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Abstract. Client puzzles have been proposed as a useful mechanism
for mitigating Denial of Service attacks on network protocols. While
several puzzles have been proposed in recent years, most existing non-
parallelizable puzzles are based on modular exponentiations. The main
drawback of these puzzles is in the high cost that they incur on the puzzle
generator (the verifier). In this paper, we propose cryptographic puzzles
based on modular exponentiation that reduce this overhead. Our con-
structions are based on a reasonable intractability assumption in RSA:
essentially the difficulty of computing a small private exponent when the
public key is larger by several orders of magnitude than the semi-prime
modulus. We also discuss puzzle constructions based on CRT-RSA [II].
Given a semi-prime modulus N, the costs incurred on the verifier in our
puzzle are decreased by a factor of “Zl when compared to existing mod-
ular exponentiation puzzles, where k is a security parameter. We further
show how our puzzle can be integrated in a number of protocols, in-
cluding those used for the remote verification of computing performance
of devices and for the protection against Denial of Service attacks. We
validate the performance of our puzzle on PlanetLab nodes.

Keywords: Client Puzzles, Outsourcing of Modular Exponentiation,
DoS Attacks, Secure Verification of Computing Performance.

1 Introduction

Client Puzzles are tightly coupled with Proof of Work systems in which a client
(prover) needs to demonstrate to a puzzle generator (verifier) that it has ex-
pended a certain level of computational effort in a specified interval of time.
Client puzzles found their application in a number of domains, but their main
applications concerned their use in the protection against Denial of Service (DoS)
attacks [43,45[49] and in the verification of computing performance [13,[44].

To be useful in practice, client puzzles have to satisfy several criteria: namely,
they need to be inexpensive to construct and verify, and in many applications
should be non-parallelizable. Non-parallelizability of puzzles is an especially im-
portant property since clients can involve other processors at their disposal e.g.,
to inflate their problem-solving performance claim.

A number of puzzles have been proposed [45], but these proposals are either
efficient and parallelizable [24)[49] or non-parallelizable and inefficient (typically
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in result verification) [I3143l[44]. Non-parallelizable puzzles are mainly based on
modular exponentiation (e.g., [43]); in these puzzles, the verifier has to perform
O(log(N)) modular multiplications to construct a puzzle instance and verify its
solution. This high cost hindered the large-scale deployment of puzzles based on
modular exponentiation in today’s online applications [45].

In this paper, we propose puzzles based on modular exponentiation that re-
duce the cost incurred on the puzzle generator in existing modular exponen-
tiation puzzles. Our constructions are based on a reasonable intractability as-
sumption in RSA: informally, this assumption states that it is computation-
ally intractable to compute a small private exponent d when the public expo-
nent e is larger by several orders of magnitude than the modulus N. It is well
known that RSA is insecure when the private exponent is small and the pub-
lic key e < N'87 [10,[50]. However, when e > N2, RSA is considered to be
secure [I0,[IT,50]. Defeating this assumption would essentially imply a further
restriction in the RSA problem, that has not been reported to date. Note that
when e is large, the cost of encryption and/or signature verification in RSA
is prohibitively high, which explains why this class of RSA keys is not widely
used. To the best of our knowledge, this is the first work that leverages on this
class of RSA keys to construct low-cost modular exponentiation puzzles. Where
appropriate, we also discuss puzzle constructions based on CRT-RSA [T1].

Based on this intractability assumption, we show that the costs incurred on the
generator of modular exponentiation puzzles can be considerably reduced for any
exponent of choice (i.e., for any puzzle difficulty). More specifically, we provide
constructions for (variable-base) fixed-exponent and variable-exponent modular
exponentiation puzzles and we show that the verifier only needs to perform a
modest number of modular multiplications to construct and verify these puzzles.
Given a modulus N, the costs incurred on the verifier in our puzzle are decreased
by a factor of “Zl when compared to existing modular exponentiation puzzles,
where k is a security parameter. For example, for a 1024-bit modulus N, k = 80,
the verifier’s cost is reduced by a factor of 12.

As a by-product, our puzzle can be used to efficiently verify the integrity of
outsourced modular exponentiations (modulo a semi-prime). We further show
how our puzzle can be integrated in protocols used for remote verification of
computing performance and for DoS protection. We validate the performance of
our puzzle through experiments on a large number of PlanetLab nodes [I].

The rest of the paper is organized as follows. In Section Pl we define client-
puzzles and we introduce our assumptions based on RSA. In Section Bl we in-
troduce our puzzles and we provide a security proof for their constructions. Sec-
tion [ outlines some applications that can benefit from our proposed scheme. In
Section Bl we overview the related work and we conclude the paper in Section [6l

2 Preliminaries

2.1 Client Puzzle Properties

Here, we state the security notions of client puzzles (adapted from [14]).
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Definition 1. A client puzzle Puz is given by the following algorithms:

— Setup is a probabilistic polynomial time setup algorithm that is run by the
puzzle generator. Given a security parameter k, it selects the key space S,
the hardness space T, the string space X, the puzzle instance space I and
puzzle solution space P. It then selects the puzzle parameters params <«
(8, 7,X,Z,P). The secret s € S is kept private by the puzzle generator.

— GenPuz is a probabilistic polynomial time puzzle generation algorithm that
is run by the puzzle generator. On input s € S, Q € T and a € X, it outputs
a puzzle instance puz € I.

— FindSoln is a probabilistic solution finding algorithm. On inputs puz € T and
a run time T € N | it outputs a potential solution soln € P after at most T
clock cycles of execution.

— VerAuth is a puzzle authenticity verification algorithm. On inputs s € S and
puz € I, it outputs true or false.

— VerSoln is a deterministic solution verification algorithm. On inputs s € S,
puz € I and a solution soln € P, it outputs true or false.

It is required that if params < Setup(k) and puz < GenPuz(s,Q,a) where
s€S8,Q €T and a € X, then (1) VerAuth(s,puz) = true, (2) 37 € N such
that soln <« FindSoln(puz, T) and VerSolu(s, puz, soln) = true.

Definition 2. (Puzzle-unforgeability.) A client puzzle Puz is UF (unforge-
able) if the probability that any probabilistic polynomial-time adversary M suc-
ceeds in producing Puz, such that Puz was not previously created by the puzzle
generator and VerAuth(Puz) = true, is a negligible function of k.

Definition 3. (Puzzle-difficulty.) Let e, o(.) be a monotonically increasing
function, where k is a security parameter and @ is a hardness parameter. A
client-puzzle Puz is DIFFy q if for all T € N, for all security parameters k € N,
for all Q € N, the success of any adversary M, that is restricted to T clock cycles
of execution, is bounded by €y o(T) in solving Puz.

2.2 Rivest’s Repeated-Squaring Puzzle

In [43], Rivest et al. proposed a non-parallelizable time-lock puzzle based on
repeated-squaring to enable time-release cryptography.

In this puzzle, the puzzle generator encrypts a message M into a ciphertext
C as follows: C = M + X% mod N given an integer X, an exponent a, a
large integer ¢t and an appropriate semi-prime modulus N. This computation
can be performed efficiently using the trapdoor offered by Euler’s function: X a’
mod N = X mod ¢(N) 1164 N. On the other hand, to acquire M from C, the
client needs to compute X% mod N in log(a') ~ t modular multiplications.

When used as a client-puzzle (e.g., [44]), this puzzle is used such that the
prover is required to compute X < mod N given X, a, t and N. This compu-
tation is then verified by the puzzle generator through the trapdoor offered by
Euler’s function in O(log(/N)) modular multiplications.
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2.3 RSA with a Small Private Exponent

The RSA cryptosystem [42] is the most widely used public-key cryptosystem.
Let N = pq be the product of two large and distinct primes and let e and d
be inverses modulo ¢(N) = (p — 1)(¢ — 1). Throughout the rest of the paper,
we assume that p and g are balanced primes; that is, |p| = |g|. For k¥ € N*
(N = N — {0}), the public RSA key e and the private RSA key d satisfy:
e-d—1=k-¢(N).

It is known that RSA is insecure when e < N87 and d is small [8,T0,[15-
17,20,23,2528,[331[38.60]. Existing attacks on this class of “weak” RSA keys are
mostly based on Wiener’s attack [50] and/or on Boneh and Durfee’s attack [10].
Wiener’s continued fraction attack can be used to efficiently factor N when
e < N and d < Ni~¢ and Boneh and Durfee’s lattice-based attack [10] shows
that private exponents up to N°2929 are unsafe when e < N87°. Blomer et
al. [8] further generalized Wiener’s attack to factor N in polynomial time for
every e < N satisfying ex + y = 0 mod ¢(N), where = and y are short. Gad]
and Howgrave-Graham and Seifert [30] extended these attacks to factor N given
several common modulus instances of RSA with d < N°%% and e < N.

2.4 Low-Cost Decryption in RSA

In this work, we consider RSA keys that do not belong to the weak class of RSA
keys, yet enable low-cost decryption in RSA. More specifically, we consider the
following class of RSA keys:

Class A: Class A is defined as the set of all RSA keys (N, e, d) where: N = pgq,
p and q are two large balanced primes, e > N? such that ged(e, ¢(N)) = 1 and
d is small such that ed —1 =0 mod ¢(N).

When (N, e,d) € A, the fastest known algorithm that computes d from (N, e)
runs exponentially in time with |d|. This hardness assumption on class A is based
on the observations of Wiener [50] and Boneh et al. [I0]. When e > N2, all known
attacks against small private RSA exponent are defeated. More specifically, the
continued fraction algorithm [50], the lattice-based attack [10] and Coppersmith’s
attack [I516] fail even when d is small (for the reason why, refer to Appendix [A]).
For example, when e > N2 |d| > 80-bits, no known feasible algorithm can
compute d from (N, e) € A, and therefore factor N. RSA keys that belong to .A
clearly do not optimize the cost of RSA encryption and signature schemes; when
e is large, the cost of encryption and/or signature verification is prohibitively
high, which explains why this class is not widely used in RSA.

Remark 1. Given the work of Blémer et al. [8], we can safely extend class A to
the set of RSA keys that satisfy a generalized RSA key equation of the form
ex+y =0 mod ¢(N), where e > N? and z,y are small (for the reason why, see
Appendix [B]). Note that a special instance of this equation is the standard RSA
equation, where x =d and y = —1.

! Gao’s unpublished attack is described by Howgrave-Graham and Seifert in [30].
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Remark 2. One simple way to generate large public keys whose modular inverses
are small is to pick d such that |d| is small, and compute ¢/ = d~! mod ¢(N).
Then, a large public key e is computed from e’ as follows: e = t¢(N) + ¢/, where
t € N* and t &~ N2. The verifier then deletes ¢’ and publishes (N, e) [9].

Where appropriate, we also consider in this work the following class of RSA keys:

Class B: Class B is defined as the set of all RSA keys (N, e,d) where: N = pq,
p and q are balanced large primes, e € N*, ged(e, p(N)) =1, d, =d mod p and
dg =d mod q such that d,, # dg, d > N°® and ed — 1 =0 mod ¢(N).

When (N,e,d) € B, the fastest known algorithm that computes d from (V,e)
runs in min(\/ dp, \/ dg). The use of RSA keys in class B is suggested by Wiener
[50] and Boneh [I0] to speed up RSA decryption. Since decryptions are often
generated modulo p and ¢ separately and then combined using the Chinese
Remainder Theorem (CRT) [I1], Wiener proposes the use of a private key d
such that both d; = d mod ¢ and d, = d mod p are small (d, # d;). The
best known attack against this scheme runs in min(\/ dp, \/ dq) [10,26] When
| min(y/dq, \/dp)| > 80 bits, |N| = 1024-bits, there exists no feasible algorithm
that can compute d from (N, e) € B.

Remark 3. Throughout this paper, we consider RSA keys in the class A U B as
a building block to construct low-cost puzzles based on modular exponentiation.
To simplify the description and analysis of our puzzles, we consider RSA keys
in AU B where the public exponent e > N2. We point out, however, that our
analysis also applies for all RSA keys in 4 U B.

3 Low-Cost Puzzles Based on Modular Exponentiation

3.1 System and Attacker Model

We consider the following model. A verifier (puzzle generator) wants to verify
that a prover performed a certain number of modular exponentiations (modulo a
semi-prime) in a specified interval of time. For that purpose, the verifier requires
that the prover runs a software on its machine (i.e., a modular exponentiation
puzzle) for a specific amount of time. In some application scenarios, we will need
to assume that the verifier and the prover can exchange authenticated messages
over the communication channel. We assume, however, that the verifier does
not have access to the prover’s machine and thus cannot check the prover’s
environment; this includes the number of processors at the disposal of the prover,
the connections established from the prover’s machine, etc..

2 This RSA variant is widely used in smart cards.

3 Recently, Jochemsz et al. propose in [31] a polynomial attack on small private CRT-
RSA exponents. This attack only works when min(d,,d,) < N°°". However, in this
case, brute-force search attacks would also be feasible on CRT-RSA.
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Verifier Prover

Compute N = pq and ¢(N) = (p—1)(¢ — 1)
Pick an arbitrary R € N such that R > N
Compute the RSA keys (N,e,d) € AUB
Set s — (e, d, d(N))
Compute K = e — (R mod ¢(N))
Pick a random nonce Z;
Compute X; «— HMAC(d, Z;)
ma — X;||N||R|| K| Z;
m
T1 : A >
Compute y; = XE mod N

i

Compute y2 = XiK mod N

Zilly1lly2
Ty : <
Compute X; «— HMAC(d, Z;)
Verify that (y2y1)? = X; mod N

If the verification passes, the verifier accepts the puzzle solution.

Fig. 1. Fixed-Exponent Puzzle based on Modular Exponentiation

An untrusted prover constitutes the core of our attacker model. We assume
that a prover possesses considerable technical skills by which it can efficiently an-
alyze, decompile and/or modify executable code as necessary. More specifically,
an untrusted prover has knowledge of the algorithm used for the computation
and of the algorithm that is run by the verifier. We assume that untrusted provers
are motivated to inflate their puzzle solving performance (i.e., untrusted provers
have incentives to solve the puzzle in a faster time than what they can genuinely
perform). However, we assume that provers are computationally bounded.

3.2 Low-Cost Fixed-Exponent Modular Exponentiation Puzzle

Here, we present our puzzle based on (variable-base) fixed-exponent modular
exponentiation. In Section B3] we propose a variant puzzle based on variable-
exponent modular exponentiation. Our puzzle is shown in Figure [

In the setup phase of our puzzle, the verifier picks two large balanced primes
p and ¢ (of sufficient size to prevent factoring of N = pgq, e.g., |p| = |¢| > 512-
bits), computes N = pg and ¢(N) = (p — 1)(¢ — 1). Given N, the verifier also
generates RSA keys (N, e, d) such that (N, e,d) € A, |d| = k, where k is a security
parameter or (N, e,d) € B, where |min(y/d,, \/dg)| = k. The verifier also picks
a puzzle difficulty R € N and computes K = e — (R mod ¢(N)). We show
later that K will enable low-cost verification of the puzzle solution. (N, R, K)
are public parameters that set the puzzle hardness and s « (e, d, p(NN)) is kept
secret. Note that R needs to be larger than ¢(N) to ensure the security of our
schemd]. Typically, R is chosen such that R >> ¢(N) (|R| > 100,000 bits) to
achieve a moderate runtime of the puzzle (in the order of tens of milliseconds, see
Section[34]). However, even in the case where the verifier would like to e.g., simply
outsource the computation of an arbitrary R’ < ¢(N), this can be remedied by
setting R < R’ +t¢(N), where t € NT.

4 This can be achieved by setting R > N.



Low-Cost Client Puzzles Based on Modular Exponentiation 685

— Puzzle Generation: In round 4, the verifier generates puz «— (X;, Z;, R, K,
N)E where X; «— HMAC(d, Z;). Here, Z; is a nonce and |X;| > k. In the
sequel, we assume that HMAC(X,Y) is a keyed collision-resistant pseudo-
random function, where X is used as an input key.

— Puzzle Solution: Given puz, the prover computes soln « (y; = XF mod N,
yo = XX mod N, 7).

— Solution Verification: Given soln, the verifier checks if (y2y1)? = X;i(RJrK)
mod N Ede mod N = X; mod N.

Remark 4. Note that our puzzle is stateless; only a single value of the secret
s <« (e,d,¢(N)) is stored by the verifier regardless of the number of puzzles
(instances) that the verifier generates. All the required data to solve a given
puzzle is contained in puz, whereas the knowledge of s and soln are sufficient to
verify the puzzle solution soln. The uniqueness of each puzzle instance can be
ensured by having GenPuz select Z; a counter and increment Z; in each puzzle
instance.

Remark 5. When R = 0, the prover simply computes y2 = X{ mod N, and the
verifier verifies the puzzle solution by computing y4. Such a puzzle is then based
on “standard” RSA. The major limitation of this “standard” RSA-based puzzle
is that the choice of the puzzle difficulty (i.e., the exponent) is dependent on the
choice of d and ¢(N). This particularly hinders the construction of repeated-
squaring puzzles (e.g., [43]) or the secure outsourcing of modular exponentiations
for a given exponent.

Puzzle Construction and Verification Costs: In our puzzle, the verifier
only needs to perform 1 HMAC operation (2 hashes) to construct the puzzle
and a small number of modular multiplications (computing (y2y1)?) to verify
the puzzle solution:

— (N,e,d) € A: In this case, the puzzle verification is performed in O(logd)

modular multiplications. When |d| = k, the verifier’s cost is reduced by
a factor of lff)ggg = lJZ‘, when compared to the original repeated-squaring

puzzle [43]. When |N| = 1024, k = 80, the puzzle verification cost could be
as low as 3’80 = 120 modular multiplications@ and the average improvement
gain in the puzzle solution verification is almost 12 (i.e., 1‘15_§X1g(2)4). Similarly,
when |N| = 2048, k = 112, the average improvement gain increases to 18.
— (N, e,d) € B: In this case, the puzzle verification is performed in O(log(d,) +

log(dq)) modular multiplications using the CRT. When | min(y/d,, \/dq)| =
log N __ |N|

ologd = 4k’ when compared

k, the verifier’s cost is reduced by a factor of
to the original repeated-squaring puzzle [43].

® When R is very large, the verifier can reduce the communication costs by sending
r < R, such that R = F(r), where F(r) is an expansion function of r.

6 On average, the computation of X¢ mod N requires 1.5log d modular multiplica-
tions [35].
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Prime number generation (i.e., computing N) and the pre-computation of e and
d are generally expensive operations for the verifier; however, this computation
is performed only once at the setup phasem and (N, e, d) are subsequently used
for all the puzzles generated by the verifier.

Security Analysis: To analyze the security of our scheme, we first show that
it is computationally infeasible for an adversary to acquire the secret s held by
the verifier in our puzzle. Based on this, we show that an adversary needs to
perform at least O(log R) modular multiplications to compute the solution soln
to a puzzle instance puz such that VerSoln(s, puz, soln) = true.

We use the following game Execpq (k) between a challenger and a probabilistic
polynomial time (p.p.t.) adversary M:

— The challenger runs Setup on input £ to obtain N = pq chosen uniformly at
random from A/, d chosen uniformly at random from {2*..28*1} and com-
putes e such that (V,e,d) € AU B. The challenger, then stores the secret
s < (e,d,#(N)). The challenger further picks R > N chosen uniformly at
random from R and computes K as shown in Figure [I1

— The adversary M gets to make as many CreatePuz(Z;) queries as it likes.
In response, the challenger (1) creates puz «— (X;, Z;, R, K, N) as shown in
Figure [l (2) computes soln such that VerSoln(s, puz, soln) = true and (3)
outputs (puz, soln).

Adversary M terminates the game by outputting an integer C. We say that M
wins Execpq(k) if C =0 mod ¢(N) (i.e., if M computes a multiple of ¢(N)).
In this case, we set the output of Execaq(k) to be 1 and otherwise to 0. We then
define the success of M as Succp (k) = Pr[Execa (k) = 1].

Theorem 1. Computing a multiple of ¢(N) and, in particular, computing d
given (N, e) is computationally as hard as factoring (see [40] for the proof).

Lemma 1. (N,R+ K,d) € AUB if (N,e,d) € AUB.

Proof. Let (N, e,d) € AUB satisfy the RSA key equation: ed—1 =0 mod ¢(N).
Recall that e is kept secret by the challenger. Since K = e — (R mod ¢(N)),
then 3t; € N (since R > N) such that R+ K = e + t1¢(N). This means that
d(R+ K)=de=1 mod ¢(N).

Given Theorem [l computing e from (R + K) is computationally as hard as
factorinﬁ. Since d is the modular inverse of e, d is equally the modular inverse
of (R + K). More specifically, it is easy to see that since (N, e,d) € AU B, then
(N,(R+ K),d) are RSA keys in AU B (since (R+ K) > e).

Lemma 2. For any p.p.t. adversary M, Succa (k) is a negligible function of k.

7 Note that the computational load incurred by prime number generation equally
applies to all protocols that make use of modular exponentiation or repeated-squaring
(e.g., [43149]).

8 (R+ K — e) is a multiple of ¢(N).
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Proof. We show that if M can compute a multiple of ¢(N) in the Execpq (k)
game, then we can construct a polynomial-time algorithm that uses M as a
subroutine to solve the RSA problem in AU B, i.e., to compute d given a public
RSA key (N, &) where (N,e,d) € AUB.

Let M be a p.p.t. adversary that outputs a multiple of ¢(N) in the game
Execpaq(k) with probability Succaq (k). In the Execaq(k) game, let R+ K = ¢’
Recall that in Execpq(k), K = e — R mod ¢(N), where e is chosen uniformly
at random from AU B and R > N. Given this, note that ¢’ > e + ¢(N) and
K > N? — $(N); this suggests that R+ K = ¢’ > R+ N? — ¢(N) and therefore
R<e — N2

Let (N,e,d) € AUB, where N € N, d € [2F,.., 2" & > N? + ¢(N). Then,
we construct a polynomial-time algorithm £ that interacts with M as follows:

— Given the public key QN, €), £ picks R at random from {N +1,..,e - N2}

— & computes K = & — R and constructs a transcript 7" that is composed of a
number of tuples of the form (X, Zi, R, K, N,XiR mod N,XiK mod N),
i € N, where X; is a pseudorandom string that has a similar distribution as
HMAC(.) and Z; is a counter.

Note that since R > N, Jt; € NT such that R —t;¢(N) = (R mod ¢(N)). Let
é1 = & —t1¢(N). It is easy to see in this case that K = ¢; — (R mod ¢(N)).
Furthermore, since ¢, = € mod ¢(N ), then d is a modular inverse of €;. We point
out that since ¢, = e —t;¢(N) = eé— R+ (R mod ¢(N)), then e; > é— R > N2,
since by construction R < & — N2. Therefore, (N, é1,d) € AU B.

Given this, it is easy to see that the view of M when run as a subroutine by
€ is distributed identically to the view of M in the game Execpaq(k). Recall that
in Execpa(k), X; is a pseudorandom string, K = e — R mod ¢(N), where e is a
secret such that (N,e,d) € AUB and (N,R+ K,d) € AUB.

Therefore, if M can compute a multiple of ¢(N) in the Execpa (k) game, then
it can solve the above RSA problem. By the hardness assumption on A and B,
it is computationally infeasible for M to compute d, or equivalently a multiple
of ¢(N) (Theorem[Il), from (N,€) when (N, €,d) € AU B. Therefore, Succpq (k)
is negligible, thus concluding the proof.

Given this, we can show that our puzzle construction is both unforgeable (UF)
and difficult (DIFFy r).

Corollary 1. The puzzle construction of Figure[dl is UF.

Proof Sketch: Given a puzzle instance puz «— (X;, Z;, R, K, N), VerAuth(s,
puz) = true if and only if X; « HMAC(d, Z;).

Therefore, the only viable way for M to construct puz «— (X;, Z;, R, K, N)
such that VerAuth(puz) = true and puz, X;, Z; were not previously created
by the challenger is to construct (X;, Z;) such that X; « HMAC(d, Z;). Since
HMAC(.) is a pseudorandom collision-resistant function, M cannot construct
(X, Z;) without the knowledge of d. Following from Lemma [ the success prob-
ability for M in acquiring d from our puzzle — and therefore constructing puz
such that VerAuth(puz) = true — is bounded by O(27F).
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Corollary 2. The puzzle construction of Figure[l is DIFFy g.

Proof Sketch: Following from Lemma [2] it is computationally infeasible for M
to compute a multiple of ¢(N) given our puzzle. Furthermore, M cannot pre-
compute the solution of the puzzle since it cannot predict X; (|X;| > k) nor the
outcome of yoy; (since e is kept secret by the verifier).

The fastest known way for M to solve our puzzle is to compute y; and ys
correctly. Modular Multiplication is an inherently sequential process [43]. The
running time of the fastest known algorithm for modular exponentiation is linear
in the size of the exponent. Although M might try to parallelize the computation
of y; and/or ys, the parallelization advantage is expected to be negligibld? [43/[44].

Note that M might try to perform the computation of y; and ys, in parallel,
using different machines at its disposal. In typical cases, R > K; this means that
the computation of y; and ys requires at least O(log R) sequential modular mul-
tiplications. We point out that the verifier can prevent the separate computation
of y; and g9, by sending K to the prover once it receives y; (see Figure [2).

M can equally try to compute y; and/or yo through intermediate results that
it previously computed (or intercepted) (e.g., when the base X; is the result of a
multiplication of two previously used numbers). This also applies to the original
time-lock puzzle proposed in [43]; this can be remedied, with high probability,
by setting [HMAC(.)| > |Z;|.

Given this, the success of M — restricted to 7 clock cycles of execution — in
solving our puzzle is bounded by ex r(7) = min(LlOgRJ + 0(27%),1); M needs
to perform at least 7 = log(R) clock cycles of execution to solve our puzzle.

3.3 Low-Cost Variable-Exponent Modular Exponentiation Puzzle

In some settings, the verifier might need to change the puzzle difficulty (i.e., the
exponent) “on the fly” (e.g., when subject to DoS attacks). We briefly discuss
how this can be achieved based on the proposed fixed-exponent puzzle.

Our variable-exponent puzzle and the related protocol are depicted in Fig-
ure [2 Similar to the fixed-exponent puzzle (Figure [Il), in round 4, the ver-
ifier creates the RSA keys (N,e,d) € AU B, picks Z; € N and computes
X; — HMAC(d, Z;). Here, in addition, the verifier computes v; «— HMAC(d, X;)
such that |v;| = k and ged(v;, d) =1

9 M might try to parallelize the multiplication of large numbers by splitting the mul-
tiplicands into smaller “words” and involving other processors in the multiplication
of these words. Further details about this process can be found in [36]. However,
this attack incurs a significant communication overhead that prevents an M from
gaining any substantial speedup; given a large number of squaring rounds, the RTT
between the cooperating processors needs to be in the order of few nanoseconds to
achieve even a modest speedup.

The probability that any number is coprime with d is ﬂ62 = 0.61. Therefore, only two
choices are sufficient, on average, to create such a v; (i.e., if gcd(HMAC(d, X3)),d) #
1, then with high probability ged(HMAC(d, X;+1)),d) = 1).

10
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Verifier Prover

Given k, compute (N,e,d) € AUB

Set s «— (e, d,$(N))

Pick an arbitrary R; > e such that ﬁ? > N2,V'L' # 3
¥

Pick a random nonce Z;

Compute X; — HMAC(d, Z;)

v; «— HMAC(d, X;), |vi| > k, ged(vi,d) =1
Compute K; = v; - e — (R; mod ¢(N))
ma — Xi||N||R:||Z:

ma
Ty >
Compute y; = XiRi mod N
Zillva
Ty < ‘
mp — Xi||N||K:l|Z:
mp
T3 >
Compute ya2 = X7K‘ mod N
Zilly2

Ty <
Compute X; — HMAC(d, Z;)
Compute v; — HMAC(d, X;)
Verify that (y2y1)¢ = X;* mod N.

Fig. 2. Variable-Exponent Puzzle based on Modular Exponentiation. Note that y; and
y2 could be also transmitted in the same message. The separate transmission of y; and
Y2, however, prevents the computation of y; and y2 in parallel and enables the use of
this puzzle to remotely verify the computing performance of devices (see Section [2)).

The puzzle instance at round 7 is then comprised of the tuple puz «— (X;, Z;, N,
R;, K;), where K; = v;e — (R; mod ¢(N)), and R; € N. Its solution is soln —
(Zi, X% mod N, XX mod N). To verify soln, the verifier checks if (y2y1)? =
X" mod N.

It is easy to see that the cost incurred on the verifier in this puzzle exceeds that
of the fixed-exponent puzzle by |v;| = k = 80 modular multiplications (mainly
in puzzle solution verification). For instance, when (N,e,d) € A, soln can be
verified in 240 modular multiplication; the verification gain when compared to
existing modular exponentiation puzzles is then 1254306 ~ 7, given a 1024-bit N.
Corollary 3. The puzzle construction of Figure[dis UF and DIFFy g, when (1)
(N,e,d) € A and R; > e such that gj_ > N2,Vi # j, or (2) (N,e,d) € B.

Proof Sketch: Due to lack of space, we only provide the main intuition behind
the proof.

Consider a variant of the aforementioned Execaq (k) game where the transcript
of interaction T' between the adversary M and the challenger is composed of a
number of tuples (X;, Z;, R;, K;, N, XiRi mod N, XiK" mod N), i € N.

Similar to the analysis in Lemma 2] we can show that if M can compute a
multiple of ¢(N) in this variant Execaq (k) game, then it can compute a multiple
of ¢(N) given several instances of the generic RSA key equation e;x; + y; = 0
mod ¢(N) with common modulus and unknown z;,y;, where e, = R; + K,
z; = d and y; = —v;. Note that v; # v;,Vi # j. This is especially important for
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Table 1. Construction and Verification Costs of Puzzles. “Mod. Mul.” denotes modular
multiplication and “Mul.” refers to multiplication. B-Puzzle and A-Puzzle refer to our
proposed puzzle created using classes B and A, respectively, of RSA keys. ) Note that
d< N,v< N; |v|=|d| =k > 80.

Verifier Cost Prover Cost

1 modulus, 1 mul. O(log R) mod. mul.

Repeated-Squaring [43] O(log(N)) mod. mul.

Fixed Exponent 1 modulus, 1 HMAC O(log R) + O(log(N))
A-Puzzle O(log(d)) mod. mul. **) mod. mul.
Variable Exponent 1 modulus, 2 HMAC O(log R) + O(log(N))
A-Puzzle O(log(d) + log(v)) mod. mul. ) mod. mul.
Fixed Exponent 1 modulus, 1 HMAC O(log R) + O(log(N))
B-Puzzle O(log d?) mod. mul. *) mod. mul.
Variable Exponent 1 modulus, 2 HMAC O(log R) + O(log(N))
B-Puzzle O(log d? + log(v)) mod. mul. *) mod. mul.

the security of our puzzle. Otherwise, M can compute a multiple of ¢(N) solely
from Rz and Rj ((Rz — RJ) =0 mod ¢(N))
When (N,e,d) € A and R; > e such that & > N2 Vi # j, then ¢ =

R; €j
(%;II{(Z > N,Vi # j. In this case, all existing attacks on common modulus in-

stances of RSA are defeated (refer to Remark [ and the related Appendix [Bl);
the best known algorithm that computes ¢(N) from (N, e;) runs exponentially
in time in |z;y;| = |dv;| since d and v; are in lowest terms by construction (i.e.,
ged(d, v;) = 1). In our case, |dv;| > 2k = 160. We conclude that it is computa-
tionally infeasible for M to compute a multiple of ¢(N) from T'. Similarly, when
(N,e,d) € B, d = |z;| > N°5 [10,/50], there exists no polynomial-time algorithm
that can factor NV in this case [27].

Similar to Corollaries [I] and [ it can be shown that the puzzle construction
of Figure 2 is UF and DIFFy g,.

3.4 Performance Evaluation

Table [l summarizes the costs incurred in our puzzles when compared with those
in the repeated-squaring puzzle of [43]. To the best of our knowledge, there are
no other proposed non-parallelizable puzzles that are based on modular expo-
nentiation.

To evaluate the performance of our puzzle, we implemented it in JAVA on
four different workstations. We evaluate the performance of our scheme on var-
ious other processors in Section In our implementation, we used built-in
JAVA functions for prime number generation, repeated-squaring using addition
chains, etc.. While a faster implementation of our scheme could be achieved us-
ing lower-level programming and/or specialized hardware or software, we aim
to demonstrate in this work the feasibility of our proposal using available stan-
dard algorithms and programming tools. Our findings (Table [2) show that our
schemes considerably reduce the cost incurred on the generator of modular ex-
ponentiation puzzles.
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Table 2. Implementation results on four different workstations equipped with Intel(R)
Core(TM)2 Duo CPU T7500 processor running at 2.20 GHz. Here, N is 1024-bit com-
posite integer, k = 80. We conducted our measurements over the LAN (max RTT = 100
ms). Our results are averaged over 10 distinct measurements. The puzzle verification
time is interpolated from the number of squarings per second on each machine.

# Squaring Puzzle Runtime Verification Time Verification Time Verification Time

(Size of R in bits) A-Puzzle B-Puzzle of [43]
6500000 154.067 s 1.89 ms 7.56 ms 24.3 ms
6500000 172.174 s 2.11 ms 8.5 ms 27.12 ms
6500000 170.611 s 2.1 ms 8.4 ms 26.9 ms
6500000 165.034 s 2.03 ms 8.12 ms 26 ms

4 Applications

4.1 Efficient Resilience to DoS Attacks

A natural application of our puzzles lies in the area of protection against DoS
attacks. In this context, an online server requires that its clients solve our puzzles
before attending to their requests in order to prevent DoS attacks.

When used in DoS protection, it is important, however, that the server ensures
that puzzle instances and solution pairs are used only once. To achieve this,
the server should filter out resubmitted correctly solved puzzles and solution
pairs [14,[32]. In our case, the storage is minimized since the server can simply
store the hash of the nonce Z; that corresponds to the most recent solved puzzle
(where Z; is a counter). The verifier will then accept to verify only recent puzzles.

4.2 Remote Verification of Computing Performance

To cope with the advances in processing power, the computing community is
relying on the use of benchmarks. While several benchmarks [2[T3[19,[44] were
proposed as a mean to evaluate a processor’s computing power, most of these
benchmarks are parallelizable (see Section Bl).

Based on our variable-exponent puzzle (Figure [2), we construct a secure
benchmark that enables any machine (even with modest computation power,
e.g., a PDA device) to remotely upper-bound the computing performance of
single-processors. Our benchmark differs from the puzzle in Figure 2] as follows:
upon reception of yi, the verifier estimates the number of squarings per second:
S = T;i"Tl of the prover’s machine. This estimate is accepted by the verifier if,
after receiving yo at time Ty: (1) (Ty — T5) < € (Ty — T1), given a negligible €
and (2) (yay1)? = X% mod N.

Corollary 4. Given the puzzle depicted in Figure[2, the success of a p.p.t. ad-
versary M in inflating the number of squarings that it can perform per second
by more than a small € is negligible.

Proof Sketch: Recall that our puzzle is UF and DIFFy g,. Therefore, the only
viable method for M to inflate its performance claim is to send 77, chosen at
random, ahead of time, compute y; correctly and distribute the computation of
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the corresponding 7> and ys, such that goy7 = y2y1 mod N, to other nodes at
its disposal. This would enable M to decrease the measured time corresponding
to the computation of O(log R;) modular multiplications by A = (Ty — T3) time
units (A includes the communication delay D of the path between the verifier
and M). However, this is countered by the fact that the verifier does not accept
the prover’s performance claim unless (Ty — T3) < e- (T2 — T1).

In this case, the maximum performance claim that M can make is Sy,q0 =
(-0 (Tr-Ty)
per second S; if it takes (T» —T1) time units for M to perform log(R;) modular
multiplications, then the computation of y» can be upper-bounded by choosing

e = "N For a 1024-bit modulus N (|¢(N)| ~ |N|), |e| ~ |N?| and [Ri| >

100,000, then € ~ S”é“ ~ (.03 squarings per second.

Our protocol finds applicability
in a multitude of application do-
mains. For example, our bench-
mark can be used in online dis-
tributed computing applications

. Note that € is interpolated from the measured number of squarings

Table 3. Implementation results on 12 differ-
ent PlanetLab Nodes. S refers to the number
of squarings per ms.

(e.g., [3]) or in the secure rank-
ing of supercomputers (e.g., [4]) to

CPU Description

Idle CPU S

Intel(R) Pentium(R) D 3.20GHz 6.40%  7.48

prevent possible frauds in perfor- Intel(R) Pentium(R) D 3.00GHz  26.20% 15.24
mance claimdl] Intel(R) Pentium(R) 4 3.20GHz  30.70% 15.81
: Intel(R) Pentium(R) D 3.40GHz  14.10%  18.22

We evaluated our benchmark on  Intel(R) Xeon(R) 3060 2.40GHz  46.60%  28.01

: : Intel(R) Pentium(R) D 3.20GHz  20.00% 29.35
Various processors riunning on 12 Intel(R) Xeon(R) 3075 2.66GHz  19.70%  29.72
different PlanetLab nodes [I] (refer  Intel(R) Pentium(R) 4 3.06GHz ~ 92.00%  31.72
to Section B4 for implementation Intel(R) Duo E6550 2.33GHz 63.80% 36.05
. . Intel(R) Duo T7500 2.20GHz 76.00%  38.11
details). Our findings (see Table[d]) Intel(R) Xeon(R) X3220 2.40GHz 73.30%  41.67
suggest that our proposed bench- Intel(R) Xeon(R) E5420 2.50GHz 87.70%  50.97

mark reflects well the performance
of various processors.

5 Related Work

Client puzzles found their application in several domains (e.g., prevention against
DoS attacks [2TL48], protection from connection depletion attacks [32], protec-
tion against collusion [41]). Several computational puzzles have been proposed
in the recent years [43\[45,[49]. However, most of these puzzles are parallelizable;
a comprehensive survey of existing client puzzles can be found in [45]. In [43],
Rivest et al. proposed a non-parallelizable puzzle based on repeated-squaring to
enable time-release cryptography. The drawback of this scheme, if used for DoS
protection, is that it incurs an expensive cost on the puzzle generator. Wang et al.

1 For instance, a supercomputer, connected to a hidden processor cluster, can inflate
its performance claims by involving these other processors in the construction of
the benchmark’s solution. The literature contains a significant number of similar
“anecdotes” where both individuals and manufacturers have tendencies to exaggerate
their computing performance (e.g., [5l[6]).
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propose in [47] a scheme that enables the server to adjust the puzzle difficulty in
the presence of an adversary whose computing power is unknown. In [I4], Chen
et al. provide a formal model for the security of client-puzzles. In this work, we
use their model as a building block for analyzing the security of our proposed
puzzle. Several other contributions address the problem of secure outsourcing of
computations to untrusted servers (e.g., [7l[12]). Clarke et al. present protocols
for speeding up exponentiation using untrusted servers in [40]. In [29], Hohen-
berger et al. describe a scheme to outsource cryptographic computations where
the verifier can use two untrusted exponentiation programs to assist him in the
computations. Memory-bound puzzles were proposed in [22,[37] to overcome the
limitations of existing computational puzzles. However, memory-bound puzzles
cannot entirely substitute their computational counterpart e.g., in applications
where the client’s memory is limited (e.g., PDA devices) or to evaluate the com-
puting performance of devices, etc.. Other protocols for creating secure bench-
marks to evaluate a machine’s computing performance were also proposed [44];
these benchmarks can however be easily parallelized [18][3439].

6 Conclusion

In this paper, we proposed low-cost fixed-exponent and variable-exponent puzzles
based on modular exponentiation. Given a modulus NV, the costs incurred on
the verifier in our puzzle are decreased by a factor of “,Zl when compared to
existing modular exponentiation puzzles, where k is a security parameter. Our
constructions are based on a reasonable intractability assumption: essentially
the difficulty of computing a small private exponent in RSA (or CRT-RSA)
when the public key is larger by several orders of magnitude than the semi-
prime modulus. As a by-product, our puzzle can be used to efficiently verify
the integrity of outsourced exponentiations modular a semi-prime. We further
showed how our puzzle can be integrated in a number of protocols, including
those used for the remote verification of computing performance of devices and
for protection from DoS attacks.
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A Cryptanalysis of RSA with Large Public Key and
Small Private Exponent

Consider an RSA system (N, e, d), where N = pq, p and ¢ are large primes, and
e € NT such that e > N2, ged(e, (IN)) = 1 and d is small. Recall that in RSA,
e-d—1=k-¢(N), where (N) = (p—1)(¢—1) and k € NT.

A.1 Resilience to the Continued Fraction Attack

Theorem 2. Let a,b,c,d € NT such that |‘; — 2| < 2(112, where ged(a,b) = 1
and ged(c,d) = 1 Then, § is one of the convergents in the continued fraction
expansion of . Furthermore, the continued fraction expansion of § is finite with
the total number of convergents that is polynomial in log(b).

In [50], Wiener describes a cryptanalytic attack on the use of an RSA private
key d < N%25 when e < pq. The attack makes use of an algorithm based on
continued fractions that finds the numerator and denominator of a fraction in
polynomial time when a close enough estimate of the fraction is known. This will
enable the retrieval of a multiple of ¢(N), which will equally result in the factor-
ing of N [40]. The convergence of the continued fraction algorithm is guaranteed

pq
when kd < 8 (pta)

When e > N2, k > dpq. Substituting & = dpq in the equation above yields d <
1. More generally, when e > N5 Wiener’s attack will fail since the continued
fraction algorithm will not work for any size of the secret exponent d [50].

A.2 Resilience to the Lattice-Based Attack

Boneh and Durfee [10] describe a scheme that solves the RSA small-inverse
problem when e < N? and d < N®. As shown in [I0], this attack is a heuristic
that applies Coppersmith’s techniques [I5] to bivariate modular polynomials and
can only succeed when a < g — :13\/1 + 6.

Indeed, when § = 1, e < N, we achieve the bounds reported in [I0]: RSA is
insecure when d < N%292. However, when e > N2, § > 2, then this attack will
definitely fail (@ < —0.0.35).

B Cryptanalysis of ex +y =0 mod ¢(N)

B.1 Single Instance of ex +y =0 mod ¢(N)

In [8], Blomer et al. describe a cryptanalytic attack (based on Wiener’s continued
fraction algorithm [50]) on a generic RSA key equation of the form ex +y =0
mod ¢(N), when e < N,0 <z < éN}L and |y| < ¢N % ex, where ¢ < 1.

Let ex +y = k¢p(N) = k(N —p—q+ 1), where k € NT. Tt then follows that:

e k_—y—k(p+qg-1)
N z Nx
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The main intuition behind the attack in [] is to estimate * from ¢ using the

continued fraction algorithm. For the attack to be successful, ’; has to be one of
_ k‘ _ ‘*y*k(zﬂrq*l)‘ < 1
xT

Nz op2 (s€€

the convergents of § . This is the case when |
Theorem [)); that is, when k(p+q—1) +y < 2.
When e > N2 k> No(N) (Jo(N)| ~ |N|). It is easy to see in this case that

the continued fraction algorithm will not converge (k(p+q¢ —1) +y > é\; ).

B.2 Multiple Instances of ex + y = 0 mod ¢(IN) with Common
Modulus)

Gao (described in [30]) and Howgrave-Graham and Seifert [30] extended Wiener’s
attack to factor the common modulus when several instances of RSA withe < N
and d < N%4~¢ are given.

In what follows, we show that these attacks are defeated given several common
modulus instances of ex +y =0 mod ¢(N) with e > N2.

Let (N1,e1), (N2, e2), be two instances of RSA, then there exists kq, ko € NT
such that:

e1x1 = —y1 + k1p(N)

eaxs = —Yo + kao(N)

Guo’s main observation is that these equations can be combined to remove ¢(N)
as follows koeixy — kreaxe = k1ys — kays-

With this equation as a starting point, the attack then proceeds in a similar
way as Wiener’s continued fraction attack:

€1 _ ko _ kilyz - k2y1
es  koxy eakox1

k1$2

Joa, CAN be obtained from the continued

Given Theorem [2 this suggests that
fraction expansion of Z; when:

1
2(/62%1)2
2ki2.1‘1|k‘1y2 — k2y1| < e9

klyz - k'2y1
62]62.%1

When e > N2 and e > N€2, then 2k‘2$1‘]€1y2 — k2y1| ~ ¢(612V).T1((;\(/16V2)y2 —
¢(e]"’v) Y1) >> ey. The continued fraction algorithm will not converge and this attack
with then fail. This attack will fail even when z1 = x5.

Howgrave-Graham and Seifert’s attack [30] combines Wiener’s, Boneh’s and
Guo’s attacks to factor IV given r > 2 instances of RSA with common modulus.
When e; > N? and e; > Ne;,Vi # j, their attack will equally fail given any
number of common modulus instances!3.

12 The complexity of existing attacks on common modulus RSA instances increases
exponentially with the number of instances; these are only practical for a small
number of instances [30], [27].
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