
Diagnosis of Service Failures by Trace Analysis
with Partial Knowledge

Wolfgang Mayer1, Gerhard Friedrich2, and Markus Stumptner1

1 Advanced Computing Research Centre, University of South Australia
{mayer.mst}@cs.unisa.edu.au

2 Alpen-Adria Universität, Austria
gerhard.friedrich@uni-klu.ac.at

Abstract. The identification of the source of a fault (“diagnosis”) of orchestrated
Web service process executions is a task of growing importance, in particular in
automated service composition scenarios. If executions fail because activities of
the process do not behave as intended, repair mechanisms are envisioned that will
try re-executing some activities to recover from the failure. We present a diagno-
sis method for identifying incorrect activities in service process executions. Our
method is novel both in that it does not require exact behavioral models for the
activities and that its accuracy improves upon dependency-based methods. Ob-
servations obtained from partial executions and re-executions of a process are ex-
ploited. We formally characterize the diagnosis problem and develop a symbolic
encoding that can be solved using constraint solvers. Our evaluation demonstrates
that the framework yields superior accuracy to classic dependency-based debug-
ging methods on realistically-sized examples.

1 Introduction

The proliferation of orchestrated Web Services has increased the importance of diagnos-
ing errors in process executions. Diagnosing the execution of concurrent applications
is a challenging task even in local environments, but is exacerbated in large scale dis-
tributed business interactions, as acknowledged in a recent IEEE TSC special issue on
Transactional behavior. Orchestrated Web Services define a process where individual
activities are implemented by Web Services. If individual activities fail during execu-
tion, raising exceptions, repairs must be carried out [8], but as the authors explain, while
languages such as WS-BPEL provide exception handling facilities, the construction of
the logic to conduct fault handling is time consuming and itself error prone. (The other
option at this point would be to fall back on compensation approach.) To provide com-
plete and correct methods for repair, a complete and correct diagnosis method is of
central importance. The goal of this paper is to infer minimal (irreducible) diagnoses,
or problematic service behaviors that need to be avoided (e.g,. through re-execution) in
terms of activity executions from observed execution traces.

While powerful techniques for runtime verification [5] or specification of fault han-
dling logic [2,8] have been proposed, essentially they presuppose the existence of a
detailed specification of intended service behavior in one case, and detailed fault mod-
els in the other. Unfortunately, these assumptions are not necessarily generally satisfied

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 334–349, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Diagnosis of Service Failures by Trace Analysis 335

in practice. The correct control flow may be specified but precise models of individ-
ual services and activity behaviors are usually unavailable. Fortunately, the sequence
of activity executions can be obtained from the execution engine. However, in case of
failures (i.e., if exceptions are triggered), a repair-enabled execution engine needs the
ability to execute and re-execute activities in order to achieve a successful process exe-
cution despite the fault. This increases the difficulty of the task, since repair executions
(re-executions) do not necessarily follow the defined control flow. Our only assumption
is that raising a fault will raise an exception.

To solve the problem of partial knowledge, earlier work has used dependency trac-
ing [14,1]. As we will show in our example, such methods cannot always correctly
compute the set of minimal diagnoses because they do not fully capture the semantics
of the employed control elements. Also, to the best of our knowledge no current generic
diagnostic approach can deal with (re-)executions of activities, nor deal with partially
known behaviors.

We present an approach to isolate minimal sets of faulty activity executions based
on the structure of a given process while assuming that the behavioral descriptions of
individual activities may not be given fully. Our approach relies on partial models of
individual activities that are gathered from observed input and output values that occur
in execution traces. No complete formal specification of an activity is required.

The paradigm of consistency-based diagnosis [13] is based on the assumption that
faults are expressed via inconsistencies between observations (observed results of the
actual system behavior) and the expected system behavior. In our case, such inconsisten-
cies are the result of raising an exception. A diagnosis specifies the set of observed activ-
ity executions that are assumed to be correct. These assumed-correct activity behaviors
must be part of “guaranteed safe” behavioral models for the activities of a process defi-
nition s.t. (i) no exceptions will be triggered for all possible process executions and (ii)
specified activity behavior constraints are fulfilled. Such behavior constraints express
partial knowledge about activity behaviors. If such a process behavior cannot exist,
then some activity behaviors must be incorrect. The lack of precise knowledge about
activity behaviors creates the necessity to reason about all possibly correct behaviors of
activities. We tackle this problem by introducing sets of possible behavior descriptions
and the propagation of symbolic constants representing specific but unknown values
that may be created during execution of the process. Our approach is highly flexible;
particular workflow patterns such as XOR splits (our example in this paper) are merely
special cases of activities with particular observed behaviors.

We develop a correct and complete diagnosis method for a sequence of activity
(re-)executions. We introduce basic concepts and an example in Sec. 2 and present
the process model in Sec. 3. In Sec. 4 we provide the diagnosis concepts for process
(re-)executions. Sec. 5 introduces the diagnosis method based on symbolic values. Its
implementation and evaluation are discussed in Sec. 6.

2 Example

We use the example depicted in Figure 1 to introduce core concepts of our approach.
The upper part of this figure shows the process definition, the lower part depicts the
executions of activities.

336 W. Mayer, G. Friedrich, and M. Stumptner

SEC1

SEC2

SAMPLE

REM

GUARD END

X1

X1

R1

R2

S

SAMPLE SEC1 X1 SEC2 X1 GUARD REM GUARD SAMPLE GUARDREM

nil nil true

t0 t1 t2 t3 t4 t5 t7 t8 t9 t10 t11 t12t6

J1

J2

no

no

Time

START

SPEC

START

t13

EC1 C2 C3

C4

C5

C6

C7

C8

C10

C11

C9

SPEC ← start()
S1 ← sample(SPEC)
R1 ← sec1(S1)
if x1(R1) :

R2 ← sec2(S1)
if x1(R2) :

S2 ← rem(S1)

S3 ← φ(S1, S2)

S4 ← φ(S1, S3)
guard(S4)
end(S4)

Fig. 1. Example process (top left), its Static Single Assignment form (right) and a sequence of
activity executions (bottom)

The process definition includes processing activities (e.g. SAMPLE) connected by a
control-flow using XOR-splits (i.e. X1) and XOR-joins (i.e. J1 and J2) as control activ-
ities. Activities read input variables and store their results in output variables. Process
executions are started by the execution of activity START which provides the process in-
puts. A process execution is finished by the execution of END. The outputs of a process
are the inputs of activity END. In our example the input to the process is a specifica-
tion of a test sample (variable SPEC) which is used by activity SAMPLE to generate a
sample placed at S. S is inspected by SEC1 and SEC2. Depending on the outcomes of
SEC1 and SEC2, activity REM is eventually executed to remove some parts of the sam-
ple. Before ending the process a guard examines the sample for a final quality control.
This guard can decide that the process failed by assigning nil to the control variable E
thus stopping the execution. In keeping with other work in the area, e.g., [5], we assume
for simplicity and without loss of generality, that a service has one operation and the
invocation of that operation equates execution of the service.

Assume that the process was executed as shown in Fig. 1. Time points mark the end
of an executed activity. The completion of activity executions are observed. GUARD
raises an exception by assigning nil to E at time t8. We assume that only the processing
activities SAMPLE, SEC1, SEC2, REM could be faulty. Given the flow of execution,
activity executions SAMPLEt1 and SEC2t4 are the only ones that could have failed.
〈SAMPLEt1, SEC2t4〉 is the only minimal conflict so far; a correctness assumption of
SEC1t2 is not needed to predict that the guard will fail. Both branches of the first occur-
rence of X1 in the process will lead to an execution of GUARD that fails if SAMPLEt1

and SEC2t4 are assumed to be correct. Diagnosis methods based on tracing dependen-
cies [14] would not exonerate SEC1t2 since the computation of E depends on the output
of SEC1t2. (Recall that dependency based models implicate all activities that contribute
to the derivation of an inconsistency in an execution trace. Our model is stronger in that
we also consider inferences that involve hypothetical, unknown output values of ac-
tivities. Hypothetical values allow us to prove that some explanations derived from a
dependency based approach are in fact incorrect and result in an exception.)

Diagnosis of Service Failures by Trace Analysis 337

Let us assume that a failure of SAMPLEt1 is unlikely, so [SEC2t4] is the only leading
diagnosis. It follows, that SEC2 must output to R2 a value such that the second occurrence
of X1 takes the upper branch. REM has to be executed to avoid the exception.

Let us assume a repair reasoner decides to execute REM and GUARD after the exe-
cution of GUARD at t8, but the execution of GUARDt10 generates another exception.
It follows that 〈SAMPLEt1, REMt9〉 is a further minimal conflict. Whatever branch is
taken in the process, assuming executions SAMPLEt1, REMt9 as correct leads to an
exception raised by GUARD. Consequently, [SAMPLEt1] is the only single fault diag-
nosis. So the repair reasoner decides to execute SAMPLE again at t11. If we assume
that the second execution of SAMPLE (at t11) outputs the same value as the execution
of SAMPLE at t1, then the diagnosis [SAMPLEt1] has to be extended to [SAMPLEt1,
SAMPLEt11].

Consequently, there are two minimal diagnoses [SAMPLEt1, SAMPLEt11] and
[SEC2t4, REMt9]. If the first diagnosis is very unlikely (since we know that the prob-
ability for SAMPLE to fail twice is an order of magnitude lower than the second di-
agnosis) then the repair reasoner decides to execute REM again which now provides a
different value than REMt9. Next GUARD is executed which returns t (true). At this
point we can conclude that the value provided by REMt12 corresponds to a value where
the process is executed for the input provided by STARTt0 and all activities worked
correctly. Consequently, the faulty execution of the process is repaired.

In such a diagnosis/repair scenario two challenges must be addressed. (1) The exe-
cution follows the control path of the process definition until an exception is raised. At
this point a repair reasoner takes over control and (re-)executes activities in an order
that may differ from the one specified in the process definition. Note, if an activity can
be re-executed is decided by the repair reasoner.

(2) It cannot be assumed that a complete definition of the behavior of the activities is
available. In many cases only the structural description of the process and the execution
trace is provided.

To deal with partially known behavior we present a process model that allows to
define sets of possible activity behaviors. (For brevity, we will not address the mapping
to and from BPEL and remain within the formal notation.)

3 Process Model

In our model, a process consists of activities that are connected by shared variables.
To obtain a model that is suitable for simulation and diagnosis, the semantics of each
activity and the control and data flow between activities must be captured. We follow
the proposal of [11] and represent the semantics of the process as constraints over the
process variables. Different from previous models, our approach explicitly captures al-
ternative possible process behaviors in a single model. Our notation is based on Reiter’s
logic formalism [13], but the underlying ideas apply to other formalisms, such as tran-
sition systems. We first describe the flow-related modeling aspects:

Definition 1 (Process). A process P = 〈A, V, I, O〉 consists of a set of literals A =
{A1, . . . , An} representing activities. Occurrences of each activity are defined over a

338 W. Mayer, G. Friedrich, and M. Stumptner

set of process variables V . I ⊂ V and O ⊆ V represent the input and output variables
of P , respectively.

Each occurrence of activity Ai in P receives a vector of input values through some pro-
cess variables (the vector of variables is denoted by ˜Ii) and outputs a vector of values to
process variables (denoted by ˜Oj). Activities Ai may occur several times in the process
exploiting different process variables. A process has a distinguished START activity
with no predecessors and an END activity with no successors. Processes conform to
the Static Single Assignment (SSA) form [3], values through some process variables
and outputs values to some process variables. The vector of process variables serving
as input (output) for Aij is denoted by ˜Iij (˜Oij). A process has a distinguished START
activity with no predecessors and an END activity with no successors. Processes con-
form to the Static Single Assignment (SSA) form [3], where each variable is defined by
exactly one activity. This is accomplished by creating new indexed “versions” of vari-
ables and by introducing so called φ-activities that are placed at control flow join points.
The SSA form of our example process is shown (in pseudo-code syntax) in Figure 1.

The input variables taken by a process are defined by the START activity, and the
output variables are inputs to the END activity. The structure of P is expressed as the
conjunction of all its activity occurrences

P (V) =
∧

Ai(˜Ij , ˜Oj), Ai ∈ A; ˜Ij , ˜Oj ⊆ V ; i ∈ [1, n]

that defines the control and data flow admitted by the process. As noted, an activ-
ity Ai may occur several times in P (V). We use upper case letters to denote variables
in first-order logical sentences. We write P (˜I, ˜X, ˜O) to denote the conjunction P (V)
where the process input variables are bound to input values ˜I , the output variables are
bound to ˜O, and the remaining process-internal variables are bound to ˜X . Predicates Ai

govern the allowed value combinations admitted by the correct behavior of all occur-
rences of activity Ai. Hence, value assignments to all process variables ˜I, ˜X, ˜O which
satisfy the predicates of the activities Ai in the conjunction P (˜I, ˜X, ˜O) correspond to
the allowed execution(s) where P receives input values ˜I and produces output values ˜O.
A value assignment that satisfies all predicates Ai in P (˜I, ˜X, ˜O) is an execution of the
process. For simplicity of presentation, we assume that END has only a single control
input variable E that indicates success or failure of a process execution. The SSA from
of the example process is represented as the conjunction

P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) =

start(C1,SPEC) ∧ sample(C1, SPEC , C2, S1) ∧
sec1(C2, S1, C3, R1) ∧ x1(C3, R1, C4, C5) ∧
sec2(C4, S1, C6, R2) ∧ x1(C6, R2, C7, C8) ∧

rem(C7, S1, C9, S2) ∧ φ(C8, C9, C10) ∧ φ(S1, S2, S3) ∧
φ(C5, C10, C11) ∧ φ(S1, S3, S4) ∧ guard(C11, S4, E) ∧ end(E, S4)

where the variables Ci and E model the control flow and the remaining variables model
the data flow. Control- and data flow joins are uniformly represented as φ-activities.

From here on we define the relation describing the behavior of an activity over a set
of activity variables. We focus on the possible relationships between input and output
values of an activity and do not rely on detailed knowledge about the internal structure

Diagnosis of Service Failures by Trace Analysis 339

or implementation of an activity. Since an activity may occur several times in P , the
activity variables (·) may be bound to different process variables (̃·) as shown in the
example for X1. That is, the activity variables in the definition of the behavior relation
serve as a placeholder for process variables.

Definition 2 (Behavior Relation). Let A be an activity with activity variables
U1, . . . , Ut where the input variables are I = 〈U1, . . . , Us〉 and the output variables
are O = 〈Us+1, . . . , Ut〉, and let DUk

denote the value domain of variable Uk. The
allowed behavior of activity A is given as a relation over the allowed input and output
values: A(I, O) ⊆ DU1 × · · · × DUs × DUs+1 × · · · × DUt .

We require that A is total, that is, A(v̂, O) includes at least one tuple for each v̂ ∈
DU1×· · ·×DUs . We describe the behavior relation of A extensionally by a set of literals.
Value domains correspond to types and can appear in multiple behavior descriptions.
For example, the domain of the data output of SAMPLE is the domain of the processing
input of SEC1. We require processes to be well typed such that an activity is defined
on all values that could be produced by its predecessors. Without loss of generality we
assume that any two domains are either equal or mutually disjoint.

Definition 3 (Process Behavior). A process behavior BP for a process P is a vector
of activity behavior relations

〈

A1(I1, O1), . . . , An(In, On)
〉

. Ii, Oi denote vectors of
activity variables.

To accurately model the flow of control in a process execution, we assume that each
domain DUk

contains a distinguished symbol nil that represents “no value” and that
is different from any value produced by any execution of an activity. The control flow
between activities is expressed as a shared variable connecting each predecessor activity
to its successor(s). Control activities AND-split, AND-join, and XOR-join are defined
as usual where control input and output variables have the binary domain {t,nil}. For
processing activities (those which process inputs and pass the control flow), guards,
and XOR-splits, we amend the relation A(I, O) to include all tuples 〈v̂,nil , . . . ,nil〉
where an input value in v̂ is nil and all other input variables are bound to values of
their domain. For φ-activities the output is nil iff both inputs are nil . We refer to these
sets of tuples as the nil-description. This model derived from SSA form ensures that
an activity produces non-nil outputs only if it is activated with non-nil inputs along the
control flow path and produces nil otherwise. As a result, the control and data flow in
any process execution are captured correctly. Furthermore, the model ensures that the
END activity receives a non-nil control input iff the process runs to completion and
does not raise an exception.

Let us now investigate the case where the behavior of an activity A is partially un-
known. This situation may arise if we must predict the execution of a process on partial
input or in the presence of fault assumptions. For example, the outputs of X1 cannot be
predicted precisely without knowing the values supplied by SEC1 and SEC2. However,
even if the behavior of SEC1 is not known, it is still possible to conclude that any ex-
ecution of SEC1 will result in an assignment for R1 and the activation of X1. Let the
hypothetical value of the assignment to R1 be r. Then it is known that X1 will activate
either the upper or the lower branch. Consequently, the behavior relation of X1 will

340 W. Mayer, G. Friedrich, and M. Stumptner

contain either x1(t, r, t,nil) or x1(t, r,nil , t) where the behavior of an XOR-split ac-
tivity is expressed by the relation x1(C, W, Y, N) defined over control variables C, Y ,
N and decision input W . Since XOR-splits exhibit deterministic behavior (for given in-
puts) the behavior relation could not contain both tuples. To capture this form of incom-
plete knowledge, a model must be able to express a set of possible behavior relations
where each relation reflects a different possible behavior if complete information was
available.

We generalize our model of an activity from a single relation to a set of relations
in order to model the behaviors that may arise if the behavior relation is not known
completely. The possible behaviors of an activity A are expressed by a set of relations
A(I, O) =

{

A1(I, O), . . . , Az(I, O)
}

, where each Ak(I, O) represents a behavior
relation as defined previously.

E.g., the two possible behaviors of an XOR-split activity x1(C, W, Y, N) with its
decision input fixed to W = x (where x may be nil) are

{x1(nil , x,nil ,nil), x1(t,nil ,nil ,nil), x1(t, x, t,nil)} and

{x1(nil , x,nil , nil), x1(t,nil ,nil ,nil), x1(t, x,nil , t)} .

More generally, if the value of variable W is not known, AX1(IX1, OX1) comprises
all sets

{{x1(t, nil, nil ,nil) ∪
⋃

x∈DW

{x1(nil , x,nil , nil), x1(t, x, Y, N)}} |

〈Y, N〉= 〈t, nil〉 or 〈Y, N〉= 〈nil , t〉}

The behavior of the entire process P is determined as a combination of specific
behaviors, one each from Ai(Ii, Oi) for all activities Ai in P . By constructing the set
of possible selections we define the set of all possible process behaviors.

Definition 4 (Possible Process Behaviors). The set of all possible behaviors of P is
given as

BP =
{〈

Ak1
1 , . . . , Akn

n

〉

| Aki

i ∈ Ai(Ii, Oi)
}

.

An element BP ∈ BP is a possible process behavior.

Assume an execution of P results in the following observed execution behavior of ac-
tivities Obs:

{start(t, spec1), sample(t, spec1, t, s1), sec1(t, s1, t, r11),
x1(t, r11, t,nil), sec2(t, s1, t, r21), x1(t, r21,nil , t), . . . ,

guard(t, s1,nil), rem(t, s1, t, s2), guard(t, s2,nil),
sample(t, spec1, t, s1), rem(t, s1, t, s3), guard(t, s3, t)}.

The same I/Os are observed for the executions of SAMPLE, while REM produces dif-
ferent outputs for the same input.

In absence of further information, the observed execution behaviors in Obs to-
gether with the nil -description comprise the behavior relations. Behavior relations
of φ-activities and END are also included. Assume that REM may behave non-
deterministically for some inputs, and that for the input value r21 the behavior of the

Diagnosis of Service Failures by Trace Analysis 341

XOR is unknown; that is, no behavior matching x1(t, r21, ,) has been observed. Then
there are two possible process behaviors BU

P and BL
P for P : in BU

P , the second occur-
rence of X1 in P activates the upper branch on input r21, while in BL

P the lower branch
is taken.

A given process behavior BP ∈ BP determines the set of possible executions of
P . We abstract from the concrete execution(s) implied by a given BP and project the
process behavior on its output values:

Definition 5 (Reachable assignment). Let BP be a behavior of a process P =
〈A, V, I, O〉. An assignment of value w to output variable ˜Q ∈ O is reachable under
BP iff some execution admitted by P (˜I, ˜X, ˜O) satisfies ˜Q = w. We write

BP |= ∃˜I ˜X ˜O : P (˜I, ˜X, ˜O) ∧ ˜Q = w.

For the scenario described above it holds that in both possible process be-
haviors (BU

P and BL
P) E = nil is a reachable assignment: BL

P |=
P (SPEC , R1, R2, S1, . . . , S4, C1, C2, . . . , E) ∧ E = nil (the variables of P are ex-
istentially quantified). That is because the guard signals an exception both for s1 and s2.
Assignments S4 = s2 and S4 = s3 are both reachable in BU

P .
If BU

P determines the execution, E = nil , because the guard signals an exception if
S4 = s2 is reached. If BU

P is changed to B′U
P by removing rem(t, s1, t, s2) from the

behavior relation of REM, E = nil is no longer reachable in B′U
P but is still reachable

in BL
P . The process behavior B′U

P specifies a process where –regardless of the concrete
execution– no exception will be raised, whereas BL

P admits an execution that fails. Con-
sequently, if we assume that SEC2t4 produces a different value than the observed value
r21 and on this value the upper path of the second occurrence of X1 is taken, and REM
produces a different value than s1 or s2 then we are guaranteed a process behavior
which rules out exceptions.

4 Diagnosis Model

In “black box” application domains such as Web Services the complete behavior rela-
tion Ai(Ii, Oi) is unknown. However, we can exploit the available knowledge which
on one hand specifies the I/O tuples that must be contained in a behavior relation and on
the other hand describes which I/O tuples are forbidden. For each activity Ai a behavior
relation Ai(Ii, Oi) is defined to include the nil -description, all observations gathered
from executions of activities, and possibly other known concrete I/O behaviors. This set
of predefined behaviors is denoted by Pre. Some domains of the variables of Ai may
be known, e.g., control variables, while others are only partially known (e.g. the output
of SAMPLE). If we observe a value v of a variable O whose domain is only partially
known, and v is not contained in this domain, we extend the domain with a new symbol
representing v.

Additional requirements constraints Rei determine whether the behavior of an ac-
tivity Ai must be deterministic. Rei is a constraint expression over the variables in
Ai(Ii, Oi) specifying which value combinations for activity variables Ii, Oi are al-
lowed in the behavior relation. For our purposes it is sufficient if Rei refers to known
domain values of Ii, Oi. These constraints are local to an activity and do not depend on

342 W. Mayer, G. Friedrich, and M. Stumptner

the behavior of any other activity. The set of requirements for all activities is denoted
by Re. The requirement that activity behaviors must be totally defined is part of Rei.

Definition 6 (Diagnosis Problem). A diagnosis problem DP = 〈P, Obs, Pre, Re〉
consists of a process P , a set of I/O behaviors Obs observed from executions, a set of
predefined behaviors Pre, and a set of requirements Re. Let P = 〈A, V, ∅, {E}〉 with
activities A = {A1, . . . , An}. Let Obs = {ob1(v̂1, ŵ1), . . . , obq(v̂q, ŵq)} be the set of
observed I/O behaviors of activity executions, where obj(v̂j , ŵj) ∈ Obs is the observed
execution of an activity occurrence Aij . The set of all observed execution behaviors of
an activity Ai is denoted by obi. obi ⊆ Ai(Ii, Oi), Ai(I i, Oi) ∈ Pre for i ∈ {1, . . . , n}.
Process variable E indicates success or failure of any execution of P .

Note that without loss of generality, the definition limits P to a single output and does
not mention process inputs: the inputs that were observed in executions are modeled
as outputs of the START activity. Furthermore, the decisions that establish if a process
execution is successful (typically referred to as an “oracle”) are explicitly encoded in
the guard activities of the process. Note that we do not require that the criteria are
completely known and formalized. Rather, the behavior of guard activities is also de-
termined by observations in Obs. Our model implies that if a guard activity determines
that its input values violate a process constraint, a vector containing nil values will be
assigned to its output variables. By the definition of the SSA form and the behavioral re-
lations, nil will be propagated to the END activity by the subsequent activities. Hence,
it is sufficient to verify that the END activity does not receive a nil value to verify that
the process execution complies with all guards.

For example, the behavior PreX1 of x1(C, W, Y, N) is given by the set
{x1(t,nil ,nil ,nil), x1(nil , X,nil ,nil) | X ∈ DW }∪Obs where Obs contains the ob-
servations {x1(t, r11, t,nil), x1(t, r21,nil , t)}. The requirements ReX1 for the XOR
behavior are given by the following sentence:

x1(C, W, Y, N) ⇒
[(C = nil ∨ W = nil) ⇔ Y = nil ∧ N = nil]∨
[(C �= nil ∧ W �= nil) ⇔ Y �= N]

In addition ReX1 includes the property that X1 must be deterministic and totally
defined.

If a failure occurred (indicated by a guard raising an exception) either during process
execution or repair planner guided re-execution, some activity executions must have
produced incorrect values. In other words, specific activity behaviors in the process are
faulty, and the behavior definition must be restricted so that the incorrect I/O behaviors
cannot occur. Conversely, behaviors do not need to be removed if their execution cannot
result in a failure.

Let BP be a process behavior. For a set of tuples Δ, BP \ Δ is the process behavior
where from each behavior relation in BP the tuples of Δ are removed.

Definition 7 (Diagnosis). Let DP = 〈P, Obs, Pre, Re〉 be a diagnosis problem with
P = 〈A, V, ∅, {E}〉. A subset Δ ⊆ Obs of activity executions is a diagnosis for DP iff
there exists a process behavior BP such that

Diagnosis of Service Failures by Trace Analysis 343

1. Each A′
i(Ii, Oi) ∈ BP is a superset of Ai(I i, Oi) \ Δ for Ai(Ii, Oi) ∈ Pre

2. Each A′
i(Ii, Oi) ∈ BP is consistent with Rei ∈ Re

3. BP �|= ∃ ˜X E : P (∅, ˜X, E) ∧ E = nil .

Δ is minimal if no Δ′ ⊂ Δ is a diagnosis for DP .

The first condition expresses the key concern that the executions should be consistent
with existing non-faulty activity behaviors, but omit the faulty behavior tuples. The sec-
ond condition formalizes the expectation that activity executions must also satisfy gen-
eral known requirements like totally defined. The third is the error-freeness condition
for the diagnosed and repaired execution.

Hence, a diagnosis Δ rules out certain observed behaviors of activities, such that no
process execution conforming to the remaining assumed-correct behavior relations in
BP can lead to a failure. We say Δ is accepted as a diagnosis iff there exists a correct
process behavior BP that extends Pre \ Δ. A minimal diagnosis preserves as much as
possible the observed behavior. If the same behavior of an activity is observed multiple
times in an execution (e.g. sample(t, spec1, t, s1)) then either all of these executions
must be correct or all must be faulty. This assumption introduces dependencies between
activity executions and may affect the diagnosis probability. Devising suitable probabil-
ity models is beyond the scope of this paper.

As examples, consider the following diagnosis scenarios assuming that the process
was executed until the first execution of the guard returns a failure. All the behavior re-
lations of the activities contain just the observed I/O behaviors and the nil -description.
Re contains the usual restrictions on the allowed behavior of processing activities and
control activities. If Δ = ∅ then E = nil is reachable, so Δ = ∅ is not a diagnosis. If
Δ = {sample(t, spec1, t, s1)} then we can construct behavior relations for all activi-
ties such that Pre \Δ is extended and the process behavior is correct. For example, the
execution of SAMPLE generates a new value for which we can assume that the guard
does not signal a failure. However, if Δ = {sec1(t, s1, t, r11)} then it is not possible
to generate a correct process behavior by extending Pre \ Δ. Whatever value SEC1
generates, either the upper branch or the lower branch of the first occurrence of X1 in
P is taken. In both cases, s1 will be assigned to S4 and therefore the guard will output
nil (as in the original execution). Thus, Δ = {sec1(t, s1, t, r11)} is not a diagnosis, as
it does not prevent the exception.

In the following presentation we will assume that P is acyclic. This does not limit
the representation of observed execution traces (traces are usually represented as par-
tially ordered set of activities). But loops must be taken into account when projecting
unseen behavior forward through the process, using common techniques to determine a
sufficient number of unfoldings that cover all possible looping behaviors [7].

5 Symbolic Representation

To verify if Δ is a diagnosis, behavior relations A′
i(I i, Oi) of activities Ai ∈ A must be

found that include the tuples of Ai(Ii, Oi) \ Δ, are consistent with Rei, and no guard
fails, i.e. E = nil cannot be reached. If no such set of behavior relations exist then Δ is
not a diagnosis. Consequently, all possible behavior relations of Ai have to be explored.
If all domains of I/O variables of Ai are known we can enumerate all behaviors which

344 W. Mayer, G. Friedrich, and M. Stumptner

are superset of Ai(Ii, Oi) \ Δ and consistent with Rei. However, if domains are only
partially known then we have to deal with unknown values.

We adopt the principle of symbolic execution [6] from program analysis to deal with
unknown behaviors. In symbolic execution, unknown values of input and output vari-
ables of program statements are represented as symbols. Every occurrence of an activity
Ai in the process P may produce a new, yet unseen value for a variable whose domain
is partially unknown.

For an activity Ai and an output variable O of this activity, we inject unique symbols
s1, . . . , sp into the domain DO , where p is the number of occurrences of Ai in P . The
domain DO may be used multiple times by the same activity but also by other activities
as a domain for output variables.

For example, assume that activities SEC1 and SEC2 use the same domain D for their
data output. From observations we know that {r11, r21} ⊂ D. Both SEC1 and SEC2
can produce symbolic values y1 and y2 that represent yet unseen values in D. Since
the symbolic values are not constrained further, both activities may output an arbitrarily
chosen value —the same value or different values— in D. Hence the symbolic behav-
ior relation must consider the cases where both activity executions result in the same
symbolic value and where the values differ.

In the following we construct every possible behavior of activities given a diagnosis
problem and a Δ ⊆ Obs.

Let A be an activity with input variables I = 〈U1, . . . , Us〉 output variables O =
〈Us+1, . . . , Ut〉, and letDUk

denote the domain of variableUk. The set of all input vectors
of an activity is wI = {〈w1, . . . , ws〉 |w1 ∈ DU1 , . . . , ws ∈ DUs}. Likewise the set of all
output vectors of an activity is wO = {〈ws+1, . . . , wt〉 |ws+1 ∈ DUs+1 , . . . , wt ∈ DUt}.

Based on the I/O vectors we can construct all possible behavior relations of activities.
However, in such a relation, for each input vector, at most p output vectors need to be
defined, since the activity can only occur p times in P ; on each occurrence a different
output vector can be returned. If an activity is deterministic then just one output vector
is created for each possible input vector. Consequently, the set of possible behaviors
for an activity Ai is defined by behavior relations where for each input vector p output
behaviors are chosen. The same output vector may be selected multiple times.

A′
i(I i, Oi) = {⋃wI∈wI

{〈wI , w1〉 , . . . , 〈wI , wp〉}|w1 ∈ wO, . . . , wp ∈ wO}
All the possible behavior descriptions in A′

i are extended by the set of tuples consid-
ered to be correct, i.e. Ai(Ii, Oi) \Δ for Ai(Ii, Oi) ∈ Pre, and by the nil -description.
In addition, we eliminate all behavior descriptions in A′

i that are inconsistent with re-
quirements Rei. We generate the possible behavior for all activities which have variables
with a partially unknown domain, such as processing activities, guards, XOR-splits, and
φ-activities. The result is a set of possible process behaviorsBP for a diagnosis problem
and a Δ ⊆ Obs.

For example, the domain DW of x1(C, W, Y, N) is extended to contain all of
{r11, r21, y1, y2} (and nil as the only other value). Every possible behavior of X1
includes the tuples in PreX1 (shown earlier) and must be consistent with ReX1. That
is, the behavior on inputs {r11, r21,nil} is fixed, but there are four different behaviors
which differ just on the outputs provided for inputs {y1, y2}:

Diagnosis of Service Failures by Trace Analysis 345

{x1(t, y1, t, nil), x1(t, y2, t, nil)}, {x1(t, y1, nil , t), x1(t, y2, t, nil)},
{x1(t, y1, t, nil), x1(t, y2, nil , t)}, {x1(t, y1, nil , t), x1(t, y2, nil, t)}.

Based on the possible process behaviors BP for a diagnosis problem DP and a
diagnosis Δ we can state the following property which is exploited for the generation
of diagnoses:

Property 1. Let DP = 〈P, Obs, Pre, Re〉 be a diagnosis problem with P =
〈A, V, ∅, {E}〉 and BP the set of possible process behaviors generated for a subset
Δ ⊆ Obs as described above.

Δ is a diagnosis for diagnosis problem DP iff there is a process behavior Bp ∈ BP

s.t. Bp �|= ∃ ˜X E : P (∅, ˜X, E) ∧ E = nil .

Proof sketch: (⇐) : This is trivially fulfilled by the construction of BP . All activity
behaviors in BP are supersets of Ai(Ii, Oi) \ Δ, are consistent with Rei, and Bp does
not trigger an exception.

(⇒) : If there exists a diagnosis Δ for DP then there exists a process behavior
BP s.t. BP �|= ∃ ˜X E : P (∅, ˜X, E) ∧ E = nil . An instantiation of the variables in
BP |= ∃ ˜X E : P (∅, ˜X, E) corresponds to a process execution and defines behavior
tuples for activities Ai. Values not covered by observations are replaced by a symbol.
By construction, at least one symbolic value is available for each occurrence of Ai. The
introduction of symbolic values cannot trigger an exception, and all constraints in Rei

remain satisfied, since both cannot contain symbolic values. Thus, if a constraint is ful-
filled for an arbitrary unknown value it is also fulfilled for a symbolic value. Ai remains
to be totally defined after the substitution. The tuples of all process executions where
the unknown values are replaced by symbolic values define behavior relations which
are included in some behavior relation generated by our construction of BP . It follows
that if there is a process behavior BP for which Pre \ Δ can be correctly extended,
then there exists a process behavior B′

P in the set of generated possible process behav-
iors BP which is also a correct extension of Pre \ Δ. We have constructed a decision
method which determines if a set Δ ⊆ Obs is a diagnosis. �

Given our example process, observations and the diagnosis candidate Δ = ∅, all
Ai(Ii, Oi) in the process behaviors of the generated set BP contain their observed ex-
ecution behavior. Therefore, in each process behavior of BP , E = nil is reachable.
Consequently, there is no B′

P which is a correct extension of Pre\Δ. Hence, Δ = ∅ is
not a diagnosis. However, if the observed execution behavior sample(t, spec1, t, s1) is
removed, then only symbolic (unseen) output values remain to be assigned to S1. There-
fore, we can construct behaviors for REM , GUARD , and all other activities such that
the guard is not triggered for any execution. Therefore, {sample(t, spec1, t, s1)} is
indeed a valid diagnosis.

6 Diagnosis Computation and Evaluation

Because all domains of the variables are finite, logic programming systems and model
checkers can be used to concisely express all possible process behaviors and check

346 W. Mayer, G. Friedrich, and M. Stumptner

whether E = nil is reachable. The search for minimal, irreducible, or leading diagnoses
can be implemented by standard methods, such as HS-tree generation, combined with
appropriate minimization procedures, such as QuickXplain.

We conducted an empirical evaluation to determine the diagnostic accuracy that can
be expected from our model, compare it with previous approaches, and assess the com-
putational resources required. We sourced process examples from the literature, such
as [4], and generated additional (artificial) processes to obtain a comprehensive bench-
mark suite of 200 processes. Each process comprised 5–79 activities chosen from 3–9
different types of activity, and each process included up to 22 xor decision nodes. Ac-
tivities were assembled into complex processes based on a randomized graph grammar
to ensure process control and data flow are well-defined. For each activity type, a set
of observed behaviors was generated randomly to yield the observed process behav-
iors and exceptions. Two execution paths were generated for each process. The number
of activities occurring in an execution path varied from 5–65 activities. The resulting
benchmark suite of 400 process executions covers a wide range of different process
structures, and, to the best of our knowledge, is more comprehensive than any other
available benchmark.

We implemented the diagnosis framework in Eclipse Prolog. Each process was com-
piled into a finite domain constraint satisfaction problem which captured the structural
and behavioral links between the activities. Concrete and symbolic values were encoded
as integers to leverage efficient constraint solvers. We used additional variables to model
correctness assumptions and the selection of possible behaviors. The constraint system
was then used to isolate the maximal subsets of the observed process behaviors that did
not result in an exception.

Table 1. Comparison of dependency- and symbolic diagnosis model

Size N Xor Trace Dep. Symb. Imp. Time (s)
0–9 48 0.67 8.04 3.98 3.50 0.10 0.12

10–19 100 3.10 16.84 6.40 4.63 0.16 1.07
20–29 124 5.21 27.16 8.97 4.89 0.45 5.43
30–39 60 7.67 33.43 9.67 5.37 0.59 16.85
40–49 28 10.21 41.64 12.36 6.31 0.50 74.52
50–59 12 12.17 35.17 10.42 6.29 0.32 124.22
60–69 16 14.62 30.75 9.12 4.50 0.40 130.63
70–79 6 17.00 35.67 9.33 2.00 255.80
0–79 400 5.85 24.95 8.19 4.82 0.29 14.56

Our results are summarized in Table 1, aggregated by process size. The columns
show the average number of activities in a process (Size), the number of process execu-
tions considered in our study (N), the average number of decision nodes in a process
(Xor), the average number activities in each execution trace (Trace), the number of min-
imal diagnoses obtained from dependency-based models (Dep) and from our model
(Symb), the mean relative improvement (Imp= 1 − Symb/Dep), and the average di-
agnosis time in seconds (Time) to compute all diagnoses using the symbolic model.
Accuracy is measured as the fraction of activity behaviors that need not be examined

Diagnosis of Service Failures by Trace Analysis 347

0−
9

10
−

19

20
−

29

30
−

39

40
−

49

50
−

59

60
−

69

70
−

79

0
10

20
30

40 Symbolic Model
Dependency
Model
Executed
Activities

N
um

be
r

of
 M

in
im

al
 D

ia
gn

os
es

20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Number of activities
T

im
e

(s
ec

on
ds

)

Fig. 2. Process size vs. result size and diagnosis time

given a set of diagnoses. Note that Imp may be larger than 1 − Symb/Dep since some
instances exceeded the five minute time limit for the symbolic model. The blank cell
denotes “no improvement” and is caused by too few symbolic results. Hence, Imp is a
conservative estimate and may improve further with faster algorithms.

The results show that the symbolic model yields significantly more accurate results
than simpler dependency-based models. The symbolic model on average eliminated
three diagnoses, but could shorten the result by as much as 20 diagnoses. Overall, the
number of diagnoses dropped by roughly 30% compared to dependency-based models.
Our model on average implicated only 21% of the executed activities. Figure 2 shows
a bar plot of the additional spurious diagnoses that are incurred when moving from a
more precise diagnosis model (lower bars in the diagram) to a more abstract model
(mid- and upper bars). The greatest reduction of the diagnosis ratio was observed for
process executions that contained a large number of activities. Among all diagnoses,
90% were single-fault explanations, 9.5% double-faults, and 0.5% triple-faults.

The measured execution times indicate that the symbolic model also performed well
in those scenarios that are most relevant for practical application. Figure 2 shows a scat-
ter plot of the diagnosis times. In 75% of all cases, the result was obtained after just 5.3
seconds. On average, all minimal diagnoses were obtained after 14.56 seconds of CPU
time.1 Our results confirm that the model is sufficient to address the majority of practi-
cal process diagnosis scenarios, where the number of activities is virtually always less
than 50. (Larger scenarios are usually decomposed hierarchically, where the number
of activities on each level is small. Our model is particularly suited for hierarchical di-
agnosis, since no detailed specification of the abstract activities’ behavior is required.)
We believe that further optimization of our naı̈ve implementation will improve these
results.

Another area for future work lies in the more detailed incorporation of particular
service properties. A significant paradigm adopted by most papers on Web services is

1 The data were obtained from Eclipse 6.1 on Intel P4@1.86GHz with 6Gb RAM running Linux
2.6.

348 W. Mayer, G. Friedrich, and M. Stumptner

the CRP (compensatable, retriable, and pivot) model originally developed for Multi-
database systems [10]. Though we have not addressed re-execution in detail this paper,
the CRP model is easily compatible with our re-execution concept; we have worked
on the default assumption that services are retriable, while pivot and compensatable
services would be represented as additional constraints on the set of possible behaviors.

7 Related Work

Current approaches for dealing with runtime faults in composite service execution ei-
ther assume the existence of an independent formal specification in the Event Calculus
(e.g., [5]) or an explicit definition of detailed fault handling logic, relying on predefini-
tion of detailed fault models and explicit specification of exception handling strategies
to be followed in a particular situation [8].

Dependency tracking techniques are well-known techniques for model-based diag-
nosis of programs [14] and Web Services [1].

Expressive constraint models have been developed to increase the accuracy of model-
based debugging of imperative programs [9,11]. While our processes are much simpler
“programs”, we cannot rely on the precise behavioral specification of the programs re-
quired by the earlier approaches. Instead, we exploit specific behavior instances ob-
served at run time and embrace a symbolic representation to address the problem of
incomplete information.

The repair planning problem in this paper, as it has been examined, e.g,. in [4,12].
The former assumes the existence of a diagnosis method to initiate the planning process,
but does not specify it; our work therefore complements [4] and provides a basis for
application of its methods. The latter requires explicit definition of planning operators
representing application semantics to enable use of AI planners.

8 Conclusion

In many practical diagnosis/repair scenarios where service process executions have to
be repaired, only partial knowledge about the behavior of activities is available. In or-
der to recover from failures, repair-enabled process execution engines apply sequences
of executions and re-executions, possibly resulting in exceptions signaling failures. For
the construction of correct repair plans without extensive separate specification require-
ments, the appropriate diagnosis methods are a necessary precondition.

In this paper we pointed out the limitations of classic dependency tracing methods for
process diagnosis and motivated the necessity to reason with multiple possible activity
behaviors including the propagation of symbolic values. We have proposed a diagno-
sis approach which (1) can deal with partial knowledge about activity behaviors and
(2) does not assume that activities are executed in an order as defined in the process.
Both properties are necessary in diagnosis/repair scenarios where only limited behavior
knowledge is available.

We presented a diagnosis method for process executions that relies only on obser-
vations gathered from concrete executions to infer possible faults in the execution

Diagnosis of Service Failures by Trace Analysis 349

of individual process steps. Our method can deal with partial information and non-
deterministic activity behavior but requires only a structural model of the process and
tolerates partially known behavior descriptions. We empirically confirmed the increased
precision of our method and its feasibility for practical applications using a library of
service processes. Thus our work lays the foundation for the overall goal of constructing
complete and correct repair methods for processes where only partial behavior knowl-
edge is available. We also address aspects of the repair process by seamlessly incorpo-
rating the repeated execution of activities.

This paper is an important first step towards a comprehensive diagnosis and repair
framework for Web services. We intend to further explore the properties of our frame-
work with respect to classical consistency-based and abductive diagnosis frameworks,
and to further integrate the diagnosis method with recent work addressing the repair
aspect of the problem [4].

Acknowledgements. The work is partially funded by the Australian Research Council
(ARC) under Discovery Project DP0881854 and the Austrian National Science Fund
(FWF) Project 813806 - C2DSAS.

References

1. Ardissono, L., et al.: Enhancing web services with diagnostic capabilities. In: European Con-
ference on Web Services (2005)

2. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of exceptions
in workflow management systems. ACM Trans. Database Syst. 24(3), 405–451 (1999)

3. Cytron, R., et al.: Efficiently computing static single assignment form and the control depen-
dence graph. ACM TOPLAS 13(4), 451–490 (1991)

4. Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception handling for repair in
service-based processes. In: IEEE TSE (2010)

5. Gaaloul, W., Bhiri, S., Rouached, M.: Event-based design and runtime verification of com-
posite service transactional behavior. IEEE TSC 3(1), 32–45 (2010)

6. King, J.C.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
7. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D.,

Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 298–
309. Springer, Heidelberg (2002)

8. Liu, A., Li, Q., Huang, L., Xiao, M.: Facts: A framework for fault-tolerant composition of
transactional web services. IEEE TSC 3(1), 46–59 (2010)

9. Mayer, W., Stumptner, M.: Evaluating models for model-based debugging. In: Proc. ASE,
pp. 128–137. IEEE, Los Alamitos (2008)

10. Mehrotra, S., Rastogi, R., Korth, H.F., Silberschatz, A.: A transaction model for multi-
database systems. In: ICDCS, pp. 56–63 (1992)

11. Nica, M., Weber, J., Wotawa, F.: How to debug sequential code by means of constraint rep-
resentation. In: Proc. DX Workshop (2008)

12. Rao, D., Jiang, Z., Jiang, Y.: Fault tolerant web services composition as planning. In: Proc.
Int’l Conf.Intelligent Systems and Knoweldge Eng, ISKE 2007 (2007)

13. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 23(1), 57–95 (1987)
14. Wotawa, F.: On the relationship between model-based debugging and program slicing. Artif.

Intell. 135(1-2), 125–143 (2002)

	Diagnosis of Service Failures by Trace Analysis with Partial Knowledge
	Introduction
	Example
	Process Model
	Diagnosis Model
	Symbolic Representation
	Diagnosis Computation and Evaluation
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

