 1] = Pr[Clay (P(z, w1)) = 1]| < €(|]).

NIWTI proofs exist for all of NP under well-studied assumptions [221129].

We now use the above two primitives to establish the main result of this
section.

Theorem 1. If EOWF exists and NIWI proofs exist for NP, then Weak ISH is
false.

Proof (sketch): Let f be an EOWF. We first define an efficient sampling algo-
rithm A, which outputs two random points in image(f) and also a NIWT proof
that at least one of the points was correctly computed. That is, the sampling
algorithm picks random zg, z1 < {0, 1}" and outputs (f(zo), f(z1),), where 7
is a NIWTI proof that either f(xq) or f(z1) is in the image of f. More concretely,
7 is obtained by running a NIWI prover for the NP relation defined by

Rr((yo,y1),w) = Liff f(w) =yo V f(w) =31

on input (f(xo), f(2z1)) and witness xg. From Weak ISH, we obtain A’s invertible
alternate sampling algorithm B and its inverter B~ By the soundness property
of the NIWI proof, we are (essentially) ensured that the alternate sampler B
outputs at least one valid point in the image of f. But then we can construct a
new algorithm X that runs B and outputs at random one of the two images y.

Now X is an algorithm that outputs (with significant probability) valid points
in the image of f. Given that f is an EOWF, there must exist also an extractor
Kx that given the random input of X outputs x; such that y, = f(xp). Using B!
to inverse-sample the random input of X and feeding it to Kx we can efficiently
invert f, contradicting its one-wayness. See the full version for more details. O

476 Y. Ishai et al.

5 Conditional Refutation of ISH

In this section we refute the main (strong) variant of ISH under weaker and more
standard assumptions than those used to refute Weak ISH.

We start by defining a relaxed notion of extractable one-way function which is
similar to the notion of (non-interactively) extractable function family ensemble
put forward by Canetti and Dakdouk [IO/TTVIR]. In contrast to the previous no-
tion from Definition 2] the relaxed notion follows from previous concrete knowl-
edge assumptions in the literature such as Damgard’s knowledge of exponent
assumption [19].

Definition 4 (Function Family Ensemble). A function family, indexed by
a key space K, is a set of functions F = { fr}rex in which each function has the
same domain and range. A function family ensemble, F = {F"},cn, is defined
as an ensemble of function families F,, with key spaces { Ky }nen.

Definition 5 (One-Way Function Family Ensemble). A function family
ensemble is one-way if:

— fr can be evaluated (given 1™, k € K,,, and x € domain(fy)) in time poly-
nomaal in n, and

— for every polynomial-size circuit family C,, there is a megligible function €
such that for every n,

Prik «— Kp;x < domain(fy); 2" = C,,(1", k, fr(z)) : fr(z") = fx(z)] < e(n).

Definition 6 (Non-Interactively Extractable One-Way Function
Family Ensembles [18]). We say that an one-way function family ensemble is
non-interactively extractable (without auziliary information) if for any efficient
sampling algorithm A running in time £(n) (with random input ra € Uyyy),
there exists a PPT algorithm K 4o and a negligible function € such that for all n:

Prik — Kn;ra — Ugny;y = A1 ksra)iz — Ka(1% k,ra) -
(fe(z) =y) vV (V2 fr(z') # y)] = 1 —€(n).

The difference between the above notion of extractable one-way function family
ensembles and the notion of EOWF from Definition [2] is that extraction is not
guaranteed for all functions in the function family but only for a randomly chosen
function (concretely, the first step k «— K, chooses a random function). Further-
more, the process of picking the random function may use private randomness
that is not available to the algorithm A.

The above difference makes it possible to derive extractable one-way function
family ensembles from existing knowledge assumptions in literature [T93TI4I39].
As an example, the Knowledge of Exponent (KEA) Assumption [I9] informally
states that there exists an ensemble of groups {G), }nen where the discrete log-
arithm problem is hard to solve and any PPT adversary A that on input g, w
can compute a pair of the form (¢",w") must know r, in the sense that there

On Invertible Sampling and Adaptive Security 477

exists an efficient extractor K 4 which given the random input of A can compute
r. Mapping this example to Definition B the key space is K,, = G,, x G,, and
the function fj with k = (w, g) is defined by fir(r) = (w",g").

Next, we replace the previous NIWI primitive with non-interactive zero knowl-
edge (NIZK) proofs in the common reference string (CRS) model [6l40]. We
omit the (standard) definition of NIZK, but note that the assumptions on which
NIZK proof systems for NP can be based are significantly more general than
the corresponding assumptions for NIWI, and include the existence of trapdoor
permutations [24].

We are now ready to state the main theorem of this section.

Theorem 2. If non-interactively extractable one-way function family ensembles
exist and NIZK proof systems exist for NP, then ISH is false.

Proof (sketch): The proof follows the same outline as the one from Theorem [I]
but the use of NIZK instead of NIWI allows it to take a somewhat simpler form.
Let F be a non-interactively extractable one-way function family ensemble. We
first define an efficient sampling algorithm A whose inputs are pairs of strings
(k,0): k is a key from the key space of F and o is a uniformly random string to
be used as a CRS for a NIZK proof system. A outputs a random image of fi and
a NIZK proof (under o) that the output is valid. Let B be the alternate invertible
sampler hypothesized by ISH. Due to the soundness of the NIZK proof system,
B outputs valid images of fr when o is chosen uniformly at random. Since F
is extractable, we can use B, its extractor Kg and its inverter B~ to construct
an efficient inversion algorithm for the family ensemble F, contradicting its one-
wayness property. See the full version for details. O

6 Applications of ISH

While our main motivation for studying ISH is its relevance to adaptively secure
MPC (discussed later in Section[f]) we start by presenting two other consequences
of (weak) ISH. In order to avoid any confusion, we remind the reader that in
the previous sections we disproved ISH under some specific computational as-
sumptions. However, as we couldn’t disprove ISH unconditionally (or even under
standard cryptographic assumptions), it is still interesting to investigate the con-
sequences of ISH in order to put ISH in the proper cryptographic context and
to further motivate our study.

PKE and OT: As a first consequence, we note that if ISH holds, this would
settle the question of the relationship between public key encryption (PKE) and
oblivious transfer (OT), as studied in [20].

Theorem 3. If ISH holds, then the existence of semantic secure PKE implies
the existence of an oblivious transfer protocol.

478 Y. Ishai et al.

Proof (sketch): The proof follows by considering a protocol for é—OT similar
in spirit to the EGL protocol [23], where the receiver samples one public key
with the key generation algorithm (thus learning the secret key), and the other
using the alternate inverse-samplable algorithm, as described in ISH. Receiver’s
security loosely follows from the closeness property of ISH, while sender security
can be deduced by the semantic security of the PKE scheme. See the full version
for details. |

Assumptions for UC-secure computation: A systematic study of the minimal
setup and computational assumptions for UC-secure computation has been re-
cently undertaken in [2I]. A question that the authors left open is whether the
existence of stand-alone oblivious transfer (SA-OT) is a necessary assumption
for UC-secure oblivious transfer (UC-OT) in the common reference string (CRS)
model, where the string is sampled from an arbitrary distribution. If ISH holds,
one could answer this question affirmatively. To show that SA-OT is necessary
for UC-OT we will show how to construct a protocol for SA-OT assuming that
UC-OT in the CRS model exists. Intuitively we need to generate a CRS to make
the protocol work, but we don’t want any party to learn the corresponding trap-
door. Unfortunately, we cannot let the parties use MPC in order to generate this
CRS, since unconditional MPC is impossible, and we cannot assume that OT
exists (or any equivalent computational assumption). But if ISH holds, there is a
way of sampling any CRS without learning the trapdoor by using the invertible
sampler, after which parties can run the UC-OT with respect to this CRS. Also
note that we don’t need this fake CRS to be distributed exactly as the real CRS,
but just computationally close: if the UC-OT protocol works with the real CRS
but not with the fake CRS, it could be used as a distinguisher, thus violating
ISH. Standard compilation techniques can be used to turn this protocol into a
protocol secure against a malicious adversary.

7 Adaptive Security and ISH

In this section we show that our strong variant of ISH (Hypothesis [I]) is closely
related to secure multi-party computation with security against adaptive adver-
saries (adaptive MPC or AMPC for short). We first show that if all randomized
functionalities admit AMPC protocols, then ISH is true. Combined with The-
orem [2 this gives the first strong evidence that general AMPC is impossible.
Then, we proceed to show that if ISH is true and all the parties are mutually
connected with OT—ChannelsE then general AMPC is possible — thus showing
that ISH is essentially equivalent to general AMPC.

As discussed in the introduction, our results apply to a wide range of AMPC
models from the literature. For convenience, we will refer to the two-party semi-
honest model, under the definition of [§] which requires security against post
execution corruption (PEC). The latter means that after the execution is com-
plete, the environment can ask the adversary to corrupt additional parties. The

2 Our use of ideal OT can be replaced by any adaptively secure OT protocol, which
can be based on standard cryptographic assumptions.

On Invertible Sampling and Adaptive Security 479

PEC requirement is needed to prove sequential composition of adaptively secure
protocols, and is implied by most other definitions of adaptive security from the
literature (such as adaptive UC-security). Our negative result does not hold for
adaptively secure protocols without PEC (since in the semi-honest two-party
case, security in this model is equivalent to non-adaptive security [12]).

Brief Preliminaries. This section is an informal introduction to (adaptively se-
cure) MPC protocols. In an MPC protocol, adaptive security implies that an
adversarial entity can adaptively choose the parties he wants to corrupt at any
point in the protocol. An adversary is semi-honest if the parties that he corrupts
always follow the prescribed protocol. His goal is to try and obtain as much in-
formation as possible under this constraint. Security against such adversaries is a
basic requirement for any cryptographic protocol. An ideal model of security for
MPC protocols is one in which there exists a trusted third party who (via secure
private channels) receives all the inputs from the participants of the protocol
and sends back their respective outputs. Semi-honest adversaries in this model
can only learn the input and output of the parties that he corrupts. Considering
this as a basis for security, in the ideal-real model of [§], a real world protocol
for MPC is secure if for every adversary A in the real execution, there exists an
ideal world adversary S (also known as the simulator), such that the outputs of
A and S are computationally indistinguishable. We refer the reader to [8I36] for
a more precise definition of this notion.

7.1 Adaptively Secure MPC Implies ISH

First we show that if AMPC protocols exist for every functionality F, then ISH
(Hypothesis[) is true.

Theorem 4. If for every PPT functionality F there exists a protocol II that
securely realizes F against an adaptive semi-honest adversary (with PEC), then
ISH is true.

Proof (sketch): Consider a two-party randomized functionality F that takes
input from both parties and uses some internal coins and compute some function
A. Now if there exist a protocol m between P;, P, that securely implements F,
in particular the following two conditions will be satisfied: 1) The output of
the protocol 7 and the functionality F are computationally close (because the
protocol is correct); 2) There exist a simulator S that can explain the randomness
used by Pi, P> in 7 to produce the output z, without access to the functionality
random tape 7. Therefore we can use the protocol and the simulator (7, S) as
a foundation to build the inverse-samplable algorithm B,B™" that satisfy the
requirement of ISH. The inverse-samplable algorithm B can be constructed by
simulating a run of the protocol ™ between P; and P, “in the head”, while the
inverter B™! will run the simulator S as a subroutine. See the full version for
more details. (]

480 Y. Ishai et al.

7.2 ISH Implies Adaptively Secure MPC

In the previous section we showed that AMPC implies ISH. Now we show that
the converse is true too.

To make the result stronger, we will show that ISH implies the strongest
variant of MPC i.e., multiparty computation secure against an active, adaptive
adversary in the universally composable security framework (UC-AMPC). Given
that UC computation is impossible in plain model, we look at the OT-hybrid
model where it is possible to evaluate adaptively well-formed functionalities [14],
and we show how ISH would allow us to extend this result to all functionalities.
We refer the reader to [9] for the definition of UC-AMPC. We look at adaptive
security, where the adversary A can corrupt any of the two parties Py, P, at any
point during the protocol 7.

Theorem 5. If ISH holds, then active secure UC-AMPC' is possible for any
functionality in the UC-OT hybrid model.

Proof (sketch): Tt is known that any deterministic functionality can be securely
implemented in the OT-hybrid model[35/34]. Using the UC composition theorem
and ISH we extend the result for randomized functionalities.

Consider a general randomized functionality (z1,22) < F(x,y;p), where p
is the private randomness of F, (x, z1) the input/output of P;, and (y, z2) the
input/output of P». Let z; = f;(z,y;p). Then from Strong ISH we know that
there exist f/, f,fl, the alternative sampler and the inverter.

Now define a new, deterministic functionality G as (21, 22) = G((z, p1), (¥, p2)),
where z; = f(z,y; p} @ pb), and where f/ is the alternative sampler for f;. Being
a deterministic functionality, G can be securely realized with adaptive security
in the OT-hybrid model.

Now the protocol to implement F in the G-hybrid model proceeds as follows.
Party P; picks p; at random, feeds it into G together with its input, and waits to
receive the output. Note that the protocol does not exactly compute the required
functionality f, but f’. The indistinguishability requirements of ISH imply that
the output of f and of f’ are indistinguishable too, and that suffices for UC-
computation. This protocol can be shown to be UC-secure, see the full version
for more details.]

References

1. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. STAM J.
Comput. 37(2), 380-400 (2007)

2. Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 75-89. Springer, Heidelberg (1997)

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307—
323. Springer, Heidelberg (1993)

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273-289. Springer, Heidelberg (2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

On Invertible Sampling and Adaptive Security 481

. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1-10 (1988)

. Blum, M., Feldman, P.; Micali, S.: Non-interactive zero-knowledge and its appli-

cations (extended abstract). In: STOC, pp. 103-112 (1988)

. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.

SIAM J. Comput. 20(6), 1084-1118 (1991)

. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.

Cryptology 13(1), 143-202 (2000)

. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. In: FOCS, pp. 136-145 (2001)

Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damgard, I., Goldberg, L.A., Halldérsson, M.M., Ingdlfsdéttir, A., Walukiewicz, I.
(eds.) ICALP 2008, LNCS, vol. 5126, pp. 449-460. Springer, Heidelberg (2008)
Canetti, R., Dakdouk, R.R.: Towards a theory of extractable functions. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595-613. Springer, Heidelberg (2009)
Canetti, R., Damgard, 1., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptology 17(3), 153-207 (2004)
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: STOC, pp. 639-648 (1996)

Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC, pp. 494-503 (2002)

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11-19 (1988)

Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASTACRYPT 2009. LNCS, vol. 5912, pp. 287-302. Springer, Heidelberg (2009)
Choi, S.G., Soled, D.D., Malkin, T., Wee, H.: Simple, black-box constructions of
adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 387-402. Springer, Heidelberg (2009)

Dakdouk, R.R.: Theory and application of extractable functions (2009),
http://cs-www.cs.yale.edu/homes/jf/Ronny-thesis.pdf

Damgard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445-456.
Springer, Heidelberg (1992)

Damgard, 1., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432-450. Springer, Heidelberg (2000)

Damgard, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient assumptions
for UC computation. In: Micciancio, D. (ed.) Theory of Cryptography. LNCS,
vol. 5978, pp. 109-127. Springer, Heidelberg (2010)

Dwork, C., Naor, M.: Zaps and their applications. STAM J. Comput. 36(6), 1513—
1543 (2007)

Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
ACM Commun. 28(6), 637647 (1985)

Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS, pp. 308-317 (1990)
Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 505-523. Springer, Heidelberg (2009)

http://cs-www.cs.yale.edu/homes/jf/Ronny-thesis.pdf

482

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Y. Ishai et al.

Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: FOCS, pp. 325-335
(2000)

Goldreich, O.: Foundations of cryptography: Basic applications. Cambridge Univ.
Pr., Cambridge (2004)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority, pp. 218-229 (1987)

Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97-111. Springer,
Heidelberg (2006)

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415-432. Springer,
Heidelberg (2008)

Hada, S., Tanaka, T.: A relationship between one-wayness and correlation in-
tractability. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 82-96.
Springer, Heidelberg (1999)

Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward
separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 169-186. Springer, Heidelberg (2007)

Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: FOCS, pp. 230-235 (1989)

Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572-591.
Springer, Heidelberg (2008)

Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20-31
(1988)

Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117-132. Springer, Heidelberg (2009)
Naor, M.: Evaluation may be easier than generation (extended abstract). In: STOC,
pp. 74-83 (1996)

Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96-109. Springer, Heidelberg (2003)
Prabhakaran, M., Xue, R.: Statistically hiding sets. In: Fischlin, M. (ed.) CT-RSA
2009. M. Prabhakaran R. Xue, vol. 5473, pp. 100-116. Springer, Heidelberg (2009)
De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52-72. Springer,
Heidelberg (1988)

Wee, H.: On pseudoentropy versus compressibility. In: IEEE Conference on Com-
putational Complexity, pp. 29-41 (2004)

Yao, A.C.-C.: How to generate and exchange secrets, pp. 162-167 (1986)

	On Invertible Sampling and Adaptive Security
	Introduction
	Our Techniques
	Related Work

	Preliminaries
	Invertible Sampling Hypothesis
	Conditional Refutation of Weak ISH
	Conditional Refutation of ISH
	Applications of ISH
	Adaptive Security and ISH
	Adaptively Secure MPC Implies ISH
	ISH Implies Adaptively Secure MPC

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

