
A Metric-Based Scheme for Evaluating Tamper

Resistant Software Systems

Gideon Myles1,� and Hongxia Jin2

1 Novak Druce + Quigg LLP, San Francisco, CA
2 IBM Almaden Research Center, San Jose, CA

Abstract. The increase use of software tamper resistance techniques to
protect software against undesired attacks comes an increased need to un-
derstand more about the strength of these tamper resistance techniques.
Currently the understanding is rather general. In this paper we propose
a new software tamper resistance evaluation technique. Our main contri-
bution is to identify a set of issues that a tamper resistant system must
deal with and show why these issues must be dealt with in order to secure
a software system. Using the identified issues as criteria, we can measure
the actual protection capability of a TRS system implementation and
provide guidance on potential improvements on the implementation. We
can also enable developers to compare the protection strength between
differently implemented tamper resistance systems. While the set of cri-
teria we identified in this paper is by no means complete, our framework
allows easy extension of adding new criteria in future.

Keywords: Software Tamper Resistance, Evaluation, Metrics.

1 Introduction

Tamper resistant software system is increasingly needed to protect copyrighted
materials. Software tamper resistance technique usually consists of two com-
ponents: tamper detection and tamper response. The first component, tamper
detection, is responsible for detecting undesired changes to the program or en-
vironment. For example, an adversary may actually alter bytes in the program
to circumvent a license check or he may run the program under a debugger to
observe how a protection mechanism works. In response to a tamper event, the
tamper response component takes action. This can range from fixing the altered
code or degrading the performance of the program to causing the program to
terminate. This is also commonly referred to as software tamper proofing.

A variety of tamper resistance techniques have been proposed. One of the
first publications in this area was by Aucsmith [2], which provides protection
by using the idea of interlocking trust. This is accomplished by verifying the
sum of the hashes of all previously executed blocks to ensure they were executed
correctly and in the proper order. Another technique was proposed by Chang

� This work was done when the author was at IBM Almaden Research Center.

K. Rannenberg, V. Varadharajan, and C. Weber (Eds.): SEC 2010, IFIP AICT 330, pp. 187–202, 2010.
c© IFIP International Federation for Information Processing 2010

188 G. Myles and H. Jin

and Atallah [3] and establishes a check and guard system through a network of
guards. Each guard is responsible for monitoring or repairing a section of code.
Horne et al. [6] proposed a similar technique based on testers and correctors. A
third approach to tamper resistance, oblivious hashing, was proposed by Chen
et al. [4]. With oblivious hashing it is possible to compute the hash value of the
actual execution instead of just static code. Additional tamper resistance tech-
niques have been proposed by Mambo et al. [8], Jin et al. [7], and Dedic et al. [5].
In this paper we use the term software tamper resistance to encompass a broader
range of software protection techniques. We are interested in those techniques
that inhibit an adversary’s ability to understand and alter the program.

As can be seen, quite a bit of work has been done in the software tamper
resistance space; however, there is little work done on evaluating their strength.
No quantitative method currently exists that makes it possible to really say
something meaningful about the strength of a tamper resistance algorithm, let
alone the strength of a particular implementation of that algorithm. Indeed, it
is very difficult to make comparisons between two proposed algorithms.

In this paper we propose a TRS system evaluation method which begins to
address these important issues. The evaluation method provides developers with
a way to quantitatively evaluate the strength of a particular implementation of
their TRS system through the use of one or more numeric ratings. In general,
the technique works by breaking the desired rating down into a set of metrics
that are relevant to the specific measurement. For each metric, we calculate a
score. Optionally these metric scores can also be combined into an overall score
for the rating. The calculation of a score gives the developer a concrete idea as
to the strength of his implementation. Furthermore it provides a common base
to compare the strength of different TRS systems.

2 Metric-Based Evaluation

Whether a developer is consciously aware of it or not, he most likely has a set
of questions in mind that guide the development and implementation of the
TRS system. These are questions like “Is essential functionality and data pro-
tected,” “Is the detection code stealthy,” and “Can we detect different types of
debuggers.” By asking these questions the developer is attempting to “evaluate”
the protection capabilities of the TRS system. While the developer’s evaluation
in this scenario is rather informal, we can use the same type of questions to
formalize a quantitative evaluation method.

In general, the TRS system evaluation is comprised of three steps. First, we
break the desired rating down into a set of metrics that are relevant to the
specific measurement. Then for each metric we calculate a score. Finally, we can
derive a overall score for the rating by combining the individual metric scores or
simply using the minimum of each individual score.

One of the unique aspects of this process is that we use questions to guide
the evaluation process. In essence each metric is based on a guiding question like
“is essential data and functionality protected.” We phrase each question such

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 189

that for the ideal TRS system the answer would be “yes.” To answer the ques-
tion and assign a quantitative value to the metric we construct an appropriate
model of the protection system. For example, we may be able to answer the
question “is essential data and functionality protected,” by building a graphical
representation of the relationship between the functions in the program.

Using the metric-based TRS system evaluation method, we have devised four
categories of TRS system evaluation ratings: protection coverage rating, sys-
tem complexity rating, auxiliary protection rating, and overall system protection
rating. We believe that these ratings provide a more comprehensive evaluation
method for tamper resistant implementations than any of the previous work in
this space.

2.1 Protection Coverage Rating

The protection coverage rating (PCR) evaluates the degree to which the program
is covered by the protection mechanism(s). It is important to note that the PCR
does not (and should not) say anything about the quality of the protection or
how easily it can be subverted. The idea is to convey a sense of the distribution
of the protection mechanisms and how they overlap.

To illustrate how the protection coverage rating is calculated we will rely on a
running example in which the factorial program shown below is protected using a
very simple implementation of the Branch-Based tamper resistance technique [7].

void main(int argc, char *argv[]){
int x = atoi(argv[1]);
printf("%d! = %d\n", x, factorial(x));

}

int factorial(int x){
if(x == 1)

return x;
return(x * factorial(x-1));

}

The Branch-Based tamper resistance technique converts branch instructions
to calls to a branch function. The branch function then performs an integrity
check of the program and calculates the proper branch target instruction. Below
illustrates what the factorial program could look like after the Branch-Based
tamper resistance protection has been applied.

long key = seed;

void main(int argc, char *argv[]){
int x = branchFunction1(argv[1]);
branchFunction2("%d! = %d\n", x,

branchFunction3(x));
}

int factorial(int x){
if(x == 1)

return x;
return(x * factorial(x-1));

}

190 G. Myles and H. Jin

void branchFunction1(void *x){
//perform anti-debugging check
//evolve the key
//compute return address
return;

}

void branchFunction2(void *x){
//compute checksum over main and factorial
//evolve the key
//compute return address
return;

}

void branchFunction3(void *x){
//compute checksum over factorial
//evolve the key
//compute return address
return;

}

Level 2

main

branchFunction1 branchFunction2 branchFunction3 factorial

Level 1

Fig. 1. The function-instance graph for the factorial program

Protection Coverage Model. In order to calculate a protection coverage
rating we need a method of modeling the protection capabilities of the TRS
system. We do this by building two different graphs both of which are based
on the call graph for the program. The first graph we construct is the function-
instance graph. Using a depth first traversal we transform the call graph into
the function-instance graph. This construction is illustrated in Figure 1 for our
protected program.

The second graph is the protection coverage graph. Construction of this graph
requires that we first augment the call graph by adding a block for each element
of the program that requires protection but is not a function, for instance a
memory segment or a secret key. Then to represent protection mechanisms like
obfuscation or encryption we insert another place holder block. When multiple
obfuscation techniques are used, we insert multiple place holder blocks. Finally,
we add a directed edge between two blocks A and B when A provides protection
for B. Following this procedure, we arrive at the protection coverage graph in
Figure 2.

Protection Coverage Metrics. The protection coverage metrics are guided
by questions that reveal the full scope of the TRS system’s defense network. We
have identified six questions that we feel provide a comprehensive view of the
system. Using the protection coverage model we are able to develop a metric and
calculate a score for each of the questions below. (Notation used in the metrics
can be seen in Table 1.) Below we will show the six criteria together with the
rationale behind choosing that criteria.

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 191

obfuscation

branchFunction1 branchFunction2 branchFunction3

Essential block

Protection edge

Call edge

Place holder protection block

main

factorialkey

Fig. 2. The protection coverage graph for the factorial program

– Is essential functionality and data protected? The Essential Coverage Met-
ric (ECM) indicates to the developer whether all of the critical, must be
protected elements have in fact been protected. This is a very important
measurement for any TRS system.
• ECM = |Bep|

|Be|
– Do anti-debugging checks occur throughout the entire execution of the pro-

gram? The Anti-Debugging Metric (ADM) gives the developer a sense of
how successful the TRS system would be at preventing the execution of the
program under a debugger. This criteria is important because a low score in-
dicates that at least part of the program can be executed and observed by an
attacker, which could result in the attacker discovering secret information.

• ADM =
∑

l∈L

|outcp(l)|
|outc(l)|
|L|

– Is each integrity verification method invoked at multiple places throughout the
program? Suppose the TRS system has an integrity check which performs a
checksum of the program, but that integrity check is only invoked a single
time when the program starts. Once the program has started executing, the
attacker can make any changes he wishes and they will not be detected. It is
important to measure the degree to which the program is vulnerable to sce-
narios like this. This degree can be measured using the Multiple Invocation
Metric (MIM).

• MIM =
∑

b∈Biv

|inc(b)|
|Ec|

|Biv|
– Is there cross-checking of integrity verification methods? That is, are the in-

tegrity verification methods themselves protected? The Cross-Check Metric
(CCM) is important because if the integrity verification methods are left vul-
nerable then an attacker can remove them and the remainder of the program
is left vulnerable.

• CCM =
∑

b∈Biv

|inp(b)|
|Ep|

|Biv |
– Are the protection methods overlapping? When a sensitive section of code is

protected using only one means of protection all the attacker has to do is
defeat that one mechanism. By increasing the protection on that section, the
amount of work the attacker has to do is also increased. So this measurement

192 G. Myles and H. Jin

is also important to the security of a TRS system. The Protection Overlap
Metric (POM) lets the developer know whether more layers of protection
need to be added.

• POM =
∑

b∈Bf

|inp(b)|
|Ep|

|Bf |
– Are there multiple methods of protecting the integrity of the program? Again

suppose the TRS system has an integrity check which performs a checksum
over the program. If this is the only integrity check used to verify the integrity
of the program, the attacker only has one protection mechanism to analyze.
Obviously, by increasing the number of protection mechanisms, we increase
the amount of work the attacker has to do thereby strengthening the TRS
system. The Multiple Protection Metric (MPM) indicates to the developer
if greater diversity is need.
• MPM = |Bp|

|B|

Table 1. The notation used in the protection coverage metrics

Protection Coverage Graph Notation

B set of all blocks.

Be set of essential blocks.

Bep set of essential blocks which are protected.

Ec set of call edges in the graph.

Ep set of protection edges in the graph.

Bp set of all protection blocks.

Biv set of integrity verification protection blocks.

Bad set of anti-debug protection blocks.

Bpp set of place holder protection blocks.

Bf set of blocks which are not protection blocks.

inc(b) incoming call edges for block b.

inp(b) incoming protection edges for block b.

Function-Instance Graph Notation

L set of levels in the function-instance graph.

outc(l) out going call edges for the block(s) on level l.

outcp(l) out going call edges for the block(s) on level l
whose sink is a protection block.

To construct the overall protection coverage rating (PCR) we combine the
individual metric scores by multiplying each component by a constant repre-
senting that ratings importance and adding the values together. The sum of the
constants is 1.

– PCR = (a)ECM +(b)ADM +(c)MIM +(d)CCM +(e)POM +(f)MPM
where a + ... + f = 1

For example, in general ECM (Essential Coverage Metric) and POM (Pro-
tection Overlapping Metric) seem to be relatively more important than other

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 193

metrics. Therefore it makes sense to give more weights on these two metrics
than others. However, for different purposed TRS system, it is possible that
different weights may need to be assigned for the same metric. Another more
general option to obtain the overall rating is to simply choose the minimum
value among the set of metrics.

When we apply the metrics to our example we get:

ECM = 2
3 = .67

ADM =
1
3+ 0

1
2 = 1

6 = .17
MIM =

1
4+ 1

4 + 1
4

3 = 1
4 = .25

CCM = 0
POM =

2
4+ 2

4+ 0
4

3 = 1
3 = .33

MPM = 4
7 = .57

Note that regardless of the overall rating value and how one calculates the
overall rating, each metric alone provides some value in the evaluation. For ex-
ample, two TRS systems can be evaluated against each of these metrics to see
which one is stronger for the protection. Moreover, those metrics can help guide
developers improve the security of their software.

In the above example, based on the calculated results, a developer could see
that there are aspects of the protection coverage that need further improve-
ment. First, a cross-check metric score of zero reveals that the TRS system’s
integrity verification methods are completely vulnerable to attack. Second, the
anti-debugging check metric score is very low which indicates the anti-debug
checks are not very well distributed in the program. This means that certain por-
tions of the program could be executed under a debugger without being detected
which could ultimately lead to the attacker discovering sensitive information.

On the other hand, for a same-functional software, if the developers come up
with another design of the system, they can similarly use these metrics to see
the protection capability for that system. Our evaluation method enables the
developers to compare the strength of the differently implemented systems and
then make design choice accordingly.

It is also worthy mention that because our evaluation method is based on
sets of metrics, it is easily extensible. As protection mechanisms evolve and new
evaluation method are developed they can easily be incorporated into the list.

2.2 System Complexity Rating

The system complexity rating (SCR) is used to evaluate the level of difficulty as-
sociated with understanding and disabling the protection mechanisms. The focus
of this rating is on the topological configuration of the system and the strength
of the atomic protection mechanisms that make up the system. The rating is
calculated by first recursively breaking down the TRS system’s compound pro-
tection mechanisms until the atomic protection mechanisms are isolated. The
atomic protection mechanisms are then evaluated using the various metrics and
the calculated scores are plugged into the graphical model and combined based
on the topological configuration.

194 G. Myles and H. Jin

System Complexity Model. Part of being able to properly evaluate a TRS
system is being able to properly model its behavior. The modeling approach
we use is partially driven by an important system complexity question: “Is it
impossible to disable the TRS system in stages?” This is motivated by the belief
that a tightly linked set of protection mechanisms is harder to disable than a set
of disjoint mechanisms because more analysis required. The system complexity
model enables us to answer this question by transforming the tamper resistance
capabilities into a graph. We accomplish this as follows:

1. Each code block in the program becomes a node in our graph. A code block
can have any level of granularity and the particular composition of a code
block will depend of the tamper resistance algorithm.

2. If a code block ci provides integrity verification for another code block cj , a
directed edge is added from ci to cj .

3. If a code block ci triggers the anti-debugging protection provided by code
block cj , a directed edged is added from cj to ci.

4. If a code block ci repairs another code block cj , a directed edge is added
from ci to cj .

5. If a code block ci contains concealment protection, a new block representing
the protection mechanism is added to the graph and a directed edged from
the new block to ci is added.

6. If a code block ci provides protection for more than one block, a super block
is added encompassing the protected blocks. A directed edge is then added
from ci to the super block.

Figure 3 illustrates the graphical model of the protected factorial program that
is constructed by following these steps.

main factorial

bf 1 (a−d) bf 3 (civ)

obfuscation

bf 2 (civ)

Fig. 3. Graphical model used to calculate the complexity rating for the factorial pro-
gram protected using the Branch-Based Tamper Resistance technique

The graph topology model enables us to analyze and evaluate the way tamper
resistance is incorporated into the existing software, while providing a common
base for comparing tamper resistance algorithms. The main advantage of this
model is that we can break the TRS system down into its atomic protection
mechanisms and then associate a complexity score indicating how difficult it
would be to defeat that particular mechanism. Based on the topology of the
graph we can combine the atomic protection scores to determine the overall
system complexity rating for the TRS system.

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 195

Protection Mechanism Metrics. Calculating the complexity metric score of
an atomic protection mechanism is still a rather open question. In this section we
propose a variety of metrics which begin to address the question, but that by no
means provide the complete answer. Our goal is to lay a foundation of metrics
that can be built upon as protection mechanisms evolve. Under our method,
the evaluation of protection mechanisms is first based on the particular type of
the mechanism. It is then guided by type specific questions. We focus on three
categories of protection mechanisms: detection, response, and concealment. Each
of these categories have unique characteristics that require evaluation metrics
specific to the category. Like the protection coverage metrics these metrics are
guided by questions. In this case, the questions reveal the level of difficulty an
attacker will have in identifying and understanding the protection mechanisms.

Tamper Detection Metrics. A tamper detection mechanism is any section of
code which was designed to detect changes in the program or environment.
This could be a change in the actual instruction sequence or a change in the
execution environment such as the use of a debugger. Below are some questions
that should definitely be considered when calculating the complexity rating of
a tamper detection mechanism, however, it is possible that other questions and
therefore metrics could also be incorporated.

– Is the detection code stealthy? Ideally the detection code would be similar
to the code around it. One possible way to measure this is to consider the
instruction sequences in the original program, the tamper detection mecha-
nism, and the tamper resistant version of the program.

{
1, if |inst seq ∈DM but �∈P |

|inst seq ∈PT RS | < δ

0, otherwise

– Is detection widely separated from response in space? This could be measured
by counting the number of instructions between the detection and response
mechanisms.

{
1, if |insts between detection and response| > δ
0, otherwise

– Is detection separated in time from a response which induces program failure?
There are a couple different ways this could be measured. One would be to
measure the number of seconds between detection and response.

{
1, if |secs between detection and response| > δ
0, otherwise

Another would be to use a call graph to model the time between detection
and response.

{
1, if |calls between detection and response| > δ
0, otherwise

196 G. Myles and H. Jin

Tamper Response Metrics. A tamper response mechanism is any section of code
which has been designed to respond to an attack on the program. The response
could be triggered by a change in the instruction sequence or the detection that
the program is being run in a debugger. The response action taken can vary. The
mechanism could alter some portion of the program which eventually leads to
program failure or it could repair a section of code which has been altered. Below
are some questions that should be considered when calculating the complexity
rating of a response mechanism. As with the tamper detection complexity, this
is not an exhaustive list, these are simply the questions that are common to all
tamper response mechanisms.

– Is the response code stealthy? Ideally the response code is similar to the code
around it. Response code will often rely on self-modifying code to either
cause program failure or to repair a section of code. This type of code is not
routinely used in programs, so it is crucial this code is not easily detected
by the attacker.

{
1, if |inst seq ∈RM but �∈P |

|inst seq that occur in PT RS | < δ

0, otherwise

– Does a program that has been tampered with eventually fail or repair itself? In
the event of tampering, it is critical that some type of response occurs. One
way to evaluate this is to use the program control flow graph to determine
if the failure inducing or repair code is on a possible execution path.

{
1, if code is on possible future path
0, otherwise

– Does a program that has been tampered with, initially proceed seemingly nor-
mally so as to hide the location of the response mechanism? This is of partic-
ular concern for failure inducing response mechanisms. If the failure occurs
immediately after the response, it will be very easy for an attacker to identify
the response mechanism.

{
1, if |secs between response and failure| > δ
0, otherwise

Concealment Metrics A concealment mechanism is any protection technique
which is used to disguise the true purpose of a section of code. This could come
in the form of code obfuscation or even encryption.

– Is the concealment code stealthy? Ideally even if a technique like obfuscation
is used, the obfuscated code should still blend in the with code around it.
That is, we do not want to alert the attacker to the fact that we used
obfuscation because it indicates that the section of code is important.

{
1, if |inst seq ∈CM but �∈P |

|inst seq that occur in PT RS | < δ

0, otherwise

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 197

– Can the protection thwart static disassembly or decompilation of the oper-
ational code and its basic structure? By preventing proper disassembly or
decompilation the attacker is forced to revert to the often more difficult dy-
namic analysis techniques. A possible method of evaluating this protection
is to compare the disassembly code of the original program and the pro-
tected program. Additionally, it is often obvious when a program has been
disassembled incorrectly because of the instruction sequences generated.

{
1, if sim(dis(P), dis(PTRS)) < δ
0, otherwise

– If encryption is used, are any decryption keys hidden? When encryption is
used to protect all or part of the program, the code has to be decrypted in
order to be executed. This decryption requires a key that is often hidden
directly in the software.

It has been suggested that the strength of concealment mechanisms could be
evaluated using software complexity metrics [1]. Such evaluation metrics would
fit nicely within our framework and further expand the evaluation capabilities.

System Complexity Rating Calculation. Using the system complexity
model and the system complexity metrics for the atomic protection mechanisms
we are able to develop an overall score for the system complexity rating. One
of the advantages of the system complexity rating is that even without a com-
plete understanding of the strength of the individual protection mechanisms,
through the complexity model we are still able to provide the developer with
valuable feedback. As we will see, the topological configuration of the protection
mechanisms say a lot about the strength of the TRS system.

There are a variety of different topological arrangements that can be used in
designing the TRS system. To illustrate how the system complexity rating can
be calculated we investigate three configurations: redundancy, hierarchy, and
cluster. In reality a TRS system will be a combination of these configurations,
in which case a score for each sub-configuration can be calculated and then
combined to form the rating score.

As we mentioned, one of the motivating questions in the system complexity
rating is “Is it possible to disable the protection mechanisms in stages?” Because
of this we are interested in two different scores: the per-stage complexity rating
(PCR) and the total complexity rating (TCR). The PCR is associated with sub-
verting a subset of the protection mechanisms without triggering any detection
mechanism. The TCR is the complexity rating associated with disabling the
entire TRS system.

Redundancy Model. In the redundancy configuration tamper resistance mecha-
nisms are incorporated throughout the program without dependencies between
the different mechanisms. Figure 4(a) illustrates a possible configuration using
redundancy. In this case the TRS system can be subverted in stages. If one of the
protection mechanisms is disabled, it will not be detected by any of the others.

198 G. Myles and H. Jin

C

TR

TR

TR

(a) Redundancy.

C TR TRTR

(b) Hierarchy.

C

TR

TR

TR

(c) Cluster.

Fig. 4. Possible TRS system complexity model configurations

In the ideal situation the total complexity rating for a redundancy based TRS
system would be the sum of the complexity ratings for the atomic protection mech-
anisms,

∑n
i=1 CR(TRi). However, there is at least one factor that can decrease the

overall effectiveness of a TRS system. This factor relates to the similarity of the
protection mechanisms used. In the general sense, we have three similarity cate-
gories for protection mechanisms: duplicated, derived, and unique.

In the duplicated scenario, one protection mechanism is used in multiple
places. While this does make it possible to protect different parts of the pro-
gram, the extra work required to disable more than one of these mechanisms is
negligible. This leads to the per-stage and total complexity ratings being equal:

– PCR = TCR = CR(TR).

A derived classification occurs when one or more protection mechanisms is a
derivative of another mechanism in the TRS system. Because the mechanisms are
similar, information learned from attacking one can be used to defeat the others.
This has the effect of increasing the total complexity rating over the duplicated
scenario, but the complexity level is still sub-optimal for the given configuration.

– PCR = max{CR(TRi)|i ∈ n}
– TCR = max{CR(TRi)|i ∈ n} +

∑n
(j=1)\i CR(TRj)[1 − sim(TRi, TRj)]

where sim(TRi, TRj) ∈ [0, 1]

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 199

A variety of different methods have been developed to measure the similarity
between sections of code or programs [9]. The similarity measure could be based
on one of these ideas or a new measure could be developed specifically for tamper
resistance protection mechanisms.

The maximum complexity is achieved when the tamper resistance mechanisms
are classified as unique and defeating one does not aid an attacker in defeating
any of the others. In this case we achieve the following complexity ratings:

– PCR = max{CR(TRi)|i ∈ n}
– TCR =

∑n
i=1 CR(TRi)

Of course, the TRS system could be comprised of a mixture of these three
categories.

Hierarchy Model. The hierarchy configuration consists of n layered protection
mechanisms. Each layer provides tamper resistance protection for the mech-
anism in the lower layer. The innermost layer protects the code block. Fig-
ure 4(b) illustrates this configuration. As with the redundancy configuration, a
TRS system configured as a hierarchy can be subverted in stages by starting
with the outermost tamper resistance mechanism. Theoretically, this configura-
tion is marginally stronger than the redundancy configuration since an attacker
has to identify the outermost layer.

The hierarchy configuration can also be classified by duplicated, derived, and
unique protection mechanisms. Using these categories we obtain the following
complexity ratings:

– Duplicated
• PCR = CR(TR)+(cost to find outermost)
• TCR = CR(TR)+(cost to order units)

– Derived
• PCR = CR(outermost TR)+(cost to find outermost)
• TCR = CR(outermost TR)+

∑n
j=2 CR(TRj)[1−sim(TRi, TRj)]+(cost

to order units)
– Unique

• PCR = CR(outermost TR)+(cost to find outermost)
• TCR =

∑n
i=1 CR(TRi)+(cost to order units)

Cluster Model. In the cluster configuration the tamper resistance mechanisms
are arranged in a strongly connected digraph topology with some degree of in-
cidence d. The degree of incidence is the in-degree of any particular code block
in the graph. It measures the number of protection mechanisms protecting a
particular code block. The degree of incidence for the cluster is the minimum
degree of incidence within the cluster. Theoretically, the cluster configuration
provides the highest level of protection. In this configuration, subverting any of
the tamper resistance mechanisms within the cluster requires subverting all of
the mechanisms in the cluster simultaneously. Figure 4(c) illustrates a trivial
cluster based TRS system which has a degree of incidence d = 1.

In order to disable the entire cluster each protection mechanism along with its
parent(s) must be subverted prior to a parent mechanism detecting an incidence

200 G. Myles and H. Jin

of tampering. For single threaded programs, it may still be possible to identify
a sequence in which a cluster with a degree of incidence d = 1 can be subverted.
However, identifying this order is more difficult than in the hierarchy configura-
tion. For programs in which code blocks can be executed in parallel, identifying
the necessary sequence is even more challenging. Furthermore, as the degree of
incidence increases, disabling a single protection mechanism will be detected by
several other mechanisms, thus increasing the number of mechanisms that must
be subverted simultaneously.

Like the previous two configurations, the cluster configuration can be clas-
sified by duplicated, derived, and unique protection mechanisms. Using these
classifications we have the following complexity ratings:

– Duplicated
• PCR = TCR = (2 − 1

d)(CR(TR))+(cost to identify all units in cluster)
– Derived

• PCR = TCR = (2− 1
d)[max{CR(TRi)|i ∈ n}+

∑n
(j=1)\1 CR(TRj)(1−

sim(TRi, TRj))]+(cost to identify all units in cluster)
– Unique

• PCR = TCR = (2 − 1
d)[

∑n
i=1 CR(TRi)]+(cost to identify all units in

cluster)

2.3 Auxiliary Protection Ratings

The auxiliary protection (AP) rating evaluates the degree to which additional
efforts have been made to aid the embedded protection mechanisms. Generally,
the protection mechanisms alone are not sufficient to protect a program. This
is because there are many aspects of a system which can leak information. For
example, strings in a program can often provide an attacker with insight about
functionality. Additionally, the protection mechanisms, due to unusual behavior8
like self-modifying code, can reveal themselves to attackers thus requiring the
TRS system to disguise the mechanisms or employ misleading code which draws
attention away from the real protection code. Again we will use question-guided
approaches to obtain the metrics. Below we show two sample measurements only
to illustrate the idea.

– Are common or well-known code sequences avoided? Many protection sys-
tems will leverage off the self cryptographic implementations. Strong attack-
ers will be able to easily recognize the common code sequences without much
analysis, thus reducing the effort required to attack the TRS system.

{
0, if |known code sequence ∈ PTRS | > δ
1, otherwise

– Are revealing names, strings, constants, etc. avoided? Constant values in a
program decrease the amount of analysis required by an attacker by provid-
ing insight regarding functionality.

{
0, if |revealing value ∈ PTRS | > δ
1, otherwise

A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems 201

2.4 Overall System Protection Rating

The overall system protection rating (OSP) is used to evaluate the overall
strength of the entire TRS system. This rating can be used to calculate two
different values. The first we call the probability of subversion which indicates
how likely it is that an attacker will be able to circumvent the TRS system. The
second value is the difficulty of subversion. This value does not tell the developer
how much it will cost an attacker to circumvent the system in time, money, or
resources, but instead indicates a level of difficulty.

The rating score is still driven by a set of questions:

1. Is the entire software system protected?
2. Is it hard to understand and disable the embedded protection mechanisms?
3. Are additional protection efforts being made to aid the embedded protection

mechanisms?

Question 1 corresponds to the protection coverage rating, Question 2 to the
system complexity rating, and Question 3 to the auxiliary protection rating.
Then to derive the OSP rating we combine the sub-rating scores. The manner in
which we combine the sub-ratings determines whether we calculate the proba-
bility of subversion or the cost of subversion. In either case, the sub-rating score
is multiplied by a constant representing the rating’s importance. If we then use
multiplication in combining the values we will get the probability of subversion.
Using addition will yield the difficulty of subversion.

As one of our future work direction, we would like to expand the OSP eval-
uation so that it can tell how much it costs to circumvent the system in time,
money, or resources. In order to do this, we need to take into consideration what
kind of attackers we are dealing with. we would like to be able to identify classes
of attackers, based on resources, skills, and attack types, and then map the
classes to difficulty levels. This will tell a developer that if they have a TRS sys-
tem with a certain difficulty of subversion then it can protect against attackers
below the corresponding class. This will also tell how many men time it takes to
circumvent the system for different classes of attackers. The attacker class may
also make the probability of subversion evaluation more accurate, because the
probability of subversion can be different for different class of attackers.

3 Conclusion

In this paper we presented a metric-based evaluation method for tamper re-
sistant software system implementations. Our work makes several important
contributions. First, it provides what we believe to be the first comprehensive,
quantitative method for evaluating the strength of TRS system implementations.
Second, the quantitative score not only provides the developer with insight as to
the strength of the implementation, it can provide a common base to compare
the strength of different TRS systems. Note that it is not critical to verify the
validity of each score we obtain in the evaluation. But comparing two scores

202 G. Myles and H. Jin

is sufficient to tell which TRS system is stronger protected. This is especially
advantageous for standards-based content protection systems were a guaranteed
level of robustness is required. Because most companies are reluctant to release
their software to an outside evaluation team for fear of leaking their intellectual
property, the robustness guarantee is achieved through the manufacturer’s self-
certification. This self-certification holds the manufacturer liable in the event of
an attack, but it does nothing to truly guarantee the robustness of the system.
Our evaluation method could be used to address this issue. A tool based on this
method would produce a report that can be publicly shared without leaking the
confidential information contained in the software. Finally, because the evalu-
ation method is based on sets of metrics, it is easily extensible. As protection
mechanisms evolve and new evaluation method are developed they can easily be
incorporated.

There are several directions we want to research further and deeper as future
work. Are the metrics sufficiently mature in the sense that they capture the key
issues relevant to tamper resistance? What if some of the metrics are contra-
dicting with each other or related to each other? Are there techniques/practices
that can result in high ratings of our metrics? This would lead to best practices.

References

1. Anckaert, B., Madou, M., Sutter, B.D., Bus, B.D., Bosschere, K.D., Preneel, B.: Pro-
gram obfuscation: A quantitative approach. In: Proceedings of 3rd ACM Workshop
on Quality of Protection (2007)

2. Aucsmith, D.: Tamper resistant software: An implementation. In: Furon, T., Cayre,
F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 317–333. Springer,
Heidelberg (2008)

3. Chang, H., Atallah, M.: Protecting software code by guards. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 160–175. Springer, Heidelberg (2002)

4. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious hashing: A stealthy software integrity verification primitive. In: Petitcolas,
F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 400–414. Springer, Heidelberg (2003)

5. Dedic, N., Jakubowski, M., Venkatesan, R.: A graph game model for software tamper
protection. In: Proceedings of 9th Information Hiding Workshop (2007)

6. Horne, B., Matheson, L.R., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Sander, T. (ed.) DRM 2001. LNCS,
vol. 2320, pp. 141–159. Springer, Heidelberg (2002)

7. Jin, H., Myles, G., Lotspiech, J.: Towards better software tamper resistance. In:
Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
417–430. Springer, Heidelberg (2005)

8. Mambo, M., Murayama, T., Okamoto, E.: A tentative approach to constructing
tamper-resistant software. In: Proceedings of 1997 New Security Paradigms Work-
shop, pp. 23–33. ACM Press, New York (1998)

9. Myles, G., Collberg, C.: K-gram based software birthmarks. In: Proceedings of ACM
Symposium on Applied Computing, pp. 314–318 (2005)

	A Metric-Based Scheme for Evaluating Tamper Resistant Software Systems
	Introduction
	Metric-Based Evaluation
	Protection Coverage Rating
	System Complexity Rating
	Auxiliary Protection Ratings
	Overall System Protection Rating

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

