
B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 292–306, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Carbon: Domain-Independent Automatic Web Form
Filling

Samur Araujo, Qi Gao, Erwin Leonardi, and Geert-Jan Houben

Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
{s.f.cardosodearaujo,q.gao,e.leonardi,g.j.p.m.houben}@tudelft.nl

Abstract. Web forms are the main input mechanism for users to supply data to
web applications. Users fill out forms in order to, for example, sign up to social
network applications or do advanced searches in search-based web applications.
This process is highly repetitive and can be optimized by reusing the user’s data
across web forms. In this paper, we present a novel framework for domain-
independent automatic form filling. The main task is to automatically fill out a
correct value for each field in a new form, based on web forms the user has
previously filled. The key innovation of our approach is that we are able to
extract relevant metadata from the previously filled forms, semantically enrich
it, and use it for aligning fields between web forms.

Keywords: Auto-filling, auto-completion, concept mapping, web forms,
semantic web.

1 Introduction

Current applications on the Web show a high degree of user interaction. A large
amount of the data that users input into web applications, is supplied through web
forms. This process of filling out forms is highly repetitive and can be optimized by
intelligently reusing the user’s data across web forms, basically following the
observation that web forms from applications in a similar domain demand the same
data from a user. As a simple example, most sign-up forms require the user’s email
and first name.

Recently, auto-filling and auto-completion emerged as techniques to assist the
users in reusing their data for filling out web forms. Auto-filling is a mechanism for
automatically filling out web forms. It exists as tools, in web browsers, and when the
user visits a web page containing a form, auto-filling can be triggered by a simple
mouse click. Google Toolbar Auto-fill [6] is one of the tools available, however it is
the simplest form of auto-filling, as it only works in sign-up forms that demand the
user’s personal data. Another tool is the Firefox Auto-fill Forms plug-in [1] that is
also limited to the user’s personal data. However, it allows the user to extend the pre-
configured fields. Both approaches demand the user to fill out an application-
proprietary form containing some basic fields (e.g., name, address, zip code, etc.)
before they can be used to automatically fill out web forms. The Safari browser has an
auto-fill feature that reuses data from previously filled out forms for automatically

 Carbon: Domain-Independent Automatic Web Form Filling 293

filling out different forms with this data. However, its matching mechanism is only
based on the string matching of field names. Auto-completion is a feature provided
by many applications for suggesting a word or phrase that the user wants to enter
without the user actually entering it completely. Most of the browsers have native
support for auto-completion. It stores values that have been filled before and based on
this history it recommends values for a field that has been already visited. However,
this mechanism demands user interaction for each field that needs to be filled out.

In this paper, we propose and validate a new concept-based approach for
automatically filling out web forms re-using data from previously filled out forms.

Manipulating (the code behind) web forms is not a trivial task, due the high
heterogeneity among them. Web forms have different shapes, different numbers of
fields, different labels, different representation for values, and different purposes. To
be able to derive proposed values for a new form from the knowledge obtained from
the already filled out forms, a concept-based structure is used. This helps to represent
the knowledge from the filled out forms at a conceptual level and exploit that
conceptual level to reason about the proposal for values for fields from the new form.
Figure 1 shows an example of the translation of a simple string representing a field
name to a meaningful concept in some known vocabulary, for example, WordNet for
forms in English. With these concepts we can thus construct a conceptual model with
which it is then possible to connect (the concepts from) the target form and its fields
to (the concepts from) the data gathered from the previously filled out forms. An
essential step in that process is the mapping of ‘target’ concepts to ‘source’ concepts.
Several options are possible here and we will choose in this paper a semantic-based
approach to show the feasibility. Figure 2 shows a mapping between two form fields
using a path of concept relations.

Fig. 1. Example Translation Fig. 2. Example Mapping

The concept-based structure and mappings can thus be used to suggest values for a
target form to be filled out automatically. In this respect, we see two main notions that
exist in current techniques, auto-completion and auto-filling, which we mentioned
before. The main difference between them is that auto-completion guesses a value
from a fixed and defined set of values (e.g. rows in a database column) based on what
the user types and only applies for text fields (not for select, checkbox or radio button
fields), while auto-filling guesses a value based on the concept that the field

294 S. Araujo et al.

represents and applies to all types of fields. Both techniques are instantiations of a
general (meta) model for automatically filling out forms that discerns the following
aspects:

• Mapping technique: Mapping can use string or semantic-based techniques.
• Data source: Proposals for values to be filled out can be made on knowledge

gathered through forms that have been filled out previously, from a pre-
defined list of values extracted from a database (e.g. list of cities), or it can
be gathered by explicitly forcing the user to fill out an application-specific
form, like in the case of Google Toolbar Autofill.

• Field identifier: For matching fields the name of the INPUT tag can be used
or the label of the field (the latter is not always available), for example a field
can have the label “First Name” and the name “F_name”.

• User-intervention: User interaction can be required as in the case of
completion or it can be omitted in the fully automatic case.

• Domain-dependence: Approaches can be using domain-specific intelligence,
like Firefox Autofill, or be domain-independent.

Existing auto-filling approaches are typically string-matching-based tools. They do
not consider the concepts associated with the field label and/or field name.
Consequently, they are not able to exploit available background knowledge. A simple
example is the use of synonym relationships between concepts (e.g., city is the
synonym of town).

In this paper, we present Carbon, a domain-independent automatic web form filling
approach that exploits the semantic of concepts behind the web form fields. Carbon
uses semantic techniques to accumulate and connect the data from previously filled
out forms to the target form to be filled out. Carbon goes beyond the state of the art in
auto-filling since it can be applied for auto-filling any kind of form in the English
language.

This paper is organized as follows. After this motivation, we discuss the related
work in Section 2. In Section 3, we present a deep look at web forms, with an
evaluation of the distribution of field labels in web forms. Section 4 presents our
approach for auto-filling forms. Section 5 elaborates on our Carbon implementation in
details by describing the architecture and data model for the implementation. We then
present an experimental validation of the approach, with a study of the performance
of the approach in Section 6. Finally, Section 7 concludes this paper.

2 Related Work

Form Extraction. Extracting labels from web forms is a challenging and non-trivial
problem. In [17], Raghavan et al. presented HiWE (Hidden Web Exposer) that used a
layout-based information extraction technique to find candidate labels and a set of
heuristic rules to compute and rank the distance between form elements and candidate
labels. In [8], He et al. presented a technique for extracting labels from web forms by
capturing the textual layout of elements and labels, and based on their position the
relationships between elements and labels are determined. Recently, Nguyen et al.

 Carbon: Domain-Independent Automatic Web Form Filling 295

presented LABELEX for extracting element labels from web form interfaces by using
learning classifiers [14] and they introduced the idea of mapping reconciliation.

Auto-completion. Auto-completion is a feature found in web browsers, e-mail
clients, text editors, query tools, etc. Based on the user’s input, it predicts a word or
phrase that a user wants to type before the user types the whole word or phrase. One
of the early auto-completion facilities was command line completion in the Unix
Shell. In [2], the authors introduced an auto-completion feature for full-text search
using a new compact indexing data structure called HYB to improve the response
time of this feature. In most web browsers, an auto-completion feature is available for
completing URLs, suggesting search terms, and for auto-completing form fields. In
the context of web form filling, the web browser typically reuses previously inputted
form data for the prediction of values for fields to be filled out in a new form.
Recently, Hyvönen et al. [9] generalized the idea of syntactic text auto-completion
onto the semantic level by matching the input string to ontological concepts.

Auto-filling. In spite of the usefulness of auto-completion in helping users to fill out
forms, auto-filling is a step further and often more suitable for this task because it
does not require explicit user intervention. With an auto-completion tool, a user has to
type at least one letter for each field (and thus helps the tool with the proposal of
values), where with auto-filling the only action needed is to signal the system to start
its process of finding suggestions; note that tools can allow the user to confirm or
adjust the given proposal. A number of auto-filling tools [1,6,18] require the users
beforehand to fill out a predefined “form” (outside the use of any form-based
application) that will act as the source of data for later when the tools attempts to
automatically fill out a target form. Note that the predefined form usually has a very
small number of fields that are typically related to standard personal information [18].
Even though some of the tools have the capability of adding extra fields and defining
rules [1,18], the users have to explicitly define them beforehand. This task is not
trivial and is often perceived as cumbersome by many users. Another tool, called
iMacros [10], records the interactions between a user and a web page when she fills
out a form and then generates macros for these interactions. These macros are then
later used to automatically fill out the same form. While this tool is useful if the user
wants to fill out one kind of form with different values (e.g., in the process of
searching for products using various keywords), it cannot be used to automatically fill
out different forms. In [21], a framework called iForm was presented for
automatically filling out web forms using data values that are implicitly available in a
text document given by the user as input.

Syntactical Matching and Semantic Matching. A host of works [11,13,19,22] has
addressed the problem of measuring syntactical similarity between strings, and in
many approaches for predicting form values such work is used. They measured how
similar two strings are by computing the minimum number of operations needed to
transform one string into the other [13,19], by computing the numbers of matches and
transpositions, or by indexing the strings by their pronunciations [11]. Semantic
matching is a technique used to identify information that is semantically related.
Typically, this is achieved through concept-based structures that represent semantic
relations between concepts, and the matching process then tries to find connections
between concepts based on such relations. The semantic relations are obtained from

296 S. Araujo et al.

ontologies such as WordNet, DBpedia, etc. In [3,4,5,15] the problem of mapping and
aligning ontologies was addressed. Tools exist [12,16] that are specifically built to
measure semantic similarity between concepts. WordNet::Similarity [16] is a freely
available software package that implements a variety of semantic similarity and
relatedness measures based on information from the lexical database WordNet1. The
DBpedia Relationship Finder [12] is a tool for exploring connections/relationships
between objects in a Semantic Web knowledge base, specifically DBpedia2.

3 Web Forms

Web forms are the main input mechanism for users to enter data for web sites and
web applications. They occur in different shapes, different numbers of fields, different
labels, different values representations (e.g., ‘Brazil’, ‘BR’ or ‘BRA’), and different
purposes (e.g., for signing up, searching or commenting). Forms in HTML are by far
the most used ones on the web, but there also exist forms in others standards such as
XFORMS3 and Adobe Flash4. Our focus in this paper is on forms expressed in HTML
(also XHTML).

In this section we consider the format of forms and report on a study into the nature
of forms, reporting how the form elements are distributed and shared between forms.

3.1 Format of Data in HTML Forms

A web form is a set of HTML INPUT tags enclosed by a tag HTML FORM that when
rendered in the browser, allows users to enter data in a HTML page. After a user has
filled out a web form, it can be submitted to a server application for further
processing. Each INPUT field in a form is associated with a name (e.g.,
“user[‘First_Name’]”), a value (e.g., “John”), and a type (e.g., checkbox, textarea,
text, select, radio button or button). Also, a form field can be associated to a human-
readable label (e.g. “First name”). In spite of the fact that the HTML specification
defines the tag LABEL to represent a human-readable label, it is not widely used by
HTML programmers and most forms represent labels in an alternative way. However,
even that is not always the case, as form fields can come without label, can have
labels in a position hard to detect by machines, or can have meaningless names. In the
last case, it is hard to process it for auto-filling, due to the fact that we cannot map an
opaque field (with a meaningless name such as “$er32”) using any matching strategy.

3.2 Nature of Web Forms

For the challenge of filling out web forms automatically, the first step is to
“understand” how similar web forms can be. One way to measure this is by looking for
the field labels, and how these labels (or concepts) are distributed and shared between
forms. For this purpose, we conducted a study using a typical dataset on web forms.

1 http:// wordnet.princeton.edu
2 http://dbpedia.org/About
3 http://www.w3.org/TR/2009/REC-xforms-20091020/
4 http://www.adobe.com/products/flashplayer/

 Carbon: Domain-Independent Automatic Web Form Filling 297

3.2.1 Experimental Setup
When we consider web forms in a specific domain, there are two characteristics that
are worth further investigation. One phenomenon is that the same labels occur
distributed in different forms. For example, in the book domain a label named
“author” occurs in many different forms. Another characteristic is that different labels
can be connected to a single concept. For example, both of the labels “postal code”
and “zip code” can be associated with one concept representing the “postal code”.
Identifying and exploiting these two phenomena, we have the capability of a
significant reduction from labels to concepts.

In an experiment to evaluate these characteristics mentioned above, we adopted the
TEL-8 dataset [20], a manually collected dataset, which contains a set of web query
interfaces of 447 web sources across 8 domains in the Web, including Airfares,
Automobiles, Books, Car Rentals, Hotels, Jobs, Movies, and Music Records. We note
that they are typical domains on the Web and that this dataset captures the structures
of forms on the Web nowadays. For each domain, we gathered all labels from TEL-8
files and we grouped them into sets of distinct labels. Then we categorized these
distinct labels by mapping them to concepts, manually. Afterwards, we investigated
the distribution of labels and concepts in the forms for each domain and analyzed the
reduction from labels to concepts.

3.2.2 Experimental Results
The results show the distribution of forms, (distinct) labels and concepts and also the
average number of labels and concepts in the forms, for each domain (see Table 1). In
Table 1 we see the number of forms per domain and the number of labels that are
contained in all those forms. We see also how many of those labels are distinct labels.
Further, we see how many concepts are associated with these distinct labels.

Table 1. Nature of Web Forms

We define a measure named “Reduction Rate” to represent the reduction from the
labels to the concepts in the web forms due to the conceptual mapping. Given one
specific domain, let Nc be the number of concepts and Nl be the number of labels. The
reduction rate is defined as follows:

The reduction rate ranges from 42% to 71% and is 55% in average. The higher this
number is, the fewer concepts we need to cover all the fields in one domain. In Table
1, we can see that the reduction rate is composed of two parts. The first part of the

298 S. Araujo et al.

reduction is from labels to distinct labels, due to the fact that labels are repeated
among different forms. The second part is caused by the application of concept
mapping that groups distinct labels into clusters of concepts that they represent. The
intelligent exploitation of these two reduction steps is the main motivation for our
approach.

4 Conceptual Framework for Form Auto-Filling

The main idea behind our approach for automatically filling out web forms is to
extract data from previously filled out forms and propose them for the new form.
Thus we exploit the observations we made in the study presented above. The use of
data from previously filled out forms, increases, progressively, the variety of forms
that can be automatically filled, since, once a user manually has filled out a form in a
specific domain (e.g., social networks or hotels), this data is then available as a solid
basis for automatically filling out other forms in the same domain.

This approach allows Carbon to go beyond of the state of the art of available auto-
filling tools by exploiting the semantic overlap of knowledge contained in the
previously filled out forms.

4.1 Extracting Concepts from Web Forms

We represent a form field by a conceptual structure containing the field name, the
label, the type, the values, the URL of the page containing the form, the domain of the
URL, the universal unique identifier of the form, and the update date. The process of
auto-filling forms starts with the instantiation of this conceptual structure by
extracting metadata from web forms that the user fills out. Afterwards this metadata is
stored and enriched for further use. The next step is to instantiate a similar structure
for a target form, and subsequently to map this instance to the previously obtained
knowledge structure, to obtain suggestions for values for empty fields. The mapping
between form representations can exploit any attribute of the knowledge structure, but
in the implementation for the experiment described in this paper, we just exploited the
attribute representing the form field’s name.

As we typically do not have access to (the database behind) the web application,
we choose to collect the form field metadata in real-time - i.e. after a user fills out the
form and before submitting it. We extract this metadata from the DOM5 (Document
Object Model) tree of the HTML page that contains the form. The DOM is a
programming API for documents that has a logical structure that represents a
document as a tree of objects. By navigating through the HTML DOM tree we can
access any web page element and their attributes, including form input fields. Carbon
processes the DOM tree, extracting name, value, and type of the HTML INPUT tags.
The Carbon version used in this experiment does not implement a label extraction
strategy, however this can be easily plugged into the architecture.

The extraction intelligence applied for previously filled out forms and for an
(empty) target form is logically similar, but obviously occurs at distinct moments.

5 http://www.w3.org/DOM/

 Carbon: Domain-Independent Automatic Web Form Filling 299

4.2 Mapping Web Form Concepts

The main idea behind Carbon is to connect fields at the conceptual level. For
example, Carbon can connect the (different) concepts “city” and “town” using
WordNet, a large lexical database for English, for bringing two words together that
represent synonyms.

Carbon starts by mapping a field name string to atomic syntactic elements or
lexical words in WordNet. Carbon splits the string by eliminating all non-letter
characters, e.g., the string “reg.name[last]” is split into “reg”, “last” and “name”.
Afterwards, Carbon builds a tree of prefixes and suffixes for each of the thus split
strings and looks for English terms in the WordNet database that match these
substrings. So, in the example it only retrieves (the concepts for) the terms “last” and
“name”. By exploiting WordNet collations (sequences of words that go together, such
as “zip code”), Carbon also retrieves the term “last name”. Carbon uses WordNet
synsets (a set of word or collation synonyms) to retrieve synonyms of the found
terms. So, Carbon maps the field name string to all WordNet terms thus found, e.g.,
“reg.name[last]” is mapped to the WordNet terms “name”, “last”, “last name”,
“surname” and “family name”.

Like this, Carbon can use this knowledge to propose values for a target form field.

5 Auto-Filling Web Forms with Carbon

Carbon has two main parts: Carbon Client and Carbon Server. Figure 3 shows an
overview of the interactions between the Carbon Client and Carbon Server.

Fig. 3. Client-Server Interactions.

Carbon Server is a semantic application that stores and enriches metadata about
web forms in order to recommend values in the process of automatically filling forms.
Carbon Client is a browser extension that processes web pages extracting relevant
metadata from previously filled out web forms, extracts relevant metadata from an
empty target form, and automatically suggests values for the empty form’s fields.

5.1 Carbon Client

Carbon Client was implemented as a Greasemonkey6
 script. Greasemonkey scripts

can be easily added to the Firefox browser and can be enabled or disabled with a
simple mouse click. Carbon uses it to have access to the DOM tree of the HTML page

6 http://www.greasespot.net/

300 S. Araujo et al.

that the user visits. The communication between Carbon Client and Carbon Server is
done via the XMLHttpRequest7 object.

Since Carbon uses previously filled out forms for the purpose of auto-filling an
empty form, Carbon Client extracts metadata about all forms that the user fills out.
For doing this, for every page that the user visits Carbon Client accesses the DOM
tree, searches for all input elements, and adds to them a Javascript8 Onblur DOM
event. An Onblur event triggers a function when the user moves the focus from an
HTML INPUT element to another. At this moment, Carbon Client extracts the
metadata (name, value, and type) of the input tag that triggered the event and sends,
together with the page URI, such information to Carbon Server via an AJAX9 request.
Once the request has been received, Carbon Server processes it and stores it.

When the user visits a page with an empty form, Carbon Client can be triggered to
automatically fill out the form. This triggering can occur upon the explicit request of
the user or automatically whenever the user visits a page with an empty form. At that
moment, for each field, Carbon Client extracts metadata, and sends, with the page
URI, an autofill request to Carbon Server. Carbon Server retrieves suggestions for
values that fit those fields. Carbon Client uses these values to fill out the empty fields.

5.2 Carbon Server

Carbon Server plays a main role in Carbon as it is responsible for storing and
enriching metadata about web forms. Also, Carbon Server implements the logic
behind the mapping of form fields.

Carbon Server is a web application that was implemented using the Ruby on
Rails10 framework. As storage technology we use Sesame11, an RDF (Resource
Description Framework)12 open source framework. We also use ActiveRDF13, a Ruby
library for manipulating RDF data following the object-oriented paradigm. Figure 4
gives an overview of the Carbon Server implementation architecture.

Carbon Server uses 3 different data models: a Form Data Model, a Configuration
Data Model, and an Enriched Data Model. All these models are instances of the
Carbon Ontology that we will not detail in this paper due to space limitations. Using
RDF as the representation model, Carbon can be easily extended to include any
relevant metadata about web forms. Also, RDF is the foundation of the Semantic
Web, and a lot of open data is being published in this environment, such as WordNet
that Carbon uses in the process of mapping form fields. The main benefit of the use of
such a model is that Carbon can consume data from any external source in the
Semantic Web, and thus provides a flexible and extensible environment that allows
for the definition of new rules and their application in the conceptual mapping of
fields. For example, Carbon could use dictionaries in other languages, in addition to
the English version of WordNet that is already used in the process of mapping fields.

7 http://www.w3.org/TR/XMLHttpRequest/
8 https://developer.mozilla.org/en/About_JavaScript
9 http://en.wikipedia.org/wiki/Ajax_%28programming%29
10 http://rubyonrails.org/
11 http://www.openrdf.org/
12 http://www.w3.org/RDF/
13 http://www.activerdf.org/

 Carbon: Domain-Independent Automatic Web Form Filling 301

Fig. 4. Carbon Server Implementation Architecture

The Form Data Model stores the conceptual structures of forms and fields, for all
previously filled out forms. For example, the concept for the field with the label “Last
Name”, the name “reg.lastName”, the type “text”, and the value “Donald” is
represented as follows in the Carbon Ontology using the RDF notation N314.

@prefix carbon: <http://www.carbon-autofill.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
<carbon:7382> <rdfs:type> <carbon:Field> .
<carbon:7382> <carbon:fieldLabel> ‘Last Name’ .
<carbon:7382> <carbon:fieldId> <carbon:7382> .
<carbon:7382> <carbon:originalFieldName> ‘reg.name[last]’ .
<carbon:7382> <carbon:name> ‘regnamelast’ .
<carbon:7382> <carbon:formUri>
<https://secure.gettyimages.com/register/> .
<carbon:7382> <carbon:urlDomain> <https://secure.gettyimages.com> .
<carbon:7382> <carbon:updated_at> ‘1254390507.71’ .
<carbon:7382> <carbon:fieldValue> ‘Donald ‘ .

Following this data model, all form data is stored in a Sesame repository called
FormData.

The Enriched Data Model stores extra knowledge about instances of the Form
Data Model. It can store any meta-knowledge about the conceptual structures; in the
implementation that we used in the current experiment it stores concepts that are
related to fields’ names and labels. The example below shows the enrichment related
to a form field labeled “Last Name”:

@prefix carbon: <http://www.carbon-autofill.org/> .
@prefix wordnet: <http://www.w3.org/2006/03/wn/wn20/instances/> .
<carbon:7382> <carbon:relatedto> <wordnet:synset-last_name-noun-1> .
<carbon:7382> <carbon:relatedto> <wordnet:synset-surname-noun-1> .
<carbon:7382> <carbon:relatedto><wordnet:synset-family_name-noun-1> .

Here, the WordNet synset consisting of the words or collations “last name”,
“surname” and “family name” is associated to the concept 7382 that represents the
form field labeled “Last Name”. The property relatedto defined in the Carbon

14 http://www.w3.org/DesignIssues/N3Resources

302 S. Araujo et al.

Ontology was used to denote this association. Following this data model, all enriched
data is stored in a Sesame repository called EnrichedData.

The Configuration Data Model allows to extend the knowledge from the Form
Data Model and the Enriched Data Model. For example, the concepts “street” and
“address” are not synonyms in the WordNet vocabulary, so Carbon will not map these
two. Even another semantic matching strategy such as WordNet::Similarity[16], will
give them a low degree of similarity. However, the designer can add extra triples in
this repository (using Carbon’s named graph), see the example below, which extends
the WordNet synsets enabling Carbon to perform better for this example.

@prefix carbon: <http://www.carbon-autofill.org/> .
@prefix wordnet: <http://www.w3.org/2006/03/wn/wn20/instances/> .
<wordnet:synset-address-noun-1><wordnet:containsWordSense>

<wordnet:wordsense-street-noun-1> .

The triple above connects these two concepts using the property

“containsWordSense” which is the main relation exploited by Carbon to determine
the similarity among concepts.

6 Evaluations

In this section, we present two sets of evaluations. In the first set of experiments we
want to see how many concepts in a new form have been found in the previously
filled out forms. We define this as concept completeness. In the second set of
experiments, we examine the effectiveness of Carbon in terms of precision and recall.
Both sets of experiments use the TEL-8 (see Section 3.2) data set with Airfares,
Automobiles, Books, Hotels, Jobs, and Movies domains.

6.1 Concept Completeness: Definition and Evaluation

We first formally define the notion of concept completeness. Given a set CS of
concepts related to fields in a set S of filled out forms and a set Cf of concepts related
to fields in a new form f, the concept completeness of form f given a set of filled
forms S is defined as follows:

The value of concept completeness ranges from 0 to 1. If it equals 1, then it means
that all the concepts in the new form are completely covered by the concepts in the
previously filled out forms. If the concept completeness equals 0, then the previously
filled forms are not useful in filling out the new form.

For all the forms in a domain d in the TEL-8 data set, we did the following:
1) We mapped the fields in all forms to WordNet concepts. In this set of

experiments, we used the field labels that were extracted and available in the
data set and mapped them to WordNet concepts.

 Carbon: Domain-Independent Automatic Web Form Filling 303

2) For each form f in domain d, we determined all possible subsets of forms in
domain d with size r, and used these subsets as sets of source forms. Then, for
each subset Sr, we computed the Completeness(f,Sr).

3) Finally, we computed the concept completeness average grouped by d and r.

Table 2 shows the concept completeness for 6 different domains based on the concept
mapping performed by human experts (denoted by “Experts”) and by our Carbon
Server (denoted by “Carbon”). The results of the Experts act as benchmark for
Carbon. Note that r denotes the number of forms that a user has previously filled out
and in this table r ranges from 1 to 6.

Table 2. Concept Completeness Evaluation Results

We see that the concept completeness of a new form becomes higher if a user has
filled out more forms previously. For Carbon, the concept completeness of the
“Airfares” domain increases from 25.21% to 65.14%. For Experts, it increases from
49.24% to 80.10%. On average the concept completeness of Carbon and Experts for r
= 6 is 50.73% and 62.31%, respectively. This means that even though a user has only
filled out 6 forms, the concepts in the filled forms can cover 50-62% of the concepts
in a new form. The uncovered concepts in the new form are usually application-
specific, meaning that those concepts occur only in a small number of forms.

We also see that the increment rate becomes slower as the user fills out more
forms: the more forms a user fills out, the fewer new concepts can be discovered. For
example, the increment rate of the concept completeness for Carbon in the “Hotels”
domains drops from 11% when r=2 to 4% when r = 6. A similar result is also revealed
for Experts. Checking all results in the 6 domains, we found the increment in all
domains to become rather small (all below 5%) when r reaches 6. Considering the
increase of computation complexity and the decrease in increments for the concept
completeness, we therefore set the maximum value of r to 6.

We also observe how the concept completeness of human experts is (expectedly)
always higher than Carbon’s. On average, the concept completeness of Carbon
reaches almost 74% of that of the human experts. It shows that, while there is still
room for improvement, the ability of this Carbon version to map labels and concepts
is quite close to the one of human experts.

6.2 Effectiveness: Performance Measures and Dataset

In our second evaluation, precision and recall are used as the performance measures
[7]. Precision expresses the proportion of retrieved relevant fields among all the

304 S. Araujo et al.

retrieved fields, while recall expresses the proportion of retrieved relevant fields from
the total relevant fields:

The basic idea of this experiment is to compare the forms filled by the human experts
according to users’ profiles to those filled by Carbon automatically. In detail it is
divided into four steps described as follows:

1) We randomly chose 10 forms for each domain as the test set.
2) We collected 6 user profiles according to the real personal information, for

each domain. These profiles will be used as the facts for filling the forms.
3) In order to evaluate the performance of Carbon, we needed to set up a

benchmark for the evaluation by filling out 10 forms for each domain
according to these user profiles. This was accomplished by human experts.

4) For each domain we then chose one available form as a target form. Based
on the results of the first set of experiments, another 6 forms were selected
randomly as the source forms, representing the forms that users have filled
out formerly. Then Carbon filled the target form automatically according to
the knowledge extracted from these source forms. Repeating this process for
8 different target forms, we calculated the precision and recall for the
domain.

6.3 Effectiveness Evaluation Results

Table 3 summarizes the results of the effectiveness evaluation on Carbon in terms of
precision and recall for each domain. The precision ranges from 0.54 to 0.81 and on
average is 0.73. The recall ranges from 0.42 to 0.61 and on average is 0.53. We can
see that the recall is less than ideal. There are two explanations for this recall result.
One is that when we use the field names instead of the labels in the experiments, some
of the field names, e.g. “inp_ret_dep_dt_dy”, “DEST-1”, etc., are not meaningful
enough to be parsed to words and mapped to concepts. Sometimes the field name is
meaningful, but Carbon fails to map it to related concepts. Taking the example of the
Airfare domain that has the lowest recall, among all the 77 relevant fields in this
domain, 18 fields are meaningless. If we ignore these fields and re-calculate the
recall, it will increase to 0.55 from 0.42. Furthermore, we observe that in those cases
where there are labels they are more meaningful than the field names, and despite that
these labels could improve Carbon’s precision and recall, using the names we have
shown the capability of the semantic matching approach for auto-filling forms.

Table 3. Precision and Recall Results

 Carbon: Domain-Independent Automatic Web Form Filling 305

7 Conclusion

Filling out forms is an essential aspect of many web applications and many users are
confronted with a large degree of repetition in this process across applications. Tools
exist to help users in this process, but an optimization step is not only welcome but
also feasible if we are able to integrate form data across web forms. In this paper, we
presented a novel framework for domain-independent automatic form filling. The
main challenge behind the approach is to provide good suggestions for the values to
be used for each field in a new form to be filled out, and to do so based on the web
forms the user has previously filled out. We have approached this challenge with a
number of innovative steps in which we are able to extract relevant metadata from the
previously filled forms, semantically enrich this metadata, and use it for aligning
fields between web forms. We have also given details of experimental validations of
the approach. First, to describe the nature of the problem and challenge, we have done
a study of the distribution of field labels in web forms. Second, we have conducted a
study of the performance of the approach with the Carbon implementation.

As our focus in this paper is to show how to exploit the semantics of concepts
behind the web form fields and to use semantic-based techniques to automatically fill
out web forms, several usability and privacy issues could not be discussed in this
paper. Amongst them are web form domain resolution, encrypted transfer of data and
the management of form data for multiple users. The first issue can effectively be
resolved by plugging a web page classifier into Carbon’s architecture. Thus, Carbon
is able to select data from previously filled forms that are classified in the same
domain as the target form. The second and third issues can also be addressed, by
adding an encryption and authentication system into Carbon’s architecture,
respectively.

In the continuation of this research, we study how a hybrid approach that uses a
combination of auto-filling and auto-completion performs in terms of effectiveness,
based on the observation that auto-completion could be exploited over the enriched
knowledge structure that was created over the form data stored in the user's history.

References

1. Autofill Forms – Mozilla Firefox Add-on, http://autofillforms.mozdev.org/
2. Bast, H., Weber, I.: Type Less, Find More: Fast Autocompletion Search with a Succinct

Index. In: The Proceedings of SIGIR 2006, Seattle, USA (August 2006)
3. Bouquet, P., Serafini, L., Zanobini, S.: Semantic Coordination: A New Approach and an

Application. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 130–145. Springer, Heidelberg (2003)

4. Doan, A.H., Domingos, P., Halevy, A.Y.: Learning to Match the Schemas of Data
Sources: A Multistrategy Approach. Machine Learning 50(3), 279–301 (2009)

5. Doan, A.H., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to Map between
Ontologies on the Semantic Web. VLDB Journal, Special Issue on the Semantic
Web 12(4), 303–319 (2003)

6. Google Toolbar Autofill, http://toolbar.google.com/
7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman,

San Francisco (2001)

306 S. Araujo et al.

8. He, H., Meng, W., Yu, C.T., Wu, Z.: Automatic Extraction of Web Search Interfaces for
Interface Schema Integration. In: the Proceedings of WWW 2004 - Alternate Track Papers
& Posters, New York, USA (May 2004)

9. Hyvönen, E., Mäkelä, E.: Semantic Autocompletion. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 739–751. Springer, Heidelberg
(2006)

10. iOpus Internet Macros, http://www.iopus.com/
11. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3, pp.

394–395. Addison-Wesley, Reading (1973)
12. Lehmann, J., Schüppel, J., Auer, S.: Discovering Unknown Connections - the DBpedia

Relationship Finder. In: The Proceedings of CSSW 2007, Leipzig, Germany (September
2007)

13. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

14. Nguyen, H., Nguyen, T., Freire, J.: Learning to Extract Form Labels. In: the Proceedings
of VLDB 2008, Auckland, New Zealand (August 2008)

15. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: The Proceedings of AAAI/IAAI 2000, Austin, USA (July-
August 2000)

16. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet: Similarity - Measuring the
Relatedness of Concepts. In: The Proceedings of AAAI/IAAI 2004, San Jose, USA (July
2004)

17. Raghavan, S., Garcia-Molina, H.: Crawling the Hidden Web. In: The Proceedings of
VLDB 2001, Rome, Italy (Septmeber 2001)

18. RoboForm, http://www.roboform.com/
19. Smith, T., Waterman, M.: Identification of Common Molecular Subsequences. Journal of

Molecular Biology 147(1), 195–197 (1981)
20. TEL-8 Query Interfaces,

http://metaquerier.cs.uiuc.edu/repository/datasets/tel-8/
21. Toda, G.A., Cortez, E., de Sá Mesquita, F., da Silva, A.S., de Moura, E.S., Neubert, M.S.:

Automatically Filling Form-based Web Interfaces with Free Text Inputs. In: the
Proceedings of WWW 2009, Madrid, Spain (April 2009)

22. Winkler, W.E.: The State of Record Linkage and Current Research Problems. Statistics of
Income Division, Internal Revenue Service Publication R99/04 (1999)

	Carbon: Domain-Independent Automatic Web Form Filling
	Introduction
	Related Work
	Web Forms
	Format of Data in HTML Forms
	Nature of Web Forms

	Conceptual Framework for Form Auto-Filling
	Extracting Concepts from Web Forms
	Mapping Web Form Concepts

	Auto-Filling Web Forms with Carbon
	Carbon Client
	Carbon Server

	Evaluations
	Concept Completeness: Definition and Evaluation
	Effectiveness: Performance Measures and Dataset
	Effectiveness Evaluation Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

