
Achieving Distributed Control

through Model Checking

Susanne Graf1, Doron Peled2, and Sophie Quinton1

1 VERIMAG, Centre Equation, Avenue de Vignate, 38610 Gières, France
2 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Abstract. We apply model checking of knowledge properties to the de-
sign of distributed controllers that enforce global constraints on concur-
rent systems. We calculate when processes can decide, autonomously, to
take or block an action so that the global constraint will not be violated.
When the separate processes cannot make this decision alone, it may be
possible to temporarily coordinate several processes in order to achieve
sufficient knowledge jointly and make combined decisions. Since the over-
head induced by such coordinations is important, we strive to minimize
their number, again using model checking. We show how this framework
is applied to the design of controllers that guarantee a priority policy
among transitions.

1 Introduction

Consider a concurrent system, where some global safety constraint, say of pri-
oritizing transitions, needs to be imposed. A completely global coordinator can
control this system and allow any of the maximal priority actions to progress in
each state. However, the situation at hand is that of a distributed control [7,12];
controllers, one per process or set of processes, may restrict the execution of
some of the transitions if their occurrence may violate the imposed constraint.
Due to the distributed nature of the system, each controller has a limited view of
the entire system. Each controller may keep some finite memory that is updated
according to the history it can observe.

The knowledge of a process in any particular local state includes the properties
that are common to all reachable (global) states containing it. There are several
definitions for knowledge, depending on how much of the local history may be
encoded in the local state. Knowledge was suggested as a tool for constructing a
controller in [6,1]. There, controlling a distributed system was achieved by first
precalculating the knowledge of a process. Based on its precalculated knowledge,
reflecting all the possible current situations of the other processes, a controller
for a process may decide at runtime whether an action of the controlled process
can be executed without violating the imposed constraint. Sometimes, however,
the process knowledge is not sufficient. Then, the joint knowledge of several
processes (also called distributed knowledge) may be monitored using fixed con-
trollers for sets of processes. Unfortunately, this approach causes the loss of
actual concurrency among the processes that are jointly monitored.

T. Touili, B. Cook, and P. Jackson (Eds.): CAV 2010, LNCS 6174, pp. 396–409, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Achieving Distributed Control through Model Checking 397

Instead of permanent synchronizations via fixed process groups, we suggest in
this paper a method for constructing distributed controllers that synchronize pro-
cesses temporarily. We use model-checking techniques to precalculate a minimal
set of synchronization points, where joint knowledge can be achieved during short
coordination phases. An additional goal is synchronizing a minimal number of pro-
cesses as rarely as possible. After each synchronization, the participating processes
can again progress independently until a further synchronization is called for.

In [6], knowledge based controllability (termed Kripke observability) is stud-
ied as a basis for constructing a distributed controller. The problem there is
somewhat different than ours: the goal is to make the system behave exactly
according to a given regular language, while here we want to limit the possible
choices in order to impose some given global invariant. There, if a transition is
enabled by the controlled system but must be blocked according to the addi-
tional constraint, then at least one process knows that fact and is thus able to
prevent its execution. This approach requires sufficient knowledge to allow any
transition enabled according to a given regular specification. The construction
in [1] is different: it requires that at least one process knows that the occurrence
of some enabled transition preserves the correctness of the imposed constraint,
hence supporting its execution. This approach preserves the correctness of the
controller even when knowledge about other such transitions is limited, at the
expense of restricting the choice of transitions.

The approach suggested here extends the knowledge based approach of [1].
We use a coordinator algorithm, such as the α-core [5], which achieves temporary
multiprocess coordinations using asynchronous message passing. Such coordina-
tions can be used to achieve a precalculated joint knowledge, i.e., knowledge
common to several processes. Such interactions are still expensive as they incur
additional overhead. Therefore, an important part of our task is to minimize the
number of interactions and the number of processes involved in such interactions.

2 Preliminaries and Related Work

Definition 1 (Distributed Transition systems). A distributed transition
system A is a fivetuple 〈P , V, S, ι, T 〉:
– P is a finite set of processes.
– V is a finite set of variables, each ranging over some finite domain. A process
p ∈ P can access and change variables in Vp. Thus, V = ∪p∈PVp. We do
not require the sets Vp to be disjoint.

– S is the set of global states. Each state assigns a value to each variable in
V according to its domain.

– ι ∈ S is the initial state.
– T is a finite set of transitions. A transition τ ∈ T consists of an enabling

condition enτ , which is a quantifier-free first order predicate, and a state
transformation fτ . The transitions Tp ⊆ T are associated with process p.
Thus, T = ∪p∈PTp. A transition τ may belong to more than one process and
Pτ = {p|τ ∈ Tp}. Both enabling condition and transformation are over the
variables ∪p∈PτVp.

398 S. Graf, D. Peled, and S. Quinton

Definition 2. A local state s|p of a process p ∈ P is the restriction of a global
state s to the variables in Vp. Similarly, the joint local state s|P of a set of
processes P ⊆ P is the restriction of a global state to the variables in ∪p∈PVp.

For a set of states S of a transition system, we denote the set of local states of
process p by S|p, and, respectively, the set of joint local states for set of processes
P ∈ P by S|P . A transition τ is enabled in a state s when s |= enτ (i.e., s satisfies
enτ). If τ is enabled in s and τ is executed, a new state s′ = fτ (s) is reached.
We denote this by s τ−→ s′.

Definition 3. An execution of a distributed system A is a maximal sequence
s0 s1 s2 . . . such that s0 = ι, and for each i ≥ 0, si

τi−→ si+1 for some τi. A global
state is called reachable if it appears in some execution sequence.

Definition 4. Given a system A, a set of processes P ⊆ P knows in a state
s some property ϕ over V , if s′ |= ϕ for each reachable global state s′ with
s′|P = s|P . We denote this by s |= KPϕ .

When P is a singleton, we often write p for the set {p} as in Kpϕ. It is easy to
see that if s |= KPϕ and s|P = s′|P then also s′ |= KPϕ.

Definition 5. A finite state distributed disjunctive controller [7,12] for a sys-
tem A = 〈P , V, S, ι, T 〉 is a set of automata Cp = (Lp, γp, T

o
p , T

c
p ,→p, Ep), one

per process p in P, where:

– Lp is the set of states of Cp, i.e., its finite memory.
– γp ∈ Lp is the initial state of CP .
– T o

p is the set of transitions observable by process p, satisfying Tp ⊆ T o
p ⊆ T :

only the execution of transitions from T o
p can change the state of Cp.

– T c
p is the set of controllable transitions, where T c

p ⊆ Tp. We require consis-
tency between processes regarding controllability: if τ is involved with several
processes, then it is either controllable by all of them or by none of them.

– →p: Lp × Tp 	→ Lp is the transition function of Cp.
– Ep : S|p×Lp 	→ 2T c

p is the support function, which in each local state returns
the set of controlled transitions of process p that Cp supports (i.e., allows to
proceed, when enabled).

A controller is designed to impose some constraint ψ ⊆ S×T on a given system
A, while not introducing any new deadlock.

Definition 6. A controlled execution of a distributed system A with controllers
Cp for p ∈ P is defined over a set of controlled states G ⊆ S ×Πp∈PLp. Each
controlled state g ∈ G contains some global state s ∈ S, and a state ρp ∈ Lp for
each controller Cp. An execution g0 g1 g2 . . . is a maximal sequence of controlled
states, satisfying that g0 is the controlled state containing the initial states ι of
A and γp for each Cp. Furthermore, for each adjacent pair of controlled states
gi and gi+1 there exists a transition τ such that the following holds:

Achieving Distributed Control through Model Checking 399

1. s τ−→ s′ — where s ∈ S is the state component of the controlled state gi and
s′ ∈ S the one of gi+1.

2. τ ∈ Tp \ T c
p ∪ Ep(s|p, ρp) for at least one process p; that is, either τ is

uncontrollable by p or p supports τ in its current local state and given the
state of its controller Cp.

3. For the states ρi and ρi+1 of controller Cp of gi and gi+1, respectively, if
τ ∈ T o

p , then ρi
τ−→p ρi+1. Otherwise, ρi = ρi+1. That is, Cp changes its

internal state when an observable transition occurs.

We denote by Ac the transformation of A that includes both A and its controllers.

Definition 7. A controller for A achieves a goal ψ ⊆ S × T if each transition
s

τ−→ s′ (as in bullet 1. of Definition 6) satisfies that (s, τ) ∈ ψ.

Note that the goal of the controller is to satisfy an invariant that is not just
over the states (of the original system A), but may also include the immediate
transition out of that state. When no constraints on the transitions are imposed,
we can use the simpler case where ψ ⊆ S.

The definition of a controller allows the use of some finite memory that is
updated with the execution of observable transitions. This can be useful, e.g.,
when constructing a controller based on knowledge with perfect recall [11]. How-
ever, a controller based on simple knowledge, as in Definition 4, does not have
to exercise this capability, and Lp can thus consist of a single state. As in [1], we
fix as a running example a particular property that we want to synthesize: that
of enforcing some priority policy on the distributed system.

Definition 8 (Priority policy). A priority policy Pr = (T,
) for a system
A is defined as a partial order relation
 on the set of transitions T .

Among the transitions enabled in state s, we can identify those with maximal
priority, i.e., enabled transitions such that for any other transition τ ′ enabled
in s, either τ ′
 τ or τ and τ ′ are incomparable. Let maxτ be a predicate that
holds in a state s, i.e., s |= maxτ , when the transition τ has a maximal priority
among the transitions enabled in s.

Definition 9. A prioritized execution of a system A according to a given pri-
ority policy Pr satisfies, in addition to the conditions of Definition 3, that when
si

τi−→ si+1, then also si |= maxτi .

The goal is then to construct a distributed controller for A such that, when run-
ning A together with its controller, only correctly prioritized executions occur.
To prevent the situation where in some state an uncontrollable transition has
lower priority than another enabled transition, we impose the restriction that
uncontrollable transitions always have maximal priority.

Definition 10. For each local state s|p of process p, define the following prop-
erties kp

i based on the knowledge of p in that state.

400 S. Graf, D. Peled, and S. Quinton

– kp
1 =

∨
τ∈Tp

Kpmaxτ : process p can identify a transition τ such that it knows
that τ is enabled with maximal priority.

– kp
2 = ¬kp

1 ∧Kp

∨
q �=p k

q
1: process p does not know whether it has a transition

with maximal priority, but in all the global states s′ with s′|p = s|p some
other process q is in a local state where kq

1 holds. This allows p to remain
inactive without risk of introducing a deadlock.

– kp
3 = ¬kp

1 ∧ ¬kp
2 : p does not know whether or not there is a supported tran-

sition.

kp
1 can be extended to sets of processes: kP

1 =
∨

τ∈∪p∈P Tp
KP maxτ .

Note that kp
1∨kp

2∨kp
3 ≡ true. When the constraint ψ imposed by the controller is

different from the priority policy, the formula kp
1 needs to be changed accordingly;

instead of maxτ , it must reflect the property that executing τ does not invalidate
ψ. If ψ is a state property (ψ ⊆ S), then maxτ can be replaced by the state
predicate wpτ (ψ) (for “weakest precondition”), which reflects the state property
that holds when τ is enabled and ψ holds after its execution.

The construction in [1] checks whether
∨

p∈P k
p
1 holds in all reachable states

of the original system that are not deadlock (or termination). If so, it is sufficient
that each process supports a transition when it knows that it is maximal in order
to enforce the additional constraint ψ (in that case, priority) without introducing
any additional deadlock. When this check fails, it was suggested to monitor and
control several processes together, or to use the more expensive knowledge of
perfect recall (or to use both).

3 A Synchronization Based Approach

In this paper, we suggest a new solution to the distributed control problem, which
consists of synthesizing distributed controllers that allow processes to temporarily
synchronize in order to obtain joint knowledge in those (local) states in which it
is needed. The synchronization is achieved by using an algorithm like α-core [5].
This algorithm allows processes to notify, using asynchronous message passing, a
set of coordinators about their wish to be involved in a joint action. We treat the
synchronizations provided by the α-core, or any similar algorithm, as transitions
that are joint between several participating processes. At a lower level, such
synchronizations are achieved using asynchronous message passing. We assume
that the correctness of the algorithm guarantees the atomic-like behavior of such
coordinations, allowing us to reason at this level of abstraction.

A joint local state s|P satisfying kP
1 indicates that the set of processes P know

how to act in this state by selecting some transition with maximal priority. Our
construction calculates, using model checking for knowledge properties, which
synchronizations are actually needed.

An exact check for the existence of a global (completely synchronized) con-
troller can be based on game theory. Accordingly, one may present the problem
as implementing a strategy for the following two player game. One player, the
environment, can always choose between the enabled uncontrollable transitions,

Achieving Distributed Control through Model Checking 401

while the other player can choose between the enabled controllable ones. The
goal of the controller is that the property ψ is satisfied by the jointly selected
execution. This can be solved using algorithms based on safety games [9].

Our algorithm first calculates the local states and joint local states (synchro-
nizations) providing sufficient knowledge to guarantee that in every global state
at least one process supports some transition. We refer to this set of (joint) local
states as the knowledge table Δ for A. We use it to transform the system into a
controlled system by implementing support to transitions: when the knowledge
is not available locally, we add temporary synchronization between processes,
according to the entries of the knowledge table. Finally, we propose to obtain a
more efficient controller by minimizing the set of coordinations.

3.1 A Set of Synchronizations Providing Sufficient Knowledge

First, we calculate the required knowledge table Δ. The construction of Δ is
performed iteratively, starting with local states, then pairs of local states, triples
etc. At each stage of the construction, Δ contains a set of (joint) local states s|P
satisfying kP

1 .

Definition 11. A set of (joint) local states Δ is an invariant of a system if each
non-deadlock state of the system contains at least one (joint) local state from Δ.

The first iteration includes inΔ, for all p ∈ P , the singleton local states satisfying
kp
1 , i.e. states in which progress of p is guaranteed. With each such local state
s|p we associate the actual transitions τ that make kp

1 hold.
If Δ is not an invariant, we first calculate for each local state not satisfying

kp
1 whether it satisfies kp

2 . Let Up be the set of local states of process p satisfying
¬(kp

1 ∨ kp
2). Now, in a second iteration, we add to Δ pairs (sp, sq) ∈ Up × Uq for

p �= q if there exists a reachable state s such that s|p = sp and s|q = sq, and
furthermore s |= k

{p,q}
1 . Again, we associate with that entry of the table Δ the

transitions τ that witness the satisfaction of k{p,q}
1 for that entry. The second

iteration terminates as soon as Δ is an invariant or if all such pairs of local states
have been classified. In a third iteration, we consider triples of local states from
Up × Uq × Ur such that no subtuple is in Δ, and so forth.

3.2 A Distributed Controller Imposing the Global Property

We transform now the system A into a controlled transition system Ac allow-
ing only prioritized executions. We implement Ac using a set of coordinators
realizing the required synchronization of Δ by an algorithm such as the α-core.

We want to achieve the joint local knowledge promised by the precalculation
of Δ using synchronizations amongst the processes involved. Our construction
guarantees that each time the transition associated with a tuple (s|p1 . . . s|pk

)
from Δ is executed from a state that includes these local components, the prop-
erty ψ we want to impose is preserved. We transform the system A such that
only transitions associated with entries in Δ can be executed.

402 S. Graf, D. Peled, and S. Quinton

If a transition τ is associated with a singleton element s|p in Δ, then the con-
troller for p, at the local state s|p, supports τ . Otherwise, τ is associated with
a tuple of local states in Δ; when reaching any of these local states, the corre-
sponding processes p1 . . . pk try to achieve a synchronization, which consequently
allows τ to execute. This is done according to the protocol of the synchroniza-
tion algorithm that is used. Upon reaching the synchronization, the associated
transition τ is then supported by any of its participating processes. Formally, for
each transition τ associated with a tuple of local states (s|p1 . . . s|pk

), we execute
a transition, enabled exactly in the joint local state with the above components,
and performing the original transformation of τ .

3.3 Minimizing the Number of Coordinators

It is wasteful to include a coordination for each joint local state involving at least
two processes in Δ. We now show how to minimize the number of coordinators
for pairs of the form (s|p, r|q) in Δ. The general version of this method for larger
tuples is analogous. We denote by Δp,q the set of pairs of Δ made of a local
state from process p and one from process q.

A naive implementation may use a coordination for every pair in Δ. Never-
theless, the large number of messages needed to implement coordination by an
algorithm like α-core suggests that we minimize the number of coordinations.
A completely opposite extreme would be to use a unique coordination between
processes p and q. Accordingly, when process p identifies that it may have a
q partner in Δp,q, then coordination starts. When coordination succeeds, the
joint event checks whether the local states of p and q actually appear in Δp,q.
If they do, it provides the appropriate behavior; otherwise, the coordination is
abandoned. In this way, many (expensive) coordinations may be made just to
be abandoned, not even guaranteeing eventual progress.

Consider now a set of pairs Γ ⊆ Δp,q such that if (s, r), (s′, r′) ∈ Γ , then
(s, r′), (s′, r) ∈ Γ (s and s′ do not have to be disjoint, and neither do r and r′).
This means that Γ is a complete bipartite subgraph of Δp,q. It is sufficient to
generate one coordination for all the pairs in Γ . Upon success of the coordination,
the precalculated table Δp,q will be consulted about which transition to allow,
depending on the components s|p and s|q. Thus, according to this strategy,
a sufficient number of interactions is formed by finding a covering partition
Γ1, . . . , Γm of complete bipartite subgraphs ofΔp,q. That is, each pair (s|p, r|q) ∈
Δp,q must be in some set Γi. However, the minimization problem for such a
partition turns out to be in NP-Complete.

Property 1. [4] Given a bipartite graph G = (N,E) and a positive integer
K ≤ |E|, finding whether there exists a set of subsets N1, . . .Nk for k ≤ K of
complete bipartite subgraphs of G such that each edge (u, v) is in some Ni is in
NP-Complete.

We use the following notation: when Γ is a set of pairs of local states, one from
p and one from q, we denote by Γ |p and by Γ |q the p and the q components in

Achieving Distributed Control through Model Checking 403

these pairs, respectively. We apply the following heuristics to calculate a (not
necessarily minimal) set of complete bipartite subsets Γi ⊆ Δp,q covering Δp,q.
We start with a first partition Γ 0

1 , . . . , Γ
0
m0

, and refine it until we obtain a fixpoint
Γ k

1 , . . . , Γ
k
mk

. We decide to start with process p if |Δp,q|p| < |Δp,q|q|, i.e., the
number of elements paired up in Δp,q is smaller for p than for q. Otherwise, we
symmetrically start with q. Let the elements of Δp,q|p be x1, . . . xm0 , and Γ 0

i be
the pairs in Δp,q containing xi. Now, we repeatedly alternate between the q side
and the p side the following step: we check for each two sets Γ l

i and Γ l
j whether

Γ l
i |q = Γ l

j |q. If it is the case, we combine them into a single set Γ l
i ∪Γ l

j . On even
steps, we replace q with p. This is done as long as we can unify new subsets in
this way. The whole process is performed in time cubic in the size of Δp,q.

Figure 1 shows the result for an example. The left-hand side represents the
coordinators induced by Δp,q and the right-side the minimal set of coordinators.
Each Γi contains a single state of q. And indeed, if we start the procedure with
q, the initial partition is already the solution.

process p process q process p process q

s3

r3

r2

r1
s1

r1

r2

r3

s1

s2

r4 r4s3

s2

Fig. 1. Minimizing the number of coordinators

4 Knowledge Based Controllers as a Practical Solution
for the Distributed Control Problem

We now show some connections between the classical controller synthesis prob-
lem (see, e.g., [7]) and knowledge based control. We have provided a solution
to the synthesis of distributed controllers, based on adding interactions between
transitions in order to combine the knowledge of individual processes. In this
section, we want to put the knowledge based solution in the context of the dis-
tributed control problem when adding interactions is not allowed. We first show
an example where the local knowledge is not sufficient for controlling the system,
but where blocking transitions — even when they are known to be maximal —
would allow controlling the system. This example shows that distributed con-
trollers are more general than knowledge based controllers. However, there is
no algorithm that guarantees constructing them: we show that even our limited
problem (and running example) of controlling a system according to priorities is

404 S. Graf, D. Peled, and S. Quinton

already undecidable. This advocates that the construction of knowledge based
controllers, and furthermore, the use of additional synchronization, is a practical
solution for the distributed control problem.

The knowledge approach to control in [6] requires that there is sufficient knowl-
edge to allow any transition of the controlled system that does not violate the en-
forced property ψ. In [1], which we extend here, this requirement is relaxed; the
knowledge must suffice to execute at least one enabled transition not violating ψ
when such a transition exists. In the more general case of distributed controller
design, one may want to block some enabled transitions even if their execution
does not immediately violate the enforced property. This is required to prevent the
transformed system from later reaching deadlocked states, where the controlled
system originally had a way to progress (thus, introducing new deadlocks).

� �

α

δ

β

a

b

γ c

Fig. 2. A system with priorities δ � b � β

Consider a concurrent system, as in Figure 2, with two processes πl (left)
and πr (right), each one of them having initially a nondeterministic choice. The
priorities in this system are δ
 b
 β. Each process can observe only its
own transitions. In the initial state, all four enabled transitions α, γ, a, c are
unordered by priorities, and thus are all maximal. If α is fired and subsequently
a (or vice versa), we reach a global state where process πr does not have any
enabled transition with maximal priority since b
 β. Process πl does, and it can
execute β. Thereafter, since δ
 b, process πl cannot execute δ and must wait for
process πr to execute b. Now, with its limited observability, πl cannot distinguish
between the situation before or after b was executed by πr. Thus πl lacks the
capability, and the corresponding knowledge, of deciding whether to execute δ.
In this state, πr cannot distinguish between the situation before and after β was
executed, and cannot decide to execute b. Accordingly, the local knowledge of
the processes in this example is not sufficient to construct a controller. In the
initial state, both processes can progress freely, only to fall into a situation where
they do not know locally when they can safely progress.

Achieving Distributed Control through Model Checking 405

When a controller is allowed to block transitions even when their execution
does not immediately lead to violation of the property to be preserved, the sit-
uation can be recovered. In the example above, we may choose either to block α
in favor of γ, or to block a in favor of c. Blocking both α and a is not necessary.
This example also shows that there is no unique maximal solution to the control
problem that blocks the smallest number of transitions. Note that an alterna-
tive solution to blocking α or a can be achieved using a temporary interaction
between the processes, as shown earlier in this paper.

It was shown in [10,8] that the problem of synthesizing a distributed controller
is, in general, undecidable. We show here that even when restricting the synthe-
sis problem to priority policies, the problem remains undecidable. The proof for
that is given below. Notice that when we have the flexibility of allowing addi-
tional coordination, as done in this paper, the problem, in the limit, becomes a
sequential control problem, which is decidable.

Theorem 1. Constructing a distributed controller that enforces a priority policy
is undecidable.

Proof. Following [10], the proof is by reduction from the post correspondence
problem (PCP). In PCP, there is a finite set of pairs {(l1, r1), . . . , (ln, rn)}, where
the components li, ri are words over a common alphabet Σ, and one needs to de-
cide whether one can concatenate separately a left word from the left components
and a right word from the right components according to a mutual nonempty
sequence of indexes i1i2 . . . ik, such that li1 li2 . . . lik

= ri1ri2 . . . rik
.

Let i ∈ {1..n}, l̂i be the word lii, i.e., the ith left component concatenated
with the index i. Similarly, let r̂i be rii. We consider two regular languages:
L = (l̂1 + l̂2 + . . .+ l̂k)+ and R = (r̂1 + r̂2 + . . .+ r̂k)+. Now suppose a process πp

executes according to the regular expression l.L.x.a.b+ r.R.x.c.d. The choice of
πp between l and r is uncontrollable. Suppose also that πp coordinates (through
shared transitions) the alphabet letters from Σ with a process πq1 , and the
indexes letters from Σ with another process πq2 . After that, πq1 and πq2 are
allowed to interact with each other. Specifically, πq2 sends πq1 the sequences of
indexes it has observed. Suppose that now πq1 has a nondeterministic choice
between two transitions: α or β. The priorities are set as b
 α
 a and
d
 β
 c. All other pairs of transitions are unordered according to
. If πq1

selects α and r was executed, or πq1 selects β and l was executed, then there is
no problem, as α is unordered with respect to c and d, and also β is unordered
with respect to a and b, respectively. Otherwise, there is no way to control the
system so that it executes the sequence a.α.b or c.β.d allowed by the priorities.

We show by contrapositive that if there is a controller, then the answer to the
PCP problem is negative. Suppose the answer to the PCP problem is positive,
i.e., some left and right words are identical and with the same indexes. Then
process πq1 cannot make a decision: the information that πq1 observed and later
received from πq2 is exactly the same in both cases for the mutual left and right
word. Thus, πq1 cannot anticipate whether c.d or a.b will happen and cannot
make a safe choice between α and β accordingly.

406 S. Graf, D. Peled, and S. Quinton

Conversely, if there is no controller, it means that πq1 cannot make a safe
choice between α and β. This can only happen if πq1 and πq2 can observe exactly
the same visible information for both an l and an r choice by πp.

This means that deciding the existence of a controller for this system would
solve the corresponding PCP problem. It is thus undecidable.

Note that in this proof we do not ensure a finite memory controller, even when
one exists. Indeed, a finite controller may not exist. To see this, assume a PCP
problem with one word {(a, aa)}. To check whether we have observed a left or
a right word, we may just compare the number of a’s that p has observed with
the number of indexes that q has observed.

5 Implementation and Experimental Results

We have implemented a prototype for experimenting with this approach. In our
tool, we use Petri nets to represent distributed transition systems.

This tool first builds the set of reachable states and the corresponding local
knowledge of each process. Then, it checks whether local knowledge is sufficient
to ensure correct distributed execution of the system under study. Let U-states
be global states in which all corresponding local states satisfy ¬kp

1 . The existence
of a U-state means that Δ is not an invariant without adding some tuples for
synchronization. We allow simulating the system while counting the number of
synchronizations and U-states encountered during execution as a measurement
of the amount of additional synchronization required.

The example that we used in our experiments is a variant of the dining philoso-
phers where philosophers may arbitrarily take first either the fork that is on their
left or right. In addition, a philosopher may hand over a fork to one of his neigh-
bors when his second fork is not available and the neighbor is looking for a
second fork as well. Such an exchange (labeled ex) is a way to avoid the well-
known deadlocks when all philosophers take first the fork on the same side. This
example is partially represented by the Petri net of Figure 3.

In our example, places (concerning philosopher β) are defined as follows:

– fork i: the i-th fork is on the table.
– 0forkβ (resp. 2forksβ): philosopher β has no fork (resp. 2 forks) in his hands.
– 1fork l

β (resp. 1fork r
β): philosopher β holds his left (resp. right) fork.

Transitions (concerning philosopher β) play the following role:

– getkl
β (resp. getkr

β), k = 1, 2: philosopher β takes the fork on his left (resp.
on his right). This is his k-th fork.

– eat-and-returnβ: philosopher β eats and puts both forks back on the table.
– exα,β: philosopher α gives his right fork to philosopher β.
– exβ,α: philosopher β gives his left fork to philosopher α .

Processes correspond to philosophers.The transitions defining a processβ have a β
in their name, including the four exchange transitions exα,β, exβ,α, exβ,γ and exγ,β.

Achieving Distributed Control through Model Checking 407

... ...

1fork r
β

fork i
0forkα

0forkβ 0forkγ

1fork l
α

2forksα 2forksγ

1fork l
γ

get2l
β

1fork l
β

fork i+1

get1l
β

2forksβ

exα,β

get2r
β

exβ,γ

exγ,β
exβ,α

eat-and-returnβ

1fork r
α 1fork r

γ

get1r
β

Fig. 3. A partial representation of the dining philosophers (philosopher β)

In Figure 3, transitions related only to philosopher β are drawn with full lines.
Transitions in dashed lines are shared between β and one of his neighbors (α on
the left, γ on the right).

Not controlling exchanges at all allows nonprogress cycles. To avoid them, we
add priorities which allow exchange actions only when a blocking situation has
been reached within some degree of locality.

First variant. We use a priority rule stating that an exchange between philoso-
phers α and β has lower priority than α or β taking a fork. This leads to the
following priorities for each α and β such that α is βs left neighbor:

– exα,β
 get2lα : if α can pick up a left fork, he won’t give his right fork to β.
– exβ,α
 get2rβ : symmetrically if β can pick up a right fork.

In this variant, local knowledge is sufficient. Indeed, when a philosopher α and
both his neighbors are blocked in a state where they all have a left (resp. a right)
fork, then philosopher α has enough knowledge to support an exchange with his
left (resp. right) neighbor. For any number of philosophers, there is no U-state.
Thus, no extra synchronization is needed.

Second variant. Now, to further reduce the number of exchanges, one may decide
that philosopher β may give his left fork to his left neighbor α only if (1) α is
blocked (2) β is blocked and (3) βs right neighbor γ is also blocked (the exchange
of right forks is similar). This translates into adding the following priorities:

– exα,β
 get2lδ , eat-and-returnδ (with δ the left neighbor of philosopher α)
– exβ,α
 get2rγ , eat-and-returnγ (with γ the right neighbor of philosopher β)

408 S. Graf, D. Peled, and S. Quinton

Local knowledge alone cannot ensure here correct distributed execution. How-
ever, binary synchronizations are sufficient in this example to ensure that the
system is always able to move on, for any number of philosophers.

In Table 1, we show results for the second variant with 6, 8 and 10 philoso-
phers. There are two U-states which correspond to the situation where all philoso-
phers hold their left fork, or they all hold their right fork. For computing the
number of synchronizations, we used each time 100 runs of a length of 10,000
steps (i.e. transitions). Note that the number of exchange transitions is identical
to the number of synchronizations.

Table 1. Results for 100 executions of 10,000 steps for the second variant

philosophers 6 8 10

reachable states 729 6561 59049

synchronizations 354 285 237

U-states encountered 253 149 100

At the current stage, the minimization of the set of coordinators has not been
implemented (we use one coordinator per synchronization pair in Δ) and our
tool handles only joint local states consisting of two states.

6 Conclusion

Imposing a global constraint upon a distributed system by blocking transitions
is, in general, undecidable [10,8]. One practical approach for this problem was
to use model checking of knowledge properties [1]. If we allow additional syn-
chronization, the problem becomes decidable: at the limit, everything becomes
synchronized, although this, of course, is highly undesirable. The method pre-
sented in [1] provided a (disjunctive) controller. The problem with that approach
is that in many cases the local knowledge of the separate processes does not suf-
fice. A suggested remedy was to monitor several processes together, achieving
this way an increased level of knowledge.

In the current work we look at the situation where we are allowed to coordinate
between several processes, but only temporarily. First, we can calculate whether
the constraint we want to impose is feasible, when all processes are combined
together. This is done using game theory [9]. If this is the case, we check if we
can control the system based on the local knowledge of processes or temporary
interactions between processes. Of course, our goal is to minimize the number of
interactions, and moreover, the number of processes involved in each interaction.

For achieving a distributed implementation, one can use a multiparty syn-
chronization algorithm such as the α-core algorithm [5]. Based on that, we pre-
sented an algorithm that uses model checking to calculate when synchronization
between local states is needed. The synchronizing processes, successfully coordi-
nating, are then able to use the knowledge table calculated by model checking,

Achieving Distributed Control through Model Checking 409

which dictates to them which transition can be executed. Some small corrections
to the original presentation of the α-core algorithm appear in [3].

The framework suggested in this paper can be used as a distributed imple-
mentation for the Verimag BIP system [2]. BIP is based on a clear separation
between the behavior of atomic components and the interaction between such
components, which is represented using (potentially hierarchical) connectors.
Priorities offer a mechanism to enforce scheduling policies by filtering the set of
interactions that can be fired. So far, implementing BIP systems in a distributed
setting remains a challenging task.

References

1. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority scheduling of distributed
systems based on model checking. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 79–93. Springer, Heidelberg (2009)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)

3. Katz, G., Peled, D.: Code mutation in verification and automatic code generation.
In: TACAS. LNCS. Springer, Heidelberg (to appear, 2010)

4. Orlin, J.B.: Contentment in graph theory: covering graphs with cliques (1977)
5. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implement-

ing multiparty synchronization. Concurrency - Practice and Experience 16(12),
1173–1206 (2004)

6. Rudie, K., Ricker, S.L.: Know means no: Incorporating knowledge into discrete-
event control systems. Transactions on Automatic Control 45(9), 1656–1668 (2000)

7. Rudie, K., Wonham, W.M.: Think globally, act locally: decentralized supervisory
control. Transactions on Automatic Control 37(11), 1692–1708 (1992)

8. Thistle, J.G.: Undecidability in decentralized supervision. System and Control Let-
ters 54, 503–509 (2005)

9. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995)

10. Tripakis, S.: Undecidable problems of decentralized observation and control on
regular languages. Inf. Process. Lett. 90(1), 21–28 (2004)

11. van der Meyden, R.: Common knowledge and update in finite environments. Inf.
Comput. 140(2), 115–157 (1998)

12. Yoo, T.-S., Lafortune, S.: A general architecture for decentralized supervisory con-
trol of discrete-event systems. Discrete Event Dynamic Systems 12(3), 335–377
(2002)

	Achieving Distributed Control through Model Checking
	Introduction
	Preliminaries and Related Work
	A Synchronization Based Approach
	A Set of Synchronizations Providing Sufficient Knowledge
	A Distributed Controller Imposing the Global Property
	Minimizing the Number of Coordinators

	Knowledge Based Controllers as a Practical Solution for the Distributed Control Problem
	Implementation and Experimental Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

