On the Secrecy of Spread-Spectrum Flow
Watermarks

Xiapu Luo, Junjie Zhang, Roberto Perdisci, and Wenke Lee

College of Computing, Georgia Institute of Technology
csxpluo, jjzhang,wenke {@cc.gatech.edu, perdisci@gtisc.gatech.edu
P JJ g g P g g

Abstract. Spread-spectrum flow watermarks offer an invisible and ready-
to-use flow watermarking scheme that can be employed to stealthily cor-
relate the two ends of a network communication. Such technique has wide
applications in network security and privacy. Although several methods
have been proposed to detect various flow watermarks, few can effectively
detect spread-spectrum flow watermarks. Moreover, there is currently no
solution that allows end users to eliminate spread-spectrum flow water-
marks from their flows without the support of a separate network element.
In this paper, we propose a novel approach to detect spread-spectrum flow
watermarks by leveraging their intrinsic features. Contrary to the common
belief that Pseudo-Noise (PN) codes can render flow watermarks invisi-
ble, we prove that PN codes actually facilitate their detection. Further-
more, we propose a novel method based on TCP’s flow-control mechanism
that provides end users with the ability to autonomously remove spread-
spectrum flow watermarks. We conducted extensive experiments on traf-
fic flowing both through one-hop proxies in the PlanetLab network, and
through Tor. The experimental results show that the proposed detection
system can achieve up to 100% detection rate with zero false positives,
and confirm that our elimination system can effectively remove spread-
spectrum flow watermarks.

1 Introduction

Flow watermarks can be employed to trace end-to-end communications, even
when they flow through stepping stones or anonymity networks [27]. By secretly
embedding a (sequence of) watermark(s) into network flows at a location close
to one end, it is possible to identify the other end of the communication by
detecting the presence of the watermark in the traffic without being noticed
by either end (see Figure [I]). For example, flow watermarks may be used by
law enforcement agencies to detect stepping stones used by attackers [20], to
determine whether a certain user is accessing a specific (e.g., terrorism-related)
web site [27,28], to trace communications among bot-compromised machines [21],
to correlate anonymous Peer-to-Peer VoIP calls [26], etc.

If an adversary detects that her flows have been watermarked, she may be
able to remove the watermarks, or deliberately cause false alarms by embedding
the detected watermarks into legitimate flows [T916]. Therefore, it is important

D. Gritzalis, B. Preneel, and M. Theoharidou (Eds.): ESORICS 2010, LNCS 6345, pp. 232 , 2010.
© Springer-Verlag Berlin Heidelberg 2010

On the Secrecy of Spread-Spectrum Flow Watermarks 233

to evaluate the secrecy of a flow watermarking scheme before deploying it in
a real network. In this paper, we investigate the secrecy of spread-spectrum
flow watermarks (SSFW) [28] from the following two aspects: (1) can SSFW be
accurately detected? (2) can SSFW be effectively removed from network flows?

Recently, a few methods have been proposed that aim to detect SSEFW [16/15].
Kiyavash et al. proposed a multi-flow attack, base on the assumption that SSFW
is used to simultaneously embed the same watermark sequence into multiple
flows. The detection approach leverages the length of low-throughput period as
a metric to detect SSFW. The authors assume that that normal traffic follows
the Markov-Modulated Poisson Process model, while watermarked flows would
not fit this model [I6]. However, it has been shown that the multi-flow attack
can be evaded, if the encoder uses different Pseudo-Noise (PN) codes or if the
watermark sequence changes for different flows [I4]. The detection approach
proposed by Jia et al. [15] leverages the fact that SSFW employs a single m-
sequence, a specific PN code with good autocorrelation features, to spread the
bits of a watermark sequence along a flow. Using only one m-sequence leads
to obvious self-similarity in watermarked traffic. However, Jia et al. indicated
that this detection approach may be evaded by using different m-sequences or
orthogonal PN codes to spread individual bits of a watermark sequence [15].

To the best of our knowledge, there currently exists no solution that allows
end users to remove SSFW from their flows without the support of a middlebox
(e.g. a router, proxy, or a relay host within an anonymity network). In addi-
tion, although a middlebox may remove SSFW by altering the throughput of
each individual network flow crossing it, few middleboxes actually deploy such
watermark elimination strategy because of the consequent heavy overhead.

In this paper, we propose a novel detection system that is able to identify the
existence of SSFW within a given network flow. In addition, we propose a novel
elimination system that enables end users to autonomously remove SSFW from
their flows. Our detection system leverages SSFW’s intrinsic features. Unlike
existing detection approaches (e.g., [L16,28]), our approach does not assume that
the same watermarks are simultaneously embedded in multiple flows, and does
not assume an ideal traffic model. Moreover, we do not assume that SSFW uses
only a single PN code. Instead, we assume that any other kind of valid PN codes
(e.g. orthogonal PN codes) [12] could be employed.

Our detection approach is based on the following key observations: (1) sim-
ilar to amplitude modulation in signal processing, SSFW causes alternate low-
throughput and high-throughput periods in a watermarked flow; (2) PN codes
make the detection of spread-spectrum flow watermarks easier, because they in-
crease the number of low-throughput periods; (3) unlike spread-spectrum radio
communications, which spread a radio signal over a wide frequency range, SSFW
embeds watermarks separately in each one flow, instead of spreading them over
a wide set of flows. Therefore, the detection system simply needs to examine
individual flows (see Section B]).

Our elimination system leverages TCP’s basic flow control mechanism to reg-
ulate the throughput of incoming traffic. More precisely, our system modifies the

234 X. Luo et al.

Access point Access point

Sender

Receiver

Fig. 1. Watermarks are embedded into the traffic by the Encoder, and identified by
the Decoder

advertising window in TCP packets sent by either an end user or a middlebox to
its upstream node to modulate the throughput. It is worth noting that our ap-
proach is independent from application-layer flow control and congestion control
mechanisms. In fact, our approach works even in those cases when application
layer flow control and congestion control mechanisms cannot remove SSFW.

In summary, this paper makes the following main contributions:

1. We propose a novel watermark detection system that is able to identify
whether a flow has been watermarked using SSFW. Our approach removes
many of the assumptions required by existing SSFW detection methods.

2. We propose a novel receiver-based system to remove SSFW. Our system
can be deployed at either the end-user or middlebox level. To the best of
our knowledge, ours is the first practical system that allows end-users to
autonomously remove SSF'W from their flows.

3. We performed extensive experiments to evaluate the proposed detection and
elimination systems. The experimental results show that our system is able
to successfully detect SSFW and remove the watermarks from TCP flows.

The rest of the paper is organized as follows. We describe the threat model
and introduce related work in the next section. Section [3] and section Ml present
the detection scheme and the elimination scheme respectively. We describe the
experiment results in Section [Bl and conclude the paper in Section

2 Background

2.1 Threat Model

Figure [shows the threat model used in this paper. Assume an entity (e.g., law
enforcement) intends to find out whether there exists an end-to-end network
communication between a sender S and a receiver R. To this end, a watermark
encoder F is placed between S and its neighbor network nodes, and a watermark
decoder D is placed at the other end of the communication, between R and its
neighbor nodes. £ manipulates the throughput of all flows originating from S
to embed a sequence of watermarks. On the other hand, all flows received by R
are investigated by D to determine whether they carry watermarks previously
embedded by FE. If that is the case, this means that a communication between S
and R is in place. Along the path between S and R there are n (n > 1) middle-
boxes. Each middlebox behaves as a proxy or relay host, therefore separating the

On the Secrecy of Spread-Spectrum Flow Watermarks 235

logical connection between S and R into multiple loosely coupled TCP connec-
tions. This scenario is typical of stepping stones [29/8], anonymity networks (e.g.
Anonymizer (www.anonymizer.com) or Tor [6]), and HTTP/SOCKS proxies.

Our detection system (see Section[3]) can be located at a middlebox, between
the encoder and the decoder, to determine whether or not the flows going through
the middlebox have been watermarked. If so, the middlebox can use a traffic
shaper to remove the watermarks from the outgoing traffic sent to the next hop.

We also consider the case of non-cooperative middleboxes, and we assume
the end user (the receiver) wants to make sure that her flows cannot be traced
back. In this case, R can apply our elimination system (see Section M) to blindly
remove the watermarks from all her incoming flows before they can be identified
by the decoder.

2.2 Spread-Spectrum Flow Watermarks

A target flow’s throughput is the carrier of the spread-spectrum flow watermark.
A watermark comprises of a sequence of bits denoted as W = {wq,...,wp},
where M is the length of a watermark. Instead of using w; (i = 1,..., M) to
directly modulate a flow’s throughput, the encoder first maps w; to a PN code

. Z it w; =1, . .
according to: w; — {Z i w: ~ 1 where Z = {z1,...,2v} is a V-bit PN
code and Z is the complement of Z. After obtaining the new sequence of MV
bits indicated as Wpgss = {Z1,...,Zum}, the encoder uses each bit in Wpggs

to modulate a flow’s throughput. More precisely, if a bit is —1, the encoder will
cause a low-throughput period of T, (called chip duration) by causing many
packet losses in the target flow. Otherwise, the encoder will maintain a high-
throughput period of T, by doing nothing or causing less packet loss in the
target flow [7].

A PN code is a special binary sequence. Before introducing general features
of a PN code, we give the definition of run in a binary sequence.

Definition 1. Given a binary sequence B = {b1,...,br}, a run is defined as a
sequence of {bj,...,bi} whereb; =bjy1 = ... =by andbj_1 # b; and byy1 # by.
Its length is equal to k—j+1. Note that if j = 1, by is the start of a run. Similarly,
if k=L, by, is the end of a Tun.

Golomb indicated that a PN code may have one or many following properties
[12]: (1) the number of 1 is approximately equal to the number of —1. (2) runs of
1 or —1 occur with probability that is inversely proportional to the length of runs.
(3) its autocorrelation has the maximal value in the middle and declines quickly
at the ends. Yu et. al. employed m-sequence, which has all above properties [12],
to implement the spread-spectrum flow watermarks [28].

2.3 Countermeasures

Kiyavash et al. proposed the multi-flow attack to detect SSFW [16]. They as-
sume that the same watermark is embedded into multiple flows simultaneously

236 X. Luo et al.

and normal traffic follows the Markov modulated Poisson process [16]. Our de-
tection system does not need such assumptions. The multi-flow attack exploits
the observation that SSFW may cause a long low-throughput period on sev-
eral flows comparing with a trained model. However, they also showed that the
multi-flow attack can be evaded when the encoder applies different PN codes
or flow watermarks to different flows [T4]. Moreover, changing the position of a
watermark in a flow may disable the multi-flow attack because the number of
flow combinations that need investigation increases exponentially [16,14]. When
facing multiple flows, our detection system only needs to investigate them one
by one because we exploit the fundamental difference between network flows and
radio signals, which is detailed in section .11

The watermarked flow may show self-similarity because Yu et. al. used one
m-sequence code to spread every bit in a watermark [28] and all m-sequence
codes have excellent autocorrelation feature [7]. Exploiting this observation, Jia
et al. proposed a detection approach that employs mean-square autocorrelation
to measure the similarity between a modulated traffic segment and the same
segment shifted by certain period [15]. However, it is easy to evade this method
by using different m-sequence codes or orthogonal PN codes to spread individual
bits of a watermark [I5]. Our detection system can handle both cases.

3 Detection System

We first explain the traffic anomalies caused by SSFW in Section Bl and B.2]
and then elaborate on our detection scheme in section 3.3] and 3.4

3.1 Basic Idea

Our detection scheme leverages the anomalies steming from SSFW'’s intrinsic
features and takes advantage of fundamental differences between network flows
and radio signals. We can first notice that when applied to a network flow SSFW
causes an abnormal sequence of low-throughput periods in the flow. This happens
because the encoder needs to throttle the flow’s throughput to a low value for

—
°

Normal Yatermark
period period

Throughput (byte/sec)
(<]

»

?900 2000 2100 2200 2300 2400 2500

Time (second)

Fig. 2. Throughput of a watermarked flow that went through Tor network

On the Secrecy of Spread-Spectrum Flow Watermarks 237

a given period T, when the bit to be embedded is —1 (notice that SSFW uses
a binary encoding with values equal to either -1 or +1). The low-throughput
periods caused by -1 bits are noticeably different from throughput degradations
caused by network congestion in terms of the throughput level, duration and
frequency. The reason is that network congestion is out of the control of the
encoder and throughput degradations caused by network congestion may mislead
the decoder. Therefore, to correctly decode a watermark bit and distinguish it
from noise due to network congestion, Yu et al. have specified in [28] (Equation
12 and Figure 10) that the encoder needs to implement the following strategies:

— Increase the difference between the high-throughput and low-throughput
levels. Since the maximum high-throughput is determined by the network,
this strategy can only be achieved by decreasing the value of low-throughput.

— Increase the duration of low-throughput periods (i.e. T¢).

— Increase the length of the PN code, thus causing a higher number of low-
throughput periods.

Based on this observations, the goal of our detection system is to detect SSFW
by identifying the presence of anomalous sequences of low-throughput periods
in a network flow. Figure 2] which is based on the data from [28§], illustrates the
throughput of a watermarked flow crossing the Tor network. Its throughput is
computed in every chip duration (i.e. 2 seconds) [28]. We highlight two periods:
the watermark period in which a watermark was embedded into the flow, and the
normal period when the encoder is idle. It is easy to notice the higher number
of low-throughput points during the watermark period, compared to the normal
period. Since each low-throughput point in Figure 2 indicates the aggregated
throughput during a chip duration, it represents a low-throughput period when
the throughput is aggregated within a small time unit. We describe the selection
of the basic time unit in section 3.3

Second, we prove in section that using PN codes to spread watermarks
increases the number of low-throughput periods significantly. This feature allows
our detection system to quickly identify SSFW.

Third, spread spectrum was originally designed to spread radio signal from a
small frequency range to a wider frequency range [7]. A fundamental difference
between radio signals and network flows is that although the spread-spectrum
technique can spread the radio signal’s energy to a wide range of frequencies and
recover the original signal from those frequencies, applying SSFW to a network
flow only affects that one flow and not a set of flows. Therefore, just like a decoder
that only needs to inspect one flow to identify the embedded watermarks, our
detection system only needs to investigate individual flows.

Based on the above observations, our detection scheme consists of two steps:

1. Locate low-throughput periods in a flow (section B3)).
2. Detect abnormal sequences of low-throughput periods (section B.4l).

238 X. Luo et al.

3.2 Low-Throughput Periods Resulted from PN Codes

We use R; and R_; to denote the number of runs (see Section [Z2]) of 1 and
the number of runs of —1 in a binary sequence. R_; is equal to the number of
low-throughput periods. Without loss of generality, we assume that the flow’s
throughput is high before and after the watermark period. Since runs of 1 and
runs of —1 alternate, the relationship between R; and R_; falls into one of the
following scenarios: (1) R-1 = Rq1; (2) f R_1 # Ry and by = —1, R_1 = R1 + 1;
(3) If R_1 7’5 Rl and bl = 1, R_1 = R1 -1 [11}.

Lemma [shows that the expected number of runs has the maximal value 1+ g
when the number of 1 is equal to the number of —1. For the ease of explanation,
we assume that L is an even number. According to the relationship between
R_; and R, listed above, we know that the expected number of R_; reaches its
maximal value. Since PN codes have similar number of 1 and —1, they possess
a large R_1.

Lemma 1. In a L-bit binary sequence, the expected number of runs reaches the
mazximal value 1 + é when the number of 1 is equal to that of —1.

Proof. The expected number of runs (i.e. R_; + Rp) in a L-bit binary sequence
is equal to 1+ 2L‘1(1L_L‘1) where L_; is the number of —1 [I1]. Since 2L_;(L —
L,) < L; and the inequality becomes equality when L_; = é,
maximal value 1 + é when the number of 1 is equal to that of —1.

we get the

Since SSFW turns an M-bit watermark into an M V-bit binary sequence using
a V-bit PN code, R_; is increased significantly. Without loss of generality, we
assume that both the original watermark and the spread watermark are random
sequences. In this case, we use the Corollary 2.1 in [II] to compute the proba-
bility of R_;. Figure [illustrates R_1’s PDF in 16-bit watermarks and that in
the corresponding watermarks spread by 7-bit PN codes. Obviously, the spread
watermarks have much larger R_; than the original watermark. The average
R_; has been increased by around 7.

14
a
-

= Original watermark| Original watermark|
'*Spread watermark 08 =Spread watermark
0.6

i . 0.4
gl 0.2

10 20 30 40 50 60 5 10 15 20 25 30 35
1 -1

Probability
o o
L @
CDF

o

Fig.3. The PDF of number of runs Fig. 4. The CDF of the number of runs

of —1 (i.e. R—1) in 16-bit watermarks of —1 (i.e. R—1) in 16-bit original wa-

and that in the corresponding water- termarks and that in the correspond-

marks spread by 7-bit PN codes ing watermarks spread by a m-sequence
PN code {1,-1,-1,1,1,1, -1}

On the Secrecy of Spread-Spectrum Flow Watermarks 239

Lemma 2] calculates the exact number of R_; in a m-sequence that is used as
the PN code in [28]. Lemma [indicates that when using a L-bit m-sequence to
spread one bit, the number of low-throughput periods will increase by around
Lf. Figure @ illustrates the CDF of R_; in all possible 16-bit watermarks
and that in the corresponding watermarks spread by a m-sequence PN code
{1,-1,—-1,1,1,1, —1}. Obviously, the spread watermarks have much larger R_;
than the original watermarks.

L+1

Lemma 2. In a L-bit m-sequence, R_1 = *

Proof. The number of k-bit runs of —1 is equal to 2/727% (k = 1,...,J — 2),
where J =logy (L + 1) [7]. Since the maximal length of runs of —1is J — 1 and

there is only one (J — 1)-bit run of —1 [7], R—1 = Z;lz 27727k p 1= EFL

3.3 Locating Low-Throughput Periods

Our detection system computes a target flow’s throughput in each basic time
unit. We call these values as throughput samples. The system is independent of
the transport layer protocol. For TCP flows, we let the basic time unit be the
round-trip time (RTT), denoted as Ty, between the host where our detection
system is located and its upstream host. The rational is that TCP packets are
usually sent in burst within each RTT duration because of TCP’s ACK-based
self-clocking. Using a smaller period to compute throughput samples may lead to
many useless zero values because the time for sending a burst of TCP packets is
a small portion of RT'T. Using a period larger than the chip duration to calculate
throughput samples may blur low-throughput periods caused by the watermark.
For UDP flows, the basic time unit could be set to the average inter-packet delay.
Since the original SSFW targets on TCP flows [28] and many public proxies and
anonymity networks (e.g. Tor) only support TCP connections, we evaluate our
detection system using only TCP flows.

Given a sequence of throughput samples IT = {m,m2,...}, we construct a
new binary sequence (I = {#y, 7, ...}) according to Equation (I)):

.1 ifm— (1= p)pnm >0,
m_{—lifﬂi—(l—P)MHSO, o

where pj7 is the average value of IT and p (0 < p < 1) is a parameter. We define
a low-throughput period as a sequence of throughput samples whose values are
not larger than (1 — p)ur and the duration of such sequence is longer than T;..

We found that it is proper to let p = "g , where pr and o7 are the average
value and the standard deviation of IT respectively. According to the one-side
Chebyshev inequality [24], we have Pr(m; < pg — Kop) < 1+1K2. When K =1,
Pr(m; < pg —on) = Pr(f; = —1) < }. Since PN code Z = {z1,...,2v}
has similar number of —1 and 1, Pr(z; = —1) =~ % For a V-bit m-sequence,
Pr(z = -1) = 2‘*‘}1. Since SSFW degrades a flow’s throughput when the bit
to be embedded is -1, the probability of observing a low-throughput sample

240 X. Luo et al.
approximates % Therefore, by letting p = Z’;, we have high probability to
observe all low throughput values.

Throughput degradations caused by network congestion are noise to both
SSFW’s decoder and our detection algorithm. We exploit TCP’s congestion con-
trol mechanism to filter out low-throughput periods caused by network conges-
tions that occur on the path where the detection system is located. Detailed
information can be found in [I7].

3.4 Detection Algorithm

After locating a sequence of low-throughput periods, we employ the sequen-
tial probability ratio testing (SPRT) to carry out the detection. More precisely,
as many recent Internet measurement studies have shown that the packet loss
events in the Internet could be modeled as a Poisson process [2[18], we use SPRT
to detect the abnormal increment in the rate of such events [9,[13].

Let z(t) be a poisson process modeling low-throughput periods. Its probability
function is Pr(z,\) = eXp(—/\t)(’\;)z, where A is the rate of low-throughput
periods. We define two hypotheses Hy and H; as follows:

— Hy, the rate of low-throughput periods is within normal range.

— Hy, the rate of low-throughput periods is abnormal.
The log-likelihood ratio is defined as: ©(t) = In I;:Eﬁg}g;; = z(t) In(y) + Xo(1 —
Y, v = i; , where A\g and)\; indicate the normal rate of low-throughput periods
and the abnormal one individually.

We choose Hy if ©(n) < B or select Hy if @(n) > A. Otherwise, the detection
system continues monitoring. A and B are determined according to two user-
defined parameters: « is the probability of false positive (i.e. select Hy but Hy is
correct.) [is the probability of false negative (i.e. select Hy but H; is correct.).
Dvoretzky et. al. proved that B = In lfa and A <lIn 1;5 < A+1In(y) [9]. Since
computing the exact value of A is time-consuming, Haggstrom suggested that
Amn(*2F) =0 3.

Note that waiting periods, denoted as y, between consecutive events in a
Poisson process follow the exponential distribution, whose probability function
is Ae"¥*. Haggstrom constructed an alternative SPRT of Hy versus H; based
on the waiting times after N observations. He proved that these two SPRTs will
lead to the same decision and showed that the expected number of events when
the SPRT stops is E(N|A1) = E[z(t)|A1] + L(\1), where L()1) is the operating
characteristic function of the test Hy [I3]. As Haggstrom has detailed every step
of computing E(N|)\1), interested readers please refer to that report [13].

4 Elimination System

An effective approach to remove SSFW is to shape a flow’s throughput. Although
it is easy to regulate the outgoing traffic using mechanisms like Linux traffic

On the Secrecy of Spread-Spectrum Flow Watermarks 241

control or Tor’s bandwidth limit on relayed traffic, they can not regulate the
incoming traffic. Therefore, if an upstream middlebox does not shape outgoing
traffic, a downstream host will receive watermarked traffic.

Public proxies and one-hop anonymity network like Anonymizer usually do
not apply traffic shaping to avoid performance degradation. Although Tor uses
a windowing scheme for each circuit to prevent congestion [6,22], it could not
eliminate SSFW because it only limits the high throughput instead of removing
the low-through periods. Though long delays introduced by the Tor network may
affect SSFW’s decoding rate, new mechanisms for increasing the performance of
Tor network [23] will mitigate the noise to SSFW’s encoding/decoding procedure.
Therefore, end users need solutions to remove SSFW by themselves.

Being a complement to existing traffic control mechanism, our elimination
system allows a middlebox or an end user to shape the throughput of incoming
traffic. More precisely, our system modifies the advertising window in outgoing
packets and adds additional delays if necessary. We employ the leaky bucket
algorithm to determine the throughput of incoming traffic [25].

Let Spi: and Npy: denote the packet size and the number of packets received in
a Tr4t. Ny is controlled by the available data in the TCP sender, its congestion
window (i.e. cwnd) and the advertising window (i.e. rwnd) announced by the
receiver. The instantaneous throughput is equal to Sore X Noke T gerub SSFW,

Triy
we manipulate Ny, and introduce additional delay, named Ti1y- The throughput

Spkt X Nprt
Tree+Tary
period of T + Ta,,. More precisely, whenever a packet is going to be sent, the

elimination system delays it for Ty, and checks whether there is enough quota,
denoted as BukCap, to receive a packet of Spi: bytes from the upstream host. If
so, our system changes the advertising window in that packet to Sp,x;. Otherwise,
the packet’s advertising window will be set to 0 (or 1 for unpatched windows
Vista,/2003/2008 that do not handle zero window correctly [5]). If a packet of
size Spit is received, BukCap is decreased by Spr:. The quota will be recovered
to a pre-defined value every second. Since sometimes the TCP receiver does not
has outgoing packets, our system will generate an ACK packet every 200 ms to
trigger packets from the TCP sender. These ACK packets’ advertised windows
are set according to the above leaky bucket algorithm.

becomes where Z\~/pkt is the number of packets received during the

5 Evaluation

We implemented SSFW'’s encoder, decoder and our detection and elimination
system on Linux with the help of iptables 1.4.0, the libnetfilter queue 0.0.16
library and Linux raw socket. We realized the advanced encoding approach sug-
gested in [28/[15]. Given a dropping probability, this approach discards packets
probabilistically during a 7. period if the bit to be embedded is -1. Detailed
information can be found in [I7] due to limited space.

We evaluated our detection system using both the traces in [28] and the
traces collected by ourselves. The traces in [28] include watermarked flows going
through the Tor network. Our traces include watermarked flows going through

242 X. Luo et al.

12 PlanetLab nodes that are located in different countries [I7]. It represents the
scenario of using public proxies or one-hop anonymity network like Anonymizer.
Since Anonymizer does not provide free trail service now, we run a light-weight
HTTP proxy, Tiny HTTP Proxy [I], on those PlanetLab nodes. In this case, the
sender becomes a web server and the receiver downloads files from it.

Recall that there are six parameters used in our detection system: a and [
are user-defined false positive rate and false negative rate; T, determines the
minimal duration of a low-throughput period; p is related to the deepness of a
low-throughput period; Ay and A\; are the expected normal rate and abnormal
rate of low-throughput periods. In our evaluation, we fix two parameters’ value
(i.e. a and f), formulate the computation of another two parameters (i.e. Ag
and A1) and examine the effect of the remaining two (i.e. T;. and p). The major
reason is that only 7). and p affect the number of low-throughput periods, whose
abnormal behavior is the basis of our detection system. We set @ = 0.001 and
6 = 0.01. Let A be the set of rates of low-throughput periods calculated from
the training data. In all of our experiments, we let Ay be the mean value of A
and A\; be the maximal value in A.

5.1 Evaluation of the Detection System Using Planetlab Traces

In the PlanetLab experiments, we used the same watermark (i.e. {1,-1,1,1,—1,
1,—1}) in [28] and three chip durations T, (i.e. 1s, 2s and 3s). We evaluated the
detection system using three different PN codes:

1. PN code 1: the PN code mentioned in [28] (i.e. {1,-1,1,1,—-1,1,—1}).

2. PN code 2: a m-sequence {1,—1,—1,1,1,1, —1} generated by [].

3. PN code 3: a pair of Walsh-Hadamard code generated by [4] that spreads 1
and —1 using {1,—-1,1,—-1,1,—1,1} and {1,1,—1,—1,1,1, —1} respectively.
They are orthogonal codes [10].

We downloaded a large file from the web server through each proxy 100 times.
Half of the traces were used to compute the RTT between the client and the
proxy, Ag and A; used in the SPRT. The remaining traces were used to evaluate

N
o

(PN code 1
o 0.9 ;.Zs 15¢
©
Zo8 2
2 210
Zo7
2]
0.6- =PN code 1 Z 50
: +PN code 2
05 | PN code 3] | !
- 0
¥ 4 6 T, 8 10

(a) The detection rate when different PN (b) The average value of N when a spread-
codes were used spectrum flow watermark was detected

Fig. 5. The detection rate and the average value of N v.s. T

On the Secrecy of Spread-Spectrum Flow Watermarks 243

our system’s false positive. Then we downloaded the same file 150 times through
each proxy and the encoder started embedding the watermark to the flows.

We first examined the effect of different PN codes and that of T, on the
detection rate and false positive. In these experiments, we let p = Zg . Figure
illustrates the impact of T, on the detection rate. It is worth noting that when
T, changes the number of low-throughput periods in all flows may also vary.
Consequently, A and A\; may also change. We found that when 7;. increases from
a small value 3 to a large value 10 the false positive remains zero while the
detection rate first raises and then decreases.

The low false positive rate may result from the fact that we let A\; = max(A).
The reason for the trend of detection rate is two-fold. On the one hand, using
a small T, may include many short low-throughput periods in both normal
flows and watermarked flows. While the difference between a normal flow and
a watermarked flow is that the latter has more long low-throughput periods, a
large number of short low-throughput periods may obscure this feature and cause
more false alarms. On the other hand, when T, is too large (e.g. much larger
than T.) the low-throughput periods caused by SSFW with small chip duration
may be ignored and therefore the detection rate decreases. It is rational to let
T, be 4 or 5 because from a decoder’s point of view T, should be larger than
several RTTs to mitigate the noise from ordinary network congestion, where a
TCP sender needs a few RTTs to recover its throughput from a mild network
congestion. Such recovery process may lead to low-throughput periods similar
to the effect of embedding flow watermark. Therefore if T is shorter than such
recovery process, ordinary network congestion may give rise to decoding errors.

Figure illustrates the average number of low-throughput periods needed
by our system to raise an alarm. As 7). increases, less number of low-throughput
periods is needed because the number of low-throughput periods in both normal
flows and watermarked flows decreases. Since each flow carried only one water-
mark in our experiments, the decoder needs to observe the whole flow before
recovering the watermark. Therefore, if a watermarked flow is detected before
the end of the flow, the watermark must be identified before the decoder has
the chance to recover the watermark. All detected flows in our experiments were
identified before the end of each flow. A conservative approach is to let the mid-
dlebox shape the outgoing traffic when it uses our detection system to determine
the existence of SSFW in incoming traffic.

When examining the effect of different PN codes, we observed from Figure
that the result of the PN code 1 and that of the PN code 3 are similar. It may
be due to the similarity in their run properties. To encode the watermark (i.e.
{1,-1,1,1,-1,1,—1}), PN code 1 has 18 runs of —1 including twelve 1-bit runs
and six 2-bit runs. PN code 3 also has 18 runs of —1 including fifteen 1-bit runs
and three 2-bit runs. All these runs of —1 will cause low-throughput periods. In
comparison with them, PN code 2 has only 11 runs of —1 including one 1-bit
run, seven 2-bit runs and three 3-bit runs. However, Figure illustrates that
to detect these watermarks the number of required low-throughput period for
different PN codes is similar.

244 X. Luo et al.

Table 1. Average detection rate (R4) and false positive rate v.s. K (p = Kzg)

PN Code 1 PN Code 2 PN Code 3

K Ry N Rg N Rg N False Positive
1 0.996 7.71 0.983 7.26 0.987 7.59 0

2 0.939 5.53 0.908 5.53 0.935 5.76 0

3 094 4.08 0.91 4.26 0.934 4.3 0.003

4 0.781 4.1 0.751 4.36 0.795 4.28 0.006

5 0.74 3.82 0.655 3.99 0.711 4.01 0.006

To evaluate the effect of p, we let 7). = 5 and p = K7 and then increase
K from 1 to 5. The experiment result is listed in Table EEL which includes the
detection rate (Rq) and the average number of N for different PN codes and
the false positive rate. We can see that the best detection rate is achieved when
K = 1. This observation is in accordance with the analysis in section 3.3l When
K increases, the detection rate decreases. The reason is that a large p may filter
out many low-throughput periods caused by the flow watermarks, for example,
those generated by small dropping probability (e.g. 0.1). However, when K is not
larger than 3, the detection rate is still larger than 90%. Moreover, a very large
p may also increase the false positive rate because it may lead to a very small Ag
(i.e. most normal flows do not have such kind of low-throughput periods) and
flows with a few throughput outliers might cause false positive.

5.2 Evaluation of the Detection System Using Tor Traces from [28]

In [28)’s Tor experiments, the encoder used 98 seconds to embed a watermark
because the chip duration is 2 seconds and both the m-sequence and the wa-
termark have 7 bits (i.e. 2*¥7*7=98). After that, their encoder will wait for 98
seconds before embeding another watermark to the same flow [28].

1 12
........ - Z10-
20.9 b
g \ g 8
cnal 3
508 S o
20 &
207 S 4
e ~=Trace 1 2 [+Trace1
0.6- < 2-Trace 2
-Trace 2| race
05 ‘ ~Trace 3| ‘ ‘ ~Traced | | | |
2 4 6T 8 10 4 6 1 8 10
r

(a) The detection rate in different traces (b) The average value of N when a spread-
spectrum flow watermark was detected

Fig. 6. The detection rate and the average value of N v.s. T

The author of [28] provided us three traces that contain throughput aggre-
gated in 0.1s. We let the basic unit time be 0.1s because we could not know the
exact RTT from the traces. For each trace, we first identified normal periods and

On the Secrecy of Spread-Spectrum Flow Watermarks 245

watermark periods and then divided the normal periods into two groups. Based
on the data in the first group of normal periods, we computed Ay, A1, o7 and
wr7- Then, we applied the detection algorithms to the data in the second group
of normal periods to calculate the false positive rate and applied the detection
algorithms to data in watermark periods to compute the detection rate.

Figure shows the detection rate in different traces when T, varies. In
most cases our detection scheme can identify all watermarks. We observed that
when T;. increases from a small value 3 to a large value 10 the false positive re-
mains zero. Figure illustrates the average number of low-throughput periods
needed by our detection system to raise an alarm. Compared to the PlanetLab
experiment results shown in Figure the number of steps needed to detect
watermarked flows going through Tor is relatively stable. It is because)y and
A1 computed from normal periods in those Tor traces are less sensitive to T;.. In
these experiments, we let p = 722, When fixing T, to 5, we still get zero false

L. 2314
positive when p = QZZ .

5.3 Evaluation of the Elimination System

In [28], a flow is deemed as being watermarked if and only if the decoder can
recover the 7-bit watermark. The experiment results showed that our elimination
system can successfully remove SSFW from flows going through both one-hop
proxies and Tor network. To explain the result clearly, we define the bit decoding
rate as the ratio of the number of bits decoded correctly to the length of a
watermark. A watermark is removed if the bit decoding rate is less than 1.

Table 2. Bit decoding rate and throughput ratio after a watermarked flow is processed
by our elimination system
Dropping probability 0.1 0.2 04 0.6

Average bit decoding rate 0.651 0.51 0.5 0.571
Throughput ratio 0.771 0.672 0.536 0.424

Since a SSFW encoder degrades the throughput of the target TCP flow, the
major goal of our elimination system is to remove SSFW and at the same time
minimize the negative effect on its throughput. Table [2] lists the average bit de-
coding rate and throughput ratio obtained from the flows between a PlanetLab
node in UK (194.36.10.154) and the client when the encoder adopted different
dropping probability. The throughput ratio indicates the ratio of the average
throughput of watermarked flows that were scrubbed by our elimination sys-
tem to the average throughput of watermarked flows. In these experiments, we
set the regulated throughput to the median of the throughput of watermarked
flows. The experiment results showed that all watermarks were removed. When
the dropping probability is small, the throughput degradation is around 23%.
When the dropping probability increases, the throughput degradation becomes
severe. The reason is that under high dropping probability the modulated TCP’s
throughput is already very low and consequently its median value (i.e. the reg-
ulated throughput) is very small.

246 X. Luo et al.

We also applied our elimination system to flows going through the Tor net-
work. Since Tor changed the paths during the experiments, we set the regulated
throughput to fix values. Figure [l shows a box plot of the bit decoding rates af-
ter our elimination system regulated the incoming traffic from Tor’s entry node.
The dot within each box indicates the median value of bit decoding rate. We
can see that all watermarks were removed.

|
|

Q

8 s

20.6- i |

g [1 []

<3

D 0.4 : 7

S i

Pz . i]
0 15KB/s 30KB/s 45KB/s 60KB/s

Regulated Throughput

Fig. 7. Bit decoding rate v.s. regulated throughput

6 Conclusion

In this paper we proposed a novel method to detect spread-spectrum flow wa-
termarks (SSFW). Our method leverages the intrinsic features of SSFW, and
is mainly based on detecting anomalous sequences of low-throughput periods in
network flows. Furthermore, we introduced a novel receiver-based approach to
remove SSFW by leveraging TCP’s flow control mechanism. This approach is
complementary to router-based traffic shaping methods, and allows end users to
autonomously remove SSFW even in case of non-cooperative middleboxes. We
conducted an extensive evaluation of our watermark detection and elimination
systems. The experimental results confirm that our detection approach is able to
identify SSFW quickly and with high accuracy, and that our elimination system
can effectively remove SSFW from network flows. In the further work, we will
investigate how to mitigate the throughput degradation caused by the elimina-
tion system. Another possible direction is to select more suitable carriers and
watermarks for the design of flow watermarks [3].

Acknowledgments

We thank Xinwen Fu and Ling Zhen for giving us Tor traces and suggestions
on Tor’s experiments. This material is based upon work supported in part by
the National Science Foundation under grants no. 0716570 and 0831300, the De-
partment of Homeland Security under contract no. FA8750-08-2-0141, the Office
of Naval Research under grant no. N000140911042. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation,
the Department of Homeland Security, or the Office of Naval Research.

On the Secrecy of Spread-Spectrum Flow Watermarks 247

References

[1] hisao, S. (2009), http://www.okisoft.co.jp/esc/python/proxy

[2] Altman, E., Avrachenkov, K., Barakat, C.: A stochastic model for tcp with sta-
tionary random losses. In: ACM SIGCOMM (2000)

[3] Cayre, F., Fontaine, C., Furon, T.: Watermarking security: Theory and practice.
IEEE Transactions on Signal Processing 53(10), 3976-3987 (2005)

[4] Choi, B.: PN code generator (2000),
http://www-mobile.ecs.soton.ac.uk/bjc97r/pnseq-1.1/pnseq-1.1.tar.gz

[5] Microsoft Corporation. Microsoft security bulletin ms09-048 (2009),
http://www.microsoft.com/technet/security/Bulletin/ms09-048.mspx

[6] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: USENIX SEC (2004)

[7] Dixon, R.: Spread Spectrum Systems, 2nd edn. John Wiley & Sons, Chichester
(1984)

[8] Donoho, D., Flesia, A., Shankar, U., Paxson, V., Coit, J., Staniford, S.: Multiscale
stepping-stone detection: detecting pairs of jittered interactive streams by exploit-
ing maximum tolerable delay. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002.
LNCS, vol. 2516, p. 17. Springer, Heidelberg (2002)

[9] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Sequential decision problems for pro-
cesses with continuous time parameter testing hypotheses. Annals of Mathemat-
ical Statistics 24 (1953)

[10] Fazel, K., Kaiser, S.: Multi-Carrier and Spread Spectrum Systems. Wiley, Chich-
ester (2003)

[11] Gibbons, J., Chakraborti, S.: Nonparametric Statistical Inference, 4th edn. CRC,
Boca Raton (2003)

[12] Golomb, S.: Shift Register Sequences (revised edition). Aegean Park Press, Laguna
Hills (1982)

[13] Haggstrom, G.: Sequential tests for exponential populations and poisson processes.
Technical report, RAND Corporation (1979)

[14] Houmansadr, A., Kiyavash, N., Borisov, N.: Multi-flow attack resistant water-
marks for network flows. In: IEEE ICASSP (2009)

[15] Jia, W., Tso, F., Ling, Z., Fu, X., Xuan, D., Yu, W.: Blind detection of spread
spectrum flow watermarks. In: IEEE INFOCOM (2009)

[16] Kiyavash, N., HoumanSadr, A., Borisov, N.: Multi-flow attacks against network
flow watermarking schemes. In: USENIX Security (2008)

[17] Luo, X., Zhang, J., Perdisci, R., Lee, W.: On the secrecy of spread-spectrum flow
watermarks (2010),
http://roberto.perdisci.com/publications/publication-files/

DSSSWM Extended TechReport.pdf

[18] Markopoulou, A., Tobagi, F., Karam, M.: Loss and delay measurements of internet
backbones. Computer communications (June 2006)

[19] Peng, P., Ning, P., Reeves, D.: On the secrecy of timing-based active watermarking
trace-back techniques. In: IEEE Symp. on Security and Privacy (2006)

[20] Pyun, Y., Park, Y., Wang, X., Reeves, D., Ning, P.: Tracing traffic through inter-
mediate hosts that repacketize flows. In: IEEE INFOCOM (2007)

[21] Ramsbrock, D., Wang, X., Jiang, X.: A first step towards live botmaster traceback.

In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 59-77. Springer, Heidelberg (2008)

http://www.okisoft.co.jp/esc/python/proxy
http://www-mobile.ecs.soton.ac.uk/bjc97r/pnseq-1.1/pnseq-1.1.tar.gz
http://www.microsoft.com/technet/security/Bulletin/ms09-048.mspx
http://roberto.perdisci.com/publications/publication-files/DSSSWM_Extended_TechReport.pdf
http://roberto.perdisci.com/publications/publication-files/DSSSWM_Extended_TechReport.pdf

248

[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

X. Luo et al.

Reardon, J., Goldberg, I.: Improving tor using a TCP-over-DTLS tunnel. In:
USENIX Security (2009)

Tang, C., Goldberg, I.: An improved algorithm for Tor circuit scheduling. Tech-
nical report, University of Waterloo (2010)

Therrien, C., Tummala, M.: Probability for Electrical and Computer Engineers.
CRC, Boca Raton (2004)

Turner, J.: New directions in communications (or which way to the information
age?). In: IEEE Commun. Magazine (1986)

Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer voip calls on
the internet. In: ACM CCS (2005)

Wang, X., Chen, S., Jajodia, S.: Network flow watermarking attack on low-latency
anonymous communication systems. In: IEEE Symp. on Security and Privacy
(2007)

Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: DSSS-based flow marking tech-
nique for invisible traceback. In: IEEE Symp. on Security and Privacy (2007)
Zhang, Y., Paxson, V.: Detecting stepping stones. In: USENIX Security (2000)

	On the Secrecy of Spread-Spectrum Flow Watermarks
	Introduction
	Background
	Threat Model
	Spread-Spectrum Flow Watermarks
	Countermeasures

	Detection System
	Basic Idea
	Low-Throughput Periods Resulted from PN Codes
	Locating Low-Throughput Periods
	Detection Algorithm

	Elimination System
	Evaluation
	Evaluation of the Detection System Using Planetlab Traces
	Evaluation of the Detection System Using Tor Traces from YuDSSS07
	Evaluation of the Elimination System

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

