
Location Recognition Using Prioritized Feature
Matching�

Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Department of Computer Science, Cornell University, Ithaca, NY 14853
{yuli,snavely,dph}@cs.cornell.edu

Abstract. We present a fast, simple location recognition and image localization
method that leverages feature correspondence and geometry estimated from large
Internet photo collections. Such recovered structure contains a significant amount
of useful information about images and image features that is not available when
considering images in isolation. For instance, we can predict which views will be
the most common, which feature points in a scene are most reliable, and which
features in the scene tend to co-occur in the same image. Based on this informa-
tion, we devise an adaptive, prioritized algorithm for matching a representative
set of SIFT features covering a large scene to a query image for efficient local-
ization. Our approach is based on considering features in the scene database, and
matching them to query image features, as opposed to more conventional meth-
ods that match image features to visual words or database features. We find this
approach results in improved performance, due to the richer knowledge of char-
acteristics of the database features compared to query image features. We present
experiments on two large city-scale photo collections, showing that our algorithm
compares favorably to image retrieval-style approaches to location recognition.

Keywords: Location recognition, image registration, image matching, structure
from motion.

1 Introduction

In the past few years, the massive collections of imagery on the Internet have inspired a
wave of work on location recognition—the problem of determining where a photo was
taken by comparing it to a database of images of previously seen locations. Part of the
recent excitement in this area is due to the vast number of images now at our disposal:
imagine building a world-scale location recognition engine from all of the geotagged
images from online photo collections, such as Flickr and street view databases from
Google and Microsoft. Much of this recent work has posed the problem as that of image
retrieval [1,2,3,4]: given a query image to be recognized, find a set of similar images
from a database using image descriptors or visual features (possibly with a geometric
verification step), often building on bag-of-words techniques [5,6,7,8,9]. In this type of
approach, the database images are largely treated as independent collections of features,
and any structure between the images is ignored. In this paper we consider exploiting
this potentially rich structure for use in location recognition.

� This work was supported in part by NSF grant IIS-0713185, Intel, Microsoft, and Google.

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 791–804, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

792 Y. Li, N. Snavely, and D.P. Huttenlocher

For instance, recent work has shown that it is possible to automatically estimate cor-
respondence information and reconstruct 3D geometry from large, unordered collec-
tions of Internet images of landmarks and cities [10,3,11]. Starting with such structure,
rather than a collection of raw images, as a representation for location recognition and
localization is promising for several reasons. First, the point cloud is a compact “sum-
mary” of the scene—it typically contains orders of magnitude fewer points than there
are features in an image set, in part because each 3D point represents a cluster of re-
lated features, but also because many features extracted by algorithms like SIFT are
noisy and not useful for matching. Second, for each reconstructed scene point we know
the set of views in which a corresponding image feature was detected, and the size of
this set is related to the “stability” of that point, i.e., how reliably it can be detected in
an image, as well as how visible that scene feature is (e.g., a point on a tower might be
more visible than other features, see Figure 1). We can also determine how correlated
two points are—i.e., how often they are detected in the same images. Finally, when us-
ing Internet photo collections to build our reconstruction, the number of times a point is
viewed is related to the “popularity” of a given viewpoint—some parts of a scene may
be photographed much more often than others [12].

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clocktower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

In this paper, we explore how these aspects of reconstructed photo collections can be
used to improve location recognition. In particular, we use scene features (correspond-
ing to reconstructed 3D points), rather than images, as a matching primitive, revisiting
nearest-neighbor feature matching for this task. While there is a history of matching
individual features for recognition and localization [13,14,15], we advocate reversing
the usual process of matching. Typically, image features are matched to a database of
features. Instead, we match database features to image features, motivated by the richer
information available about scene features relative to query image features. Towards
this end, we propose a new, prioritized point matching algorithm that matches a subset

Location Recognition Using Prioritized Feature Matching 793

of scene features to features in the query image, ordered by our estimate of how likely
a scene feature is to be matched given our prior knowledge about the database points
as well as which scene features have been successfully matched so far. This prioritized
approach allows “common” views to be localized quickly, sometimes with just a few
hundred nearest neighbor queries, even for large 3D models. In our experiments this ap-
proach also successfully localizes a higher proportion of images than approaches based
on image retrieval. In addition, we show that compressing the model by keeping only
a subset of representative points is beneficial in terms of both speed and accuracy. We
demonstrate results on large Internet databases of city images.

Given the feature correspondences found using our algorithm, we next estimate the
exact pose of the camera. While this final step relies on having an explicit 3D recon-
struction, many of the ideas used in our approach—finding stable points, prioritizing
features to match, etc.— only require knowledge of correspondences between features
across the image database (“feature tracks”), and not 3D geometry per se. However, be-
cause we ultimately produce a camera pose, and because the global geometry imposes
additional consistency constraints on the correspondences, we represent our scene with
explicit geometry, and refer to our database of scene features as a “point cloud.”

2 Related Work

Our work is most closely related to that of Irschara et al. [4], which also uses SfM point
clouds as the basis of a location recognition system. Our work differs from theirs in
several key ways, however. First, while they use a point cloud to summarize a loca-
tion, their recognition algorithm is still based on an initial image retrieval step using
vocabulary trees. In their case, they generate a minimal set of “synthetic” images that
covers the point cloud, and, given a new query image, use a vocabulary tree to retrieve
similar images in this covering. In one sense, our approach is the dual of [4]: instead
of selecting a set of images that cover the 3D points, we select a minimal set of 3D
points that cover the images, and use these points themselves as the matching primi-
tives. Second, while [4] uses images taken by a single person, we use city-scale image
databases taken from the Internet. Such Internet databases differ from more structured
datasets in that have much wider variation in appearance, and also reflect the inherent
“popularity” of given views. Our approach is sensitive to and exploits both of these
properties.

Our work is also related to the city-scale location recognition work of Schindler et
al. [1], who also use image feature stability, as well as the distinctiveness features, as
cues for building a recognition database. As with [4], Schindler et al.use image retrieval
as a basis for location recognition, and use a database of images taken a regular samples
throughout a city.

Like [4], [1], and [15], part of our approach involves reducing the amount of data
used to represent locations, a theme which has been explored by other researchers as
well. For instance, [16] uses epitomes [17] as compact representations of locations
created from videos of different scenes. Li et al. [3] derive “iconic” images derived
from performing clustering on large Internet photo collections, then localize query im-
ages by retrieving similar iconic images using bag-of-words or GIST descriptors [18].

794 Y. Li, N. Snavely, and D.P. Huttenlocher

Similarly, [19] builds a landmark recognition engine by selecting iconic images using a
graph-based algorithm.

Finally, a number of researchers have applied more traditional recognition and ma-
chine learning techniques the problem of location recognition [2,20,21]. Others have
made use of information from image sequences; while this is a common approach in
the SLAM (Simultaneous Localization and Mapping) community, human travel priors
have also been used to georegister personal photo collections [22].

3 Building a Compact Model

Given a large collection of images of a specific area of interest (e.g., “Rome”) down-
loaded from the Internet, we first reconstruct one or more 3D models using image
matching and structure from motion (SfM) techniques. Our reconstruction system is
based on the work of Agarwal et al. [23]; we use a vocabulary tree to propose an
initial set of matching image pairs, do detailed SIFT feature matching to find feature
correspondences between images, then use SfM to reconstruct 3D geometry. Because
Internet photos taken in cities tend to have high density near landmarks or other popu-
lar places, and low density elsewhere, a set of city photos often breaks up into several
connected components (and a large number of “singleton” images that are not matched
to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p ∈ P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection). We also have a 128-byte SIFT
descriptor for each detection (we will assign their mean descriptor to p). Given a new
query image from the same scene, our goal is to find correspondences with these “scene
features,” and determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful

Fig. 2. Reconstructed 3D point cloud for Dubrovnik. Left: full model. Right: compressed model
(P c). The bright red regions represent the distribution of reconstructed camera positions.

Location Recognition Using Prioritized Feature Matching 795

when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, reducing computa-
tional cost and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the points by “visibility” (i.e., the
number of images where that point has been detected and matched) and select a set
from the top of the list. However, points selected in such way can (and usually do) have
very uneven spatial distribution, with popular areas having a large number of points,
and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that cover
the whole model. To this end, we pose the selection of points as a set covering problem,
where the images in the model are the elements to be covered and each point is regarded
as a set containing the images in which it is visible. In other words, we seek the smallest
subset of P , such that each image is covered by at least one point in the subset. Given
such a subset, we might expect that a query image drawn from the same distribution of
views as the database images would—roughly speaking—match at least one point in the
model. However, because feature matching is a noisy process, and because robust pose
estimation requires more than one a single match, we instead require that the subset
covers each image at least K times (e.g., where K = 100).1 Although computing the
minimum set K-cover is NP-hard, a good approximation can be found using a greedy
algorithm that always selects the point which covers the largest number of not-yet-fully
covered images. Note that this is different from the covering problem in [4], which aims
to cover the points instead of the images. Our covering criterion is also related to the
informative features used in Schindler et al. [1], though our method is different; we
choose features based on explicit correspondences from feature matching and SfM, and
do not use an explicit measure of feature distinctiveness.

For our problem, given our initial point set P , we compute two different K-covers:
one for K = 5 but limited to 2,000 points (via early stopping of the greedy algorithm),
denoted P s, and one for K = 100 (without explicit limit on the number of points),
denoted P c. Intuitively, P s forms an extremely compact “seed” description of the entire
model that can be quickly swept through to find promising areas in which to focus the
search for further feature matches, while P c is a more exhaustive representation that
can be used for more accurate localization. We describe how our matching algorithm
uses these sets in the next section.

In our experiments, the reduction of points from model compression is significant.
For the Dubrovnik set, the point set was reduced from over 2 million in the full model to
under 80,000 in the compressed model P c. Figure 1 shows the features corresponding to
reconstructed 3D points in the full and the compressed Dubrovnik models that are visi-
ble in one particular image. The point clouds corresponding to the full and compressed
models are shown in Figure 2.

4 Registration and Localization

The ultimate goal of our system is to produce an accurate pose estimate of a query im-
age, given a relevant database of images. To register a query image to the 3D model

1 If an image sees fewer than K points in the full model, all of those points are selected.

796 Y. Li, N. Snavely, and D.P. Huttenlocher

using pose estimation, we need to first find a set of correspondences between scene
features in the model and image features in the query image. While many recent ap-
proaches initially pose this as an image retrieval problem, we reconsider an approach
based purely on directly finding correspondences using nearest-neighbor feature match-
ing. In our case, we represent each point in our model with the mean of the correspond-
ing image feature descriptors. While the mean may not necessarily be representative of
clusters of SIFT features that are large or multi-modal, it is a commonly used approach
for creating compact representations (e.g. in k-means clustering) and we have found
this simple approach to work well in practice (though better cluster representations is
an interesting area for future work).

Given a set of SIFT descriptors in a query image (in what follows we refer to these
as “features,” for simplicity) and a set of SIFT descriptors representing the points in our
model (we will refer to these descriptors as “points”), we consider two basic matching
strategies:

– Feature-to-point matching, or F2P, where one takes each feature (in the query im-
age), and finds the best matching point (in the database) and

– Point-to-feature matching, or P2F, where one conversely matches points in the
model to features in the query image.

At first glance, F2P matching seems like the natural choice, since we usually think
of matching a query to a database—not vice versa—and even the compressed model is
usually much larger than the set of features in a single image. However, P2F matching
has the desirable property that we have a significant amount of information about how
informative each database point is, and which database points are likely to appear to-
gether, while we do not necessarily have much prior information about the features in
an image (other than low-level confidence measures provided by the feature detector).
In fact, counter to intuition, we show that P2F matching can be made to find matches
more quickly than F2P—especially for popular images—by choosing an intelligent pri-
ority ordering of the points in the database, such that we often only need to consider
a relatively small subset of the model points before sufficient matches are found. We
evaluate the empirical performance of F2P and P2F matching in Section 5.

For both matching strategies, we find potential matches using the approximate near-
est neighbor search [24]. As in prior work, we found that the priority search algorithm
worked well in pratice. We used a fixed search limit of 250 points per query; increasing
the search limit did not lead to significantly better results in our experiments.

We use a modified version of the ratio test that is common in nearest neighbor match-
ing to classify a match as true or false. For P2F matching, we use the usual ratio test:
a match between a point p from the model and feature f from the query image is con-
sidered a true match if dist(p,f)

dist(p,f ′) < λ, where dist(·, ·) is the distance between the
corresponding SIFT descriptors, f ′ is the second nearest neighbor of p among features
in the query image, and λ is the threshold ratio (0.7 in our implementation). For F2P
matching, we found that the analogous ratio test does not perform as well. We speculate
that this might be because the number of points in the compressed model is larger (and
hence denser) than the typical image feature set, and this increased density in SIFT
space has an effect on the ratio test. Instead, given a feature f and its approximate

Location Recognition Using Prioritized Feature Matching 797

nearest neighbor p in the model, we compute the second nearest neighbor f ′ to p in the
image, and threshold on the ratio dist(f,p)

dist(f ′,p) (note that this ratio could be ≥ 1). We found
this test to perform better for F2P matching.

For P2F matching, we could find correspondences by applying the above procedure
to every point in the model. However, this would be very costly. We can do much better
by prioritizing certain queries over others, as we describe next.

4.1 Prioritized Point-to-Feature (P2F) Matching

As noted earlier, each point in the reconstructed 3D model is associated with the set of
images in which it is successfully detected and matched (“visible”). Topologically, the
model can be regarded as a bipartite graph (which we call the visibility graph) where
each point and each image is a vertex, and where the edges encode the visibility relation.

Based on this relation, we develop a matching algorithm guided by three heuristics:

1. Points with higher degree in the visibility graph should generally be considered
before points with lower degree, since a highly visible point is intuitively more
likely to be visible in a query image. Our matching algorithm thus maintains a
priority for each point, initially equal to its degree in the visibility graph.

2. If two points are often visible in the same set of images, and one of them has been
matched to some feature in the query image, then the other should be more likely
to find a match as well.

3. The algorithm should be able to quickly “explore” the model before “exploiting”
the first two heuristics, so as to avoid being trapped in some part that is irrelevant
to the query image. To this end, a set of highly visible seed points (corresponding
to P s in Section 3) are selected as a preprocess; these seed points are the basis for
an initial exploratory round of matching (before moving on to the more exhaustive
P c model). We limit the size of P s to 2,000 points, which is somewhat arbitrary
but represents a balance between exploration and exploitation.

Our P2F matching algorithm matches model points to query features in priority order
(using a priority queue), always choosing the point with the highest priority as the next
candidate for matching. The priorities of all points are initially set to be proportional
to their degrees in the visibility graph, i.e. di =

∑
j Vij . The priorities of the “seed”

points are further increased by a sufficiently large constant, so that all seed points rank
above the rest. Whenever the algorithm finds a match to a point p that passes the ratio
test, it increases the priority of related points, i.e., points seen in the same images as p.
Thus, if the algorithm finds a true match, it can quickly home in on the correct part of
the model and find additional true matches. If a true match is found early on (especially
likely with a popular image), the image can be localized with a relatively small number
of comparisons.

The matching algorithm terminates (successfully) once it has found a sufficient num-
ber of matches (given by a parameter N), or (unsuccessfully) when it has tried to match
more than 500N points. On success, the matches are passed onto the pose estimation
routine. The abort criterion is based on our empirically observed “background” match
rate of roughly 1/500, i.e., in expectation every one out 500 points will succeed the
ratio test and be matched to some feature purely by chance (see also Section 5). Hence

798 Y. Li, N. Snavely, and D.P. Huttenlocher

when 500N points have been tried, the rate of finding matches so far is no higher than
the background rate and hence a strong indication that the number of outlier matches
will be very large and hence the image will most likely not be recognized by the model.
The algorithm also depends on a second parameter ω, which is the trade-off between

Algorithm 1. Prioritized P2F Matching

Input: set of seed points P s and compressed points P c, n-by-m visibility matrix V , a query image
Output: Set of matches M

Parameters: Number of uniquely matched features required N , weight factor ω

M,Y ← ∅ (* Initialize the set of matches M and uniquely matched features Y *)
For all i (i = 1 · · ·n), Si ← di, where di =

∑
j Vij (* Initialize priorities S *)

For all i ∈ P , Si is incremented by a sufficiently large constant
t← 0

while max S > 0 and |Y | < N do
i← arg max S, t← t + 1

Search for an admissible match among the features in the query image for Xi

if such a feature y is found do
M ←M ∪ {(Xi, y)}, and Y ← Y ∪ {y}
for each j, s.t. Vij = 1 do (* Update the priorities *)

for each k, s.t. Vkj = 1 do
Sk ← Sk + ω/di

end for
end for

end if
Si ← −∞
If t ≥ 500N , abort

end while

the static (first) heuristic and dynamic (second) heuristic. A higher value of ω makes
the priority of a point depend more on how well nearby points (in the visibility graph)
have been matched, and less on its inherent visibility (i.e. its degree); a zero value for ω,
on the other hand, would disable dynamic priorities altogether. We set ω = 10, which
heavily favors the dynamic priorities.

Our full algorithm for prioritized point-to-feature matching is given in Algorithm 1.
We use a value N = 100, which appears to be sufficient for subsequent localization.
In the case that the output M contains duplicates, i.e., multiple points are matched to
the same feature, only the closest match (in terms of the distance between their SIFT
descriptors) is kept.

Although the update of priorities that corresponds to the two nested inner loops of
Algorithm 1 may seem to be a significant extra computational cost, these updates only
occur when a match is found. The overhead is further reduced by updating the pri-
orities only at fixed intervals, i.e., after every certain number of iterations (100 in our
implementation). This also allows the algorithm to be conveniently parallelized or
ported to a GPU, though we have not yet implemented these enhancements.

Location Recognition Using Prioritized Feature Matching 799

4.2 Feature-to-Point (F2P) Matching

For feature-to-point (F2P) matching, it is not clear if any ordering of image features is
better than another. Therefore all features in the query image are considered for match-
ing. In our experiments, we find that not considering all features always decreases the
registration performance of F2P matching in our experiments.

4.3 Camera Pose Estimation

If the matching algorithm terminates successfully, then the set of matches M links 2D
features in the query image directly to 3D points in the model. These matches are fed
directly into our pose estimation routine. We use the 6-point DLT approach to solve
for the projection matrix of the query camera, followed by a local bundle adjustment to
refine the pose.

5 Experiments

We evaluated the performance of our method on three different image collections. Two
of the models, Dubrovnik and Rome, were built from Internet photos retrieved from
Flickr; the third, Vienna, was built from photos taken by a single calibrated camera
(the same dataset used in [4]). Figure 2 shows part of the reconstructed 3D model for
Dubrovnik and Rome. For each dataset, the number of registered images was in the
thousands, and the number of 3D points in the full model in the millions; statistics are
shown in Table 1.

Table 1. Statistics for each 3D model. Each row lists the name of the model, the number of
cameras used in its construction, the number of points, and number of connected components in
the reconstruction.

Model # Cameras # Points # CCs
Dubrovnik 6844 2,208,645 1

Rome 16,179 4,312,820 69
Vienna 1,324 1,132,745 3

In order to obtain relevant test images (i.e. images that can be registered) for Dubrovnik
and Rome, we first built initial models using all available images. A random subset of the
images that were accepted by the 3D reconstruction process was then removed from these
initial models and withheld as test images. This was done by removing their contribution
to the SIFT descriptors of any points they see, as well as deleting any points that are no
longer visible in at least two images. The resulting model no longer has any information
about the test images, while we can still use the initial camera poses as “ground truth.”
For Dubrovnik and Rome, we also included the relevant test images of the other data set
as negative examples. In all our experiments no irrelevant images were falsely registered.
For Vienna, the set of test images are the same Internet photos as used in [4] (these im-
ages were not used in building the model). In all cases, the test images are downsampled
to a maximum of 1600 pixels in both width and height.

800 Y. Li, N. Snavely, and D.P. Huttenlocher

The Vienna data set is different from Dubrovnik and Rome in that it is taken by
the same camera over a short period of time, and is much more controlled, uniformly
sampled, and homogeneous in appearance. Thus, it does not necessarily generalize
as well to diverse query images, such as the Internet photos used in the test set (e.g,
the stability of a point in the model may not necessarily be a good predictor of its
stability in an arbitrary query image). Indeed, we found that using a model compressed
with K = 100 for this collection was not adequate, likely because a covering for
each image in the model may not also cover a wide variety of images with different
appearance. Hence we used a larger covering (K = 1000) for this data set. Other than
this, all parameters of the our algorithm are the same throughout the experiments.

As an extra validation step, we also created a second model for Vienna in the same
way as we did for Dubrovnik and Rome, first building an initial model including all
images, then removing the test images. We found that the model created in this way
performed no better than the one built without ever involving the test images. This
suggests that our evaluation methodology for Dubrovnik and Rome does not favorably
bias the the results.

Table 2. Results for Dubrovnik. The test set consists of 800 relevant images and 1000 irrelevant
ones (from Rome).

Images NN queries by P2F Time in seconds
registered registered rejected registered rejected

Compressed model P2F 753 9756 46433 0.73 2.70
(76645 points) F2P 667 - - 1.62 1.62

Combined 753 - - 0.70 3.96

Seedless P2F 747 9986 46332 0.75 2.69
Static P2F 693 16722 46558 1.11 2.68
Basic P2F 699 16474 46661 1.09 2.69

Full model P2F 735 7379 49588 1.08 3.84
(1975263 points) F2P 595 - - 2.75 2.75

Combined 742 - - 1.12 5.83

Seedless P2F 691 7620 49499 1.13 3.86
Static P2F 610 21345 49628 1.53 3.03
Basic P2F 605 21117 49706 1.52 3.04

Vocab. tree (all features) 677 - - 1.4 4.0
Vocab. tree (points only) 652 - - 1.3 4.0

For each dataset, we evaluated the performance of localization and pose estimation
using a number of algorithms. These include our proposed method and several of its
variants, as well as a vocabulary tree-based image retrieval approach [6]. For each ex-
periment, we accept a pose estimate as successful if at least twelve inliers to a recov-
ered pose are found (we also discuss localization accuracy below). As in [4], we did not
find false positives at this inlier rate (though some cameras had high localization error
due to poor conditioning). The results of our experiments are shown in Table 2 - 4.
For matching strategies, “F2P” and “P2F” denote feature-to-point and point-to-feature,

Location Recognition Using Prioritized Feature Matching 801

Table 3. Results for Rome. The entire test set consists of 1000 relevant images and 800 irrelevant
ones (from Dubronik).

Images NN queries by P2F Time in seconds
registered registered rejected registered rejected

Compressed model P2F 921 12963 46756 0.91 2.93
(144777 points) F2P 796 - - 1.72 1.72

Combined 924 - - 0.87 4.67

Seedless P2F 888 13841 46779 0.96 2.93
Static P2F 805 21490 46966 1.35 2.87
Basic P2F 808 21300 47150 1.35 2.88

Full model P2F 863 11253 49500 1.57 4.34
(4067119 points) F2P 788 - - 2.91 2.91

Combined 902 - - 1.67 7.20

Seedless P2F 769 10287 49635 1.52 4.33
Static P2F 682 23548 49825 1.77 3.34
Basic P2F 681 23409 49887 1.78 3.34

Vocab. tree (all features) 831 - - 1.2 4.0
Vocab. tree (points only) 815 - - 1.2 4.0

respectively, as described in Section 4. In “Combined”, we use P2F first and, if pose esti-
mation fails, rerun with F2P. The other three variants are simply stripped-down versions
of P2F (Algorithm 1), with no seed points (“seedless”), with no dynamic prioritization
(“static”), or with neither (“basic”). These are included to show how much performance
is gained through each enhancement.

For Dubrovnik and Rome, the results for the vocabulary tree approach are obtained
using our own implementation, using a tree of depth five and branching factor ten (i.e.,
with 100,000 leaf nodes). For each query image, we retrieve the top 10 images from the
vocabulary tree, then perform detailed SIFT matching between the query and candidate
image (similar to [4], but using actual images). We tested two variants, one in which
all image features are used, and one using only features which correspond to points in
the 3D model. When sufficient matches are found, we estimate the pose of the query
camera given these matches.

All times for our implementation are based on running a single-threaded process on
a 2.8GHz Xeon processor. For P2F matching, we show the average number of nearest-
neighbor queries as well as running time for both images that are registered and those
that fail to register. For F2P, however, these numbers are essentially the same for both
cases since we exhaustively match image features to the model.

The results in the tables show that our point matching approach achieves significantly
higher registration rates (without false positives) than the state of the art in 3D location
recognition [4], as well as the vocabulary tree variants we tried. Among various match-
ing strategies, the P2F approach (Algorithm 1) performs significantly better than its
F2P counterpart. In some cases the results can be further improved by combining both
together, at the expense of extra computation time. Although one might think the P2F
would be slower than F2P (since there are generally more 3D points in the model than

802 Y. Li, N. Snavely, and D.P. Huttenlocher

Table 4. Results for Vienna

Images NN queries by P2F Time in seconds
registered registered rejected registered rejected

Compressed model P2F 204 6245 32920 0.55 1.96
(200638 points) F2P 145 - - 2.04 2.04

Combined 205 - - 0.54 3.62

Seedless P2F 182 6201 34360 0.54 2.07
Static P2F 164 14393 39664 0.97 2.30
Basic P2F 166 14274 40056 0.94 2.33

Full model P2F 190 4289 41530 0.63 2.85
(1132745 points) F2P 136 - - 2.78 2.78

Combined 196 - - 0.71 5.32

Seedless P2F 160 4034 44263 0.59 3.00
Static P2F 162 16164 45388 1.11 2.72
Basic P2F 161 16134 45490 1.11 2.67

Vocab. tree (from [4]) 164 - - ≤ 0.27 (GPU)

features per image), this turns not to be the case. The experiments show that utilizing the
extra information associated with the points makes P2F both faster and more accurate
than F2P. The P2F variants that lack either dynamic priorities or seeding points, or both,
perform much worse than the full algorithm, which illustrates the importance of these
enhancements. Moreover, the compressed models generally perform at least as well
as, if not better than, the full models, while being on average an order of a magnitude
smaller in size. Hence they are able to save storage space and computation time without
sacrificing accuracy. For the vocabulary tree approach, the two variants we tested are
comparable, though using all image features gave somewhat better performance than
using just the features corresponding to 3D points in our tests.

One further property of the P2F method is that when it recognizes an image (i.e. is
able to register it), it does so very quickly—much more quickly than in the case when
the image is not recognized—since if a true match is found among the seed points, the
algorithm generally only needs to consider a small subset of points. This resembles the
ability of humans to quickly recognize a familiar place, while deciding that a place is
unknown can take longer. Note that even in the case where the image is not recognized,
our methods is still comparable in speed to the vocabulary tree based approach in terms
of equivalent CPU time, although vocabulary tree methods can be made much faster by
utilizing the GPU; [4] reports that a GPU implementation sped up their algorithm by a
factor of 15-20. Our point matching approach is also amenable to GPU techniques.

5.1 Localization Accuracy

To evaluate localization accuracy we geo-registered the initial model for Dubrovnik
so that each image receives a camera location in real-world coordinates, which we
treat as noisy ground truth. The estimated camera location of each registered image is
then compared with this ground truth, and the localization error is simply the distance

Location Recognition Using Prioritized Feature Matching 803

between the two locations. For our results, this error had a mean of 18.3m, a median
of 9.3m, and quartiles of 7.5m and 13.4m. While 87 percent of the images have errors
below the mean, a small number were rather far off (up to around 400m in the worst
case). This is most likely due to errors in estimated focal lengths (most likely for both
the test image and the model itself), to which location estimates are very sensitive.

6 Summary and Discussions

We have demonstrated a prioritized feature matching algorithm for location recognition
that leverages the significant amount of information that can be estimated about scene
features using image matching and SfM techniques on large, heterogeneous photo col-
lections. In contrast to prior work, we use points, rather than images, as a matching
primitive, based on the idea that even a small number of point matches can convey very
useful information about location.

Our system is also able to utilize other cues as well. While we primarily consider
the visibility of a point when evaluating its relevance, another important cue is its dis-
tinctiveness, i.e., how well it can predict a single location (a feature on a stop sign, for
instance, would not be distinctive). While we did not observe problems due to repeti-
tive features spread around a city model, one future direction would be to incorporate
distinctiveness into our model (as in [15] and [1]).

Our system is designed for Internet photo collections. While these collections are
useful as predictors of the distribution of query photos, they typically do not cover entire
cities. Hence many possible viewpoints may not be recognized. It will be interesting to
augment such collections with more uniformly sampled photos, such as those on Google
Street View or Microsoft Bing Maps.

Finally, while we found that our system works well on city-scale models built from
Internet photos, one question is how well it scales to the entire world. Are there fea-
tures in the world that are stable and distinctive enough to predict a single location
unambiguously? How many seed points do we need to ensure good coverage, at least
of the popular areas around the globe? Answering such questions will reveal interesting
information about the regularity (or lack thereof) of our world.

References

1. Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (2007)

2. Hays, J., Efros, A.A.: im2gps: estimating geographic information from a single image. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2008)

3. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and recognition of landmark
image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)

4. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-from-motion point clouds
to fast location recognition. In: CVPR (2009)

5. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in video
s. In: Proc. Int. Conf. on Computer Vision, pp. 1470–1477 (2003)

804 Y. Li, N. Snavely, and D.P. Huttenlocher

6. Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 2118–2125 (2006)

7. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query ex-
pansion with a generative feature model for object retrieval. In: Proc. Int. Conf. on Computer
Vision (2007)

8. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving
particular object retrieval in large scale image databases. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (2008)

9. Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale
object retrieval. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2009)

10. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring image collections in 3d. In:
SIGGRAPH (2006)

11. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In:
ICCV (2009)

12. Simon, I., Snavely, N., Seitz, S.M.: Scene summarization for online image collections. In:
Proc. Int. Conf. on Computer Vision (2007)

13. Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-
invariant features. In: Proc. Int. Conf. on Robotics and Automation, pp. 2051–2058 (2001)

14. Zhang, W., Kosecka, J.: Image based localization in urban environments. In: International
Symposium on 3D Data Processing, Visualization and Transmission (2006)

15. Li, F., Kosecka, J.: Probabilistic location recognition using reduced feature set. In: Proc. Int.
Conf. on Robotics and Automation (2006)

16. Ni, K., Kannan, A., Criminisi, A., Winn, J.: Epitomic location recognition. IEEE Trans. on
Pattern Analysis and Machine Intelligence 31, 2158–2167 (2009)

17. Jojic, N., Frey, B.J., Kannan, A.: Epitomic analysis of appearance and shape. In: Proc. Int.
Conf. on Computer Vision, pp. 34–41 (2003)

18. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the
spatial envelope. Int. J. of Computer Vision 42, 145–175 (2001)

19. Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua,
T.S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (2009)

20. Crandall, D., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos.
In: Proc. Int. World Wide Web Conf. (2009)

21. Li, Y., Crandall, D.J., Huttenlocher, D.P.: Landmark classification in large-scale image col-
lections. In: Proc. Int. Conf. on Computer Vision (2009)

22. Kalogerakis, E., Vesselova, O., Hays, J., Efros, A.A., Hertzmann, A.: Image sequence geolo-
cation with human travel priors. In: Proc. Int. Conf. on Computer Vision (2009)

23. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In:
Proc. Int. Conf. on Computer Vision (2009)

24. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: ACM-
SIAM Symposium on Discrete Algorithms (1993)

	Location Recognition Using Prioritized Feature Matching
	Introduction
	Related Work
	Building a Compact Model
	Registration and Localization
	Prioritized Point-to-Feature (P2F) Matching
	Feature-to-Point (F2P) Matching
	Camera Pose Estimation

	Experiments
	Localization Accuracy

	Summary and Discussions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

