
B. Benatallah et al. (Eds.): ICWE 2010, LNCS 6189, pp. 16–34, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Toward Approximate GML Retrieval Based on
Structural and Semantic Characteristics

Joe Tekli1, Richard Chbeir1, Fernando Ferri2, and Patrizia Grifoni2

1 LE2I Laboratory UMR-CNRS, University of Bourgogne
21078 Dijon Cedex France

{joe.tekli,richard.chbeir}@u-bourgogne.fr
2 IRPPS-CNR, via Nizza 128, 00198 Roma, Italy

{fernando.ferri,patrizia.grifoni}@irpps.cnr.it

Abstract. GML is emerging as the new standard for representing geographic
information in GISs on the Web, allowing the encoding of structurally and
semantically rich geographic data in self describing XML-based geographic
entities. In this study, we address the problem of approximate querying and
ranked results for GML data and provide a method for GML query evaluation.
Our method consists of two main contributions. First, we propose a tree model
for representing GML queries and data collections. Then, we introduce a GML
retrieval method based on the concept of tree edit distance as an efficient means
for comparing semi-structured data. Our approach allows the evaluation of both
structural and semantic similarities in GML data, enabling the user to tune the
querying process according to her needs. The user can also choose to perform
either template querying, taking into account all elements in the query and data
trees, or minimal constraint querying, considering only those elements required
by the query (disregarding additional data elements), in the similarity evaluation
process. An experimental prototype was implemented to test and validate our
method. Results are promising.

Keywords: GML Search, Ranked Retrieval, Structural & Semantic Similarity,
GIS.

1 Introduction

In recent times, the amount of spatial data, available in standalone as well as web-
based Geographic Information Systems (GISs), is becoming huge and accessible to
users who are generally non-experts. Most of the time, such users query data without
a deep knowledge about the spatial domain they want to query, or they may not know
how to formulate meaningful queries, resulting in a reduction of the quality of the
query results. In order to overcome such limitations, the introduction of some query
relaxation mechanisms, by which approximate and ranked answers are returned to the
user, represents a possible solution. The need of answers that approximately match the
query specified by the user requires the evaluation of similarity.

Another important new trend in GISs is the adoption of XML-based formats,
particularly GML (Geography Mark-up Language) [18] as the main standard for

 Toward Approximate GML Retrieval Based on Structural 17

exchanging geographic data and making them available on the Web. This language is
based on W3C’s XML (eXtensible Mark-up Language) encoding, as an efficient and
widely accepted means for (semi-structured) data representation and exchange. In
fact, a geographic entity in GML, consists of a hierarchically structured self-
describing piece of geographic information, made of atomic and complex features
(i.e., containing other features) as well as atomic attributes, thus incorporating
structure and semantically rich data in one entity. Hence, the problem of evaluating
GML similarity in order to perform approximate querying, can be reduced to that of
performing XML-based search and retrieval, considering the nature and properties of
geographic data and data requests.

A wide range of algorithms for comparing semi-structured data, e.g., XML-based
documents, have been proposed in the literature. These vary w.r.t. the kinds of XML
data they consider, as well as the kinds of applications they perform. On one hand,
most of them make use of techniques for finding the edit distance between tree
structures [3, 17, 26], XML documents being modeled as Ordered Labeled Trees
(OLT). On the other hand, some works have focused on extending conventional
information retrieval methods, e.g., [1, 6, 8], so as to provide efficient XML similarity
assessment. In this study, we focus on the former group of methods, i.e., edit distance
based approaches, since they target rigorously structured XML documents (i.e.,
documents made of strictly tagged information, which is the case of GML data, cf.
Section 3) and are usually more fine-grained (exploited in XML structural querying
[23], in comparison with content-only querying in conventional IR [22]). Note that
information retrieval based methods target loosely structured XML data (i.e.,
including lots of free text) and are usually coarse-grained (useful for fast simple XML
querying, e.g., keyword-based retrieval [8]).

Nonetheless, in addition to quantifying the structural similarities of GML features,
semantic similarity evaluation is becoming increasingly relevant in geospatial data
retrieval as it supports the identification of entities that are conceptually close, but not
exactly identical. Identifying semantic similarity becomes crucial in settings such as
(geospatial) heterogeneous databases, particularly on the Web where users have
different backgrounds and no precise definitions about the matter of discourse [21].
Thus, finding semantically related GML modeled items, and given a set of items,
effectively ranking them according to their semantic similarity (as with Web
document retrieval [13]), would help improve GML search results.

In this study, we present the building blocks for a GML retrieval framework,
evaluating both structural and semantic similarities in GML data, so as to produce
approximate and ranked results. Our query formalism is based on approximate tree
matching as a simple and efficient technique to query GML objects. It allows the
formulation of structure-and-content queries with only partial knowledge of the data
collection structure and semantics. In addition, our method allows both template and
minimum constraint querying. According to the latter interpretation, the GML answer
entity could contain additional elements w.r.t. those required by the query, such
elements being disregarded in similarity evaluation. Yet, following the former
strategy, all query and data elements are equally considered. The user can also tune
the GML similarity evaluation process, by assigning more importance to either
structural or semantic similarity, using an input structural/semantic parameter.

18 J. Tekli et al.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
state of the art in GML search methods and related XML similarity issues. Section 3
discusses the background and motivations of our study. In Section 4, we develop our
GML approximate query evaluation approach. Section 5 presents our preliminary
experimental tests. Section 6 concludes the paper and outlines future research
directions.

2 State of the Art in GML and XML Retrieval, and Related Issues

Conventional geographic information science and retrieval have been concerned with
managing and searching digital maps where geometry plays a major role (e.g., spatial
browsing, exact querying based on geographic coordinates, …) [11]. Nonetheless,
little support has been provided for managing geographic information based on text,
in which references to locations are primarily by means of place names and textual
descriptions, in addition to the geospatial data itself [10]. In this context, very few
approaches have been proposed for GML-based geographic data search and retrieval
in particular.

The few existing methods for managing and querying GML-based geographic
information have tried to map GML data to classic spatial DBMS (e.g., Oracle
Spatial, DB2 Spatial, PostGIS, …), e.g., [19, 27, 31]. This is connected with the
genesis of GML, which was born as an interchange format for heterogeneous
geographic database systems. Such methods usually underline the semi-automatic
mapping of the GML application schema (describing the geographic data) to a bunch
of object/relational schemas. They extend XML data storage in traditional DBMS to
consider geospatial properties of GML (e.g., adding dedicated structures for storing
geographic coordinates). Having mapped the GML data into object/relational DB
structures, corresponding geographic data can be hence processed for classic DB
querying. While such techniques might be efficient w.r.t. storage and indexing, they
are limited to exact querying and retrieval functions, and do not allow approximate
and ranked search results.

On the other hand, approximate querying methods developed for XML, e.g., [1, 6,
7, 14], cannot be straightforwardly applied to GML. First, such methods would have
to consider the semantic richness of text-based geographic data in order to perform
relevant GML querying. Second, most of these methods are based on underlying IR-
concepts (most address the INEX evaluation campaigns) and target loosely structured
XML (including lots of free text). They can be generally criticized for not sufficiently
considering the structural properties of XML [20] (and consequently GML, which
usually underlines rigorously structured data, due to the structured nature of
geographic information).

Some methods have tackled the problem of searching rigorously structured XML
data, by exploiting the concept of approximate tree matching [9, 23, 24]. In [23], the
author propose an approach based on tree edit distance for evaluating the similarity
between XML query and data trees. Similarity is evaluated in terms of the total cost
needed to transform the query tree into one embedded in the data tree, and is used to
rank the results. In a subsequent study [24], the authors propose to combine
approximate tree embedding with TF-IDF ranking in evaluating query and data tree

 Toward Approximate GML Retrieval Based on Structural 19

similarity. The classical notion of term (as a piece of text) is extended to structural
term (as a sub-tree). Methods in [23, 24] only focus on the structural features of XML,
disregarding semantic similarity. A method based on a similar approximate tree
embedding technique is provided in [9] for querying MPEG-7 XML documents. Here,
the authors introduce semantic similarity assessment between query and data tree
labels, based on a dedicated knowledge base describing MPEG-7 concepts. Yet, the
approach does not produce ranked results (it returns a Boolean value indicating
whether the query tree is embedded or not in the data tree).

3 Background and Motivation

3.1 A Glimpse on GML

The Geography Markup Language (GML) [18] is an XML encoding for the transport
and storage of geographic information, where real world entities can be represented as
sets of GML features. Geometric features are those with properties that may be valued
geometrically (e.g., types Point, Line, Polygon…, with geometric coordinates
designating their positions, extents and coverage). Remaining non-geometric features
provide textual descriptions of the geographic entity at hand. For instance, to model a
Hotel in GML, one would define non-geometric features, such as Name (Text), Rank
(Number), Address (Text), … and geometric ones, e.g., Location (Point), Area
(Polygon), …

Features/attributes and corresponding types, in a given GML modeled entity, are
defined via the GML application schema to which the document, containing the GML
entity model, conforms. The GML schema defines the features and attributes of the
GML documents they describe, as well as their structural dispositions and the rules
they adhere to in the documents. Similarly to schemas in traditional DBMS, GML
schemas are valuable for the protection, indexing, retrieval and exchange of
corresponding documents [18]. Figure 1 shows a sample GML document and part of
its corresponding GML schema.

<?xml version=“1.0”>
<xmlns:gml=“http://www.opengis.net/gml” City.xsd …>
<City name= “Rome”>

<ArtisticGuide>
<Monuments>

<Cathedral name= “St Peter”>
<Style>Renaissance</Style>
<Location>

<Point>
<Coordinates>

<Latitude>
<Degrees>41</Degrees>
<Minutes>52</Minutes>

</Latitude>
 …
</Coordinates>

</Point>
</Location>
…

</Cathedral>
</Monuments>

 </ArtisticGuide>
</City>

<?xml version=“1.0”>
<xs:schema xmlns:gml="http://www.opengis.net/gml" …>

<element name="City" type=="CityType"/>
<complexType name="CityType">

 <sequence> <element name = "ArtisticGuide" type ="ArtisticGuideType"/>…
 </sequence>
 <attribute name=”Name” type=”String”>
 </complexType>
<complexType name="ArtisticGuideType">
 <sequence> <element name = "Monuments" type=="MonumentsType"/>

</sequence>
</complexType>
<complexType name="MonumentsType">
 <sequence> <element name="Cathedral" type="CathedralType"/> …
 </sequence>
</complexType>
<complexType name="CathedralType">
 <sequence>
 <element name=”Style” type=”String”>
 <element name=”Location” type=”LocationType”> …
 </sequence>
 <attribute name="Name" type="string"/>
</complexType> …

Fig. 1. Sample GML document and part of the corresponding GML application schema

20 J. Tekli et al.

3.2 Querying GML Data

In order to allow efficient approximate and ranked GML querying on the Web, we
underline the need for a technique to search GML data where users can express queries
in the simplest form possible, taking into account the structured nature of GML, in a
way that less control is given to the user and more of the logic is put in the ranking
mechanism to best match the user’s needs. In other words, we aim to simplify, as much
as possible, the query model and predicates (developed in the following section)
without however undermining query expressiveness. In this context, we distinguish
between two different kinds of GML queries, i) template where the user specifies a
sample snapshot of the GML data she is searching for (e.g., a piece of map, providing a
somewhat complete description of the requested data), or ii) minimal constraint where
the user only identifies the minimal requirements the data should meet in order to
belong to the query answer set (e.g., providing a small description, or an approximate
location to pinpoint a given geographic object). For instance:

− Q1: “Find Churches built prior to 1600”.
− Q2: “Find Cities containing gothic churches”.
− Q3: “Pinpoint Locations of churches in the city of Rome”.
− Q4: “Find all restaurants situated at latitude 41 degrees 55 minutes North, and longitude 12

degrees 28 minutes East”.

While queries Q1-3 are solely user-based, queries combining minimal constraint user
preferences and geo-coordinates could be equally relevant. Consider for instance
query Q4 where the user searches, via her mobile GPS device, for restaurants in the
vicinity of her current location. Such queries could also be viewed as of partial
Template style, due to the presence of rather detailed geographic information provided
by the GPS device.

Note that in this study, we do not aim to define a GML querying language (i.e., a
formal syntax following which a GML query should be written), but rather the
underlying querying framework. The user could formulate the query using plain text
(guided by a dedicated GUI), or via some predefined syntax (e.g., a GML document
fragment, or a pictorial representation converted into GML [5]) to be represented in
our query model.

In addition, we emphasize on the need to consider the semantic meaning of GML
entity descriptions and corresponding textual values, as a crucial requirement to
perform approximate GML querying. For instance, a user searching for cities with
cathedrals of Gothic style (query Q1), would naturally expect to get as answers cities,
counties or towns containing either basilicas, cathedrals, churches or temples which
are of either Gothic, Medieval or Pre-renaissance styles, ranked following their
degrees of semantic relevance to the original user request. The impact of semantic
similarity on approximate GML querying is further discussed in the following section.

4 Proposal

4.1 GML Data and Query Models

As shown above, geographic entities in GML represent hierarchically structured
(XML-based) information and can be modeled as Ordered Labeled Trees (OLTs)

 Toward Approximate GML Retrieval Based on Structural 21

[28]. In our study, each GML document is represented as an OLT with nodes
corresponding to each subsumed feature and attribute. Feature nodes are labeled with
corresponding element tag names. Feature values (contents) are mapped to leaf nodes
(which parent nodes are those corresponding to their features’ tag names) labeled with
the respective values. To simplify our model, attributes are simply modeled as atomic
features, corresponding nodes appearing as children of their encompassing feature
nodes, sorted by attribute name, and appearing before all sub-element siblings. [30]

Values could be of different types (text, number…), and user derived types could
also be defined [18]. In the following, and for simplicity of presentation, we consider
the basic text, number and date types in our discussion (from which derive most data-
types, including geometric ones, e.g., point, polygon…). Note that our GML tree
model itself, and the GML querying approach as a whole, are not bound to the types
above, and could consider any other data-type, as we will show subsequently.

Definition 1 - GML Tree: Formally, we represent a GML document as a rooted
ordered labeled tree G = (NG, EG, LG, TG, gG) where NG is the set of nodes in G, EG ⊆
NG × NG is the set of edges (feature/attribute containment relations), LG is the set of
labels corresponding to the nodes of G (LG = FlG U FvG U AlG U AvG such as FlG
(AlG) and FvG (AvG) designate respectively the labels and values of the features
(attributes) of G), TG is the set of data-types associated to the feature and attribute
nodes of G (TG= {GeoEntity} U FT U AT, having FT = AT = {Text, Number, Date}),
and gG is a function gG : NG → LG, TG that associates a label l∈LG and a data-type
t∈TG to each node n∈NG. We denote by R(G) the root node of G, and by G’ G a
sub-tree of G ●

Definition 2 - GML Tree Node: A node n of GML tree G = (NG, EG, LG, TG, gG) is
represented by a doublet n = (l, t) where l∈LG and t∈TG are respectively its label and
node data-type. The constituents of node n are referred to as n.l and n.t respectively
(Figure 2) ●

n.l n.t

Fig. 2. Graphical representation of GML tree node n

Value data-types in our GML tree model are extracted from the corresponding GML
schema. In other words, in GML tree construction time, the GML document and
corresponding schema are assessed simultaneously so as to build the GML tree.
Textual values are treated for stemming and stop word removal, and are mapped to
leaf nodes of type Text in the GML tree. Numerical and date values are mapped to
leaf nodes of types Number and Date respectively. As for the GML feature/attribute
nodes themselves, they are assigned the data-type GeoEntity, their labels
corresponding to the geographical entity names defined in the corresponding GML
schema. To model the GML data repository, we connect all GML trees to a single
root node, with a unique label (e.g., ‘Root’).

Consider for instance the GML data repository in Figure 3. It is made of two GML
document trees describing City geographic entities (cf. extracts of GML document
and schema in Figure 1). Geometric coordinates are depicted for the geographic entity

22 J. Tekli et al.

Root

City Geo

Name

Rome Text Monuments

ArtisticGuide

Cathedral Tag

StyleName

St Peter Text Renaiss. Text

Church

StyleName

Text St Mary Gothic

Name

Dijon

County

Monuments

ArtisticGuide

Cathedral

StyleName

St Benigne Text Medieval Text

Location

Coverage ...

Foundation
T1 T2

T3

S1 S2

1370

Foundation

1350 Date Date

Geo Geo

Geo

Geo

Geo

Geo

Geo Geo Geo Geo

Geo

Geo Geo

Geo

Geo

Geo

Location

Coordinates Geo

Point

Geo

Text

Geo

Geo

Geo Geo Geo

...

Latitude Geo Longitude Geo

Degrees Geo Minutes Geo Degrees Geo Minutes Geo

41 Num 52 Num 12 Num 27 Num

Geo Dir

North Text East Text

Geo Dir

Fig. 3. Extract of a sample GML data repository (Geo stands for GeoEntity)

describing St Peter cathedral in Rome (latitude and longitude coordinates), and are
omitted for remaining GML entities for clarity of presentation. Recall that most
geographic data-types can be expressed in terms of basic types Text, Number and
Date, which is the case of element Point (of derived GML PointType).

On the other hand, our definition of a GML query is simple and consists of a GML
tree, similarly to GML documents, with special leaf nodes to represent query
predicates. A query with an Or logical operator is decomposed into a disjunctive
normal form [23], and is thus represented as a set of GML trees, corresponding to the
set of conjunctive queries.

Definition 3 - GML Query: It is expressed as a GML tree, Q = (NQ, EQ, LQ, TQ, gQ,
nd) (cf. Definition 1) encompassing a distinguished node nd underlining the matches in
the data tree that are required as answers to the query (i.e., the query’s return clause).
The query’s root node R(Q) designates its search scope/context. Its set TQ
encompasses the GeoEntity type for distinguishing GML geographic entities, and
predicate types P_ti corresponding to every GML value data-type ti considered in the
GML data model (e.g., TQ = {GeoEntity} U {P_Text, P_Number, P_Date}) ●

Definition 4 - GML Query Node: It is a GML tree node (cf. Definition 2) with
additional properties to represent predicates. With n.t = P_ti (predicate corresponding
to GML data-type ti), the node’s label n.l underlines a composite content made of the
predicate operator n.l.op and value n.l.val (e.g., leaf node Q1[2] of query Q1 in Figure
4 is of Q1[2].l.op = ‘<’ and Q1[2].l.val = ‘1600’, having Q1[2].t = P_Date, which
underlines that the predicate value ‘1600’ is of type Date) ●

Note that each data-type has its own set of operators (e.g., {=, <, ≤, >, ≥}1 for numbers
and dates, and {=, like, …} for text). GML query trees, corresponding to the sample
queries provided in Section 3.2, are depicted in Figure 4. Recall that query trees can
be constructed via a dedicated GUI, which would suggest, on-the-fly, the list of
possible query nodes following the context of the query at hand.

1 The difference operator (≠) is omitted due to its particular processing (to be addressed in an

future study).

 Toward Approximate GML Retrieval Based on Structural 23

Church GeoEntity

Foundation

P_Date< 1600

City

Church

= Gothic P_Text

Q1 Q2

Query distinguished node

Q21

GeoEntity

GeoEntity

GeoEntity Coordinate Geo

Latitude Geo Longitude Geo

Degrees Geo Minutes Geo

= 41 P_Num = 52 P_Num = 12 P_Num = 27 P_Num

Restaurant GeoEntity

Degrees Geo Minutes Geo

Q4

= Rome

City

Church

Location

Q3

GeoEntity

P_Text GeoEntity

GeoEntity

Geo-coordinates would be generated via a GPS
device, as supplement to user preferences

Fig. 4. Sample GML query trees

To the exception of the containment topological operator implicitly encoded in the
GML hierarchy itself (cf. queries Q2 and Q3), we do not consider explicit spatial and
temporal operators (e.g., far, near, adjacent to, …) in our current approach. These
underline composite computational operations (e.g., a location point is near another
location point if their distance, computed based on their coordinates, is below a
certain threshold) and would induce more complex GML document and query graph
structures instead of simple trees (introducing different kinds of cross links
connecting GML entities). Recall that our current study sets the foundations toward
approximate GML querying, to be consequently extended in addressing spatio-
temporal relations.

Definition 5 – Predicate Satisfaction: Given a predicate GML query node qi, and a
data node sj, sj satisfies qi (sj |= qi) if:

− The data node type corresponds to that of the query (si.t ≈

qi.t, i.e., ∀ tr ∈{Text,
Number, Date}, qi.t = P_tr ∧ sj.t = tr),

− The data node label sj.l verifies the logical condition defined by qi.l ●

For instance, leaf node T2[6] of data tree T2 in Figure 3, having T2[6].l = ‘1350’ and
T2[6].t = ‘Date’, satisfies predicate node Q1[2] of query Q1 in Figure 4, with Q1[2].l
= ‘<1600’ and Q1[2].t = ‘P_Date’.

Definition 6 - GML Query Scope: Given a GML query Q, the scope of Q is
identified by its root node R(Q), and corresponds to the GML data sub-trees, in the
data repository, having identical or semantically similar enough root nodes as that of
the query. ●

We assume that the user defines, with the query, the kind of GML data she is looking
for, i.e. the scope/context of her query. If for instance the root of the query is labeled
Restaurant, then GML data in the context of GML data entity Restaurant, or
semantically similar entities such as Pizzeria, Bar, … would naturally interest the
user.

Definition 7 - Template and Minimal constraint querying: A GML query Q could
be either evaluated as a i) template of the GML data the user is searching for, ii) or
could represent the minimal constraints the data should meet to belong to the query
answer set. In the former case, all GML query and data nodes would be considered in

24 J. Tekli et al.

query/data similarity evaluation. Following the latter strategy, only elements required
by the query tree are taken into account in query/data similarity evaluation, additional
elements in the data tree being disregarded in the evaluation process. ●

Note that geographic queries most likely follow the minimal constraint style, the user
usually specifying her information needs in the simplest form possible (cf. queries Q1,
Q2 and Q3 in Figure 4). Nonetheless, template querying could be particularly useful in
search-by-document and search-by-image systems for instance, where the query could
be a whole geographic document or a piece of map the user is searching for in the
geographic repository. A template style query could be any of the sub-trees S1, S2,
T1… in Figure 3.

4.2 GML Query Evaluation

The goal of this work is to develop a method for searching a GML data repository in
order to identify portions of data that exactly or approximately match user requests.
Having modeled both GML data and queries as trees, GML query evaluation can be
reduced to the problem of searching the various data sub-trees, in the data repository,
corresponding to the query’s search scope (i.e., with matching root nodes), identifying
those that share structural and semantic similarities with the query tree. The result of
the query would be a set of data nodes matching the query’s distinguished node,
ranked by the similarity degree between the query tree and corresponding data
candidate answer sub-tree. Thus, we propose a GML querying framework based on
the concept of tree edit distance as a widely known and efficient means for comparing
XML-based tree structures [3, 4, 17]. In addition to evaluating GML data structure,
our method also integrates semantic similarity assessment [12, 13], so as to capture
the semantic meaning of GML element labels/values.

A simple motivating example, underlining the need to consider semantic similarity
in GML querying, is that of evaluating query Q2 of Figure 4, against the GML data
repository G in Figure 3. Using structural-only similarity evaluation, one can realize
that the only GML data tree to (actually) fulfill the data request of Q2 (searching for
Cities containing Cathedrals of Gothic Style) is S1 (describing the City of Rome,
containing data tree T2 describing the St. Mary Church which is of Gothic style). That
is due to the structural similarity between sub-tree Q21 and T2. However, one can
recognize that data tree S1 (describing the County of Dijon) also fulfills the data
request of query Q2, since it contains tree T3 (describing the St. Benigne Cathedral
which is of Medieval style). This answer goes undetected using structure-only
similarity evaluation, since the semantic similarity between City/County,
Church/Cathedral and Gothic/Medieval are missed.

In summary, our GML querying method consists of three main components: i) CAT
Identification component for identifying GML data Candidate Answer Trees
(following the query’s scope), ii) GML Tree Comparison component for evaluating
the structural and semantic similarity between the query tree and each of the candidate
answer trees, iii) and the Query Answer Identification component for recognizing the
GML data elements, in each data candidate answer tree, to be returned to the user
(following the query’s distinguished node). The overall system architecture is
depicted in Figure 5.

 Toward Approximate GML Retrieval Based on Structural 25

Approximate
and ranked

answers

GML query tree Q

GML data
Repository

CAT
Identification

Struct-CBS

e-TED

Sem-RBS

GML Tree Comparison

Query Answer
Identification

Set of CATs
corresponding to query Q

Query tree Q

GML Querying
Framework

Parameter

Weighted {SN}

Parameter QType

Fig. 5. Simplified activity diagram of our GML querying approach

4.2.1 GML Candidate Data Tree Identification
The first step in assessing a query is to identify its search scope. Following the
traditional IR logic, whole physical files are considered as candidate answers.
Nonetheless, GML documents differ in their granularity: some documents may contain
information about monuments, others about cities containing hundreds of monuments
(cf. Figure 3).

Obviously, it is not relevant to retrieve the entire city when the user is searching for
certain monuments. Hence, the GML query search scope should be identified
dynamically, w.r.t. the query at hand.

Following our GML data and query model, the query scope (cf. Definition 6) can
be identified as the set of GML data sub-trees (which we identify as Candidate
Answer Trees, CATs), in the data repository, having identical, or semantically similar
enough, root nodes as that of the query (i.e., same/similar label, with the same data-
type). Consider for instance query Q1, searching for churches that have certain
characteristics. When considering root node identity, query Q1’s CATs would be all
data sub-trees having root node label Church, i.e., data tree T2. When taking into
account semantic similarity, Q1’s CATs would also encompass T1 and T3 of root nodes
Cathedral. With queries Q2 and Q3, answer candidates would be data sub-tree S1 (of
root node City) when considering node identity, and would include S2 (of root node
County) when considering semantic similarity.

Definition 8. Candidate Answer Tree: Given a GML node similarity measure
SimGML, reference semantic networks {SN} = {SNGeo, SNText} for evaluating the
semantic similarity between GML GeoEntity and Text node labels, and a semantic
similarity threshold α, the set of candidate answer trees QCAT, for a given query Q, in a
GML data repository G, QCAT = {S / S G ∧ ((R(Q) = R(S) if α =1) ∨
SimGML(R(Q), R(S), {SN}) ≥ α otherwise)} ●

Our semantic similarity threshold also serves as a structural/semantic similarity
parameter, underlying the extent of structural/semantic similarity considered while
identifying candidate answers. It allows the user to assign more importance to the
structural or semantic characteristics of GML data in answering the query at hand.

− For α = 1, only CATs with root nodes identical to that of the query are the
only ones considered. This corresponds to purely structural querying.

26 J. Tekli et al.

− For 0 < α <1, CATs with root nodes of semantic similarity higher than α are
considered. As α decreases, the size of the answer set QCAT will increase,
following the semantic similarities between query and CAT root nodes.

− For α = 0, all data sub-trees in the GML data repository are considered as
CATs.

Parameter α is exploited throughout the querying framework to determine the amount
of structural/semantic similarity considered in query/CAT comparison (cf. Section
4.2.2).

As for GML node similarity SimGML, it is evaluated w.r.t. the nodes’ constituents,
i.e. their labels and types and is developed subsequently.

4.2.2 GML Tree Comparison
Having identified the set of CATs corresponding to the query at hand, the GML tree
comparison component evaluates the structural and semantic similarity between the
query tree and each of the CATs, so as to provide the user with approximate and
ranked results.

Our GML query/CAT tree comparison component combines and extends two recent
approaches that target XML structure and semantic similarity respectively [25, 26]. It
consists of four main modules for: i) identifying the Structural Commonality Between
two XML Sub-trees (Struct-CBS) [26], ii) quantifying the Semantic Resemblance
Between two XML Sub-trees (Sem-RBS) [25], and iii) computing Tree Edit Distance
(TED). In short, the TOC algorithm makes use of Struct-CBS [26] and Sem-RBS [25] to
structurally and semantically compare all sub-trees in the GML query tree and data tree
(CAT) being compared. The produced sub-tree similarity results are consequently
exploited as edit operations costs (node update, node insertion, tree insertion…) in an
extension of Nierman and Jagadish [17]’s main edit distance algorithm. Here, e-TED
identifies our extended edit distance algorithm (Figure 5).

Hence, the inputs to the GML tree comparison component are as follows:

− The GML query tree and data tree (CAT) to be compared,
− Parameter α ∈ [0, 1] enabling the user to assign more importance to the

structural or semantic aspects of the GML query and data trees (CAT),
− Parameter QType enabling the user to chose between template or minimal

constraint querying.
− Reference semantic networks {SN}={SNGeo, SNText} to be utilized for

semantic similarity evaluation.

The GML tree comparison component outputs the similarity (edit distance) value
between the pair of query tree and data tree (CAT) being compared, based on the sum
of corresponding edit operations costs. Hereunder, we first i) develop the GML node
semantic similarity measure SimGML exploited in computing edit operations costs, and
then ii) show how the main tree edit distance algorithm e-TED exploits edit operations
costs, and considers both template and minimal constraint querying in the GML
query/data comparison process. Note that we skip the details concerning the inner-
workings algorithms Struct-CBS and Sem-RBS mentioned above, since they have been
thouroughly described in [25, 26].

 Toward Approximate GML Retrieval Based on Structural 27

4.2.2.1 GML Node Similarity Measure
As shown in Section 4.1, GML data (query) node labels either consist of geographic
entity names, i.e., nodes of type GeoEntity, or geographic feature/attribute values
(predicates), mainly Text, Number and Date (cf. Definitions 2 and 5). Obviously, it is
meaningless to compare nodes encompassing different types of data (e.g., GeoEntity
names with nodes bearing information of type Date or Number). Hence, we compute
GML node similarity between corresponding node labels, given that the concerned
nodes are of matching data-types, making use of similarity measures dedicated to the
data-types at hand. We particularly focus on the semantic similarity SimSem between
nodes bearing conceptual information, i.e., nodes of types GeoEntity and Text, where
information can be described via groups of concepts, organized in knowledge bases or
semantic networks. Here, exsiting semantic similarity measures (e.g. Lin [12], Wu
and Palmer [29]…) could be exploited, taking into account the concerned reference
semantic network:

− We define SNGeo as a semanitc network describing the semantic relations
between the different geographical entities defined in the GML
application schema (describing the data at hand), and exploit it in
evaluating semantic similarity between GeoEntity node labels,

− We also exploit SNText as a more generic semantic network describing
concepts found in everyday language (e.g., WordNet [15]), to compare
GML element/attribute textual values.

As for Number and Date labels, they bear non-conceptual information, i.e.,
information that cannot be described with concepts, organized in knowledge bases.
Various methods for comparing such non-conceptual information has been addressed
in classic database systems [16], e.g.:

() 1 2
1 2

1 2

1
| . . |

. , .
| . | | . |Number

n l n l
Sim n l n l

n l n l
−

−=
+

A similar (yet more intricate) variation could be exploited for comparing dates.
Formally, given a GML query node qi and a data node sj, and considering the basic
data-types mentioned above (GeoEntity, Text, Number and Date):

SimGML(qi, sj,{SN})=

 1 if sj qi
 SimSem(qi.l, sj.l, SNGeo) else if qi.t = sj.t = ‘GeoEntity’
 SimSem(qi.l.val, sj.l, SNText) else if qi.t = P_tr sj.t = ‘Text’
 SimNumber(qi.l.val, sj.l) else if qi.t = P_tr sj.t = ‘Number’
 SimDate(qi.l.val, sj.l) else if qi.t = P_tr sj.t = ‘Date’
 0 otherwise

 (1)

Recall that si |= qi underlines predicate satisfaction (Definition 5), i.e., query and data

nodes are of corresponding types qi.t ≈ sj.t, such as the data node satisfies the logical
condition specified by the query. Similarity is obviously maximal (=1) when the data
node satisfies the query’s predicate node. If both query and data nodes underline the
same data-type, similarity is evaluated following the corresponding similarity
measure. Yet, if data-types are different, similarity is minimal (=0). Note that
additional data-types could be considered in the same manner, by exploiting
corresponding similarity measures.

28 J. Tekli et al.

4.2.2.2 Edit Operations Costs
Here, we provide the cost scheme for the update operation, as an example on how
GML node similarity is exploited in computing edit operations costs. Remaing tree
edit operations costs (i.e., node insertion/deletion, and tree insertion/deletion) follow
similar costs schemes, integrating structural and semantic similarity scores
accordingly. Given a GML query node q∈Q (Definition 4) and GML data tree node s
∈ S (Definition 2), the cost of the update operation Upd(q, s) applied to q and
resulting in GML query node q’ such as (s=q’ if q.t=‘GeoEntity’) ∨ (s q’
otherwise) (i.e., if q is of type predicate, P_ti), would vary as:

CostUpd(q, s, α, {SN}) = GML |=1 (1) Sim (q, s, {SN}) if ((q s) (s q))
 0 otherwise

α− − × ≠ ∧⎡ ⎤
⎢ ⎥⎣ ⎦

Parameter α is the structural/semantic parameter utilized in the CAT Identification
component to assign more importance to either structural or semantic similarities:

− For α = 1, only label equality/difference is considered in computing edit
operations costs. Consequrently, e-TED will be considering the structural
similarity between the query sub-tree QSb (rooted at node q) and the CAT
tree.

− For α = 0, label semantic similarity is considered between corresponding
GML node and CAT node labels. Hence, e-TED will evaluate the structural
and semantic similarity between the sub-tree QSb (rooted at q) and the CAT
tree.

4.2.2.3 TED Algorithm Extended to Template/Minimal Constraint Comparisons
In short, e-TED starts by computing the cost of updating the root nodes of the trees
being compared (Figure 6, line 4). Then, it computes the costs of deleting every first
level sub-tree in the query tree (lines 5-10), and those of inserting every first level
sub-tree in the CAT data tree (lines 10-16). Here, both structural and semantic
similarity evaluation are considered when assigning edit operations costs (as briefly
described above, [25, 26]).

On one hand, all (structurally and/or semantically weighted) operations are
considered when performing template querying (i.e., all query/data tree elements are
considered, which comes down to the classic TED formulation [17]). On the other
hand, to allow minimal constraint querying, our e-TED disregards node and tree
insertion operations in the computation process (Figure 6, lines 9 and 17). In other
words, all additional elements in the CAT data tree will be disregarded in computing
similarity, only considering those required by the query. Consequently, the algorithm
recursively computes all combination of insertion, deletion and update operations to
identify those yielding the minimum edit distance, i.e., the minimum cost edit script
(lines 11-20). For instance, the result of comparing query Q3 with data sub-tree S1,
following the minimal constraint strategy, is depicted in Figure 7. Here, only nodes
required by the query are considered in the computation process, additional data
nodes being disregarded (cf., edit distance mappings and mapping scores,

 Toward Approximate GML Retrieval Based on Structural 29

Algorithm e-TED()
Input: Query Tree Q and data tree S, parameter for structural/semantic weighting, QType

parameter, weighted semantic networks {SN}
Output: Edit distance between Q and S

Begin
M = Degree(Q) // The number of first level sub-trees in Q. 1
N = Degree(S) // The number of first level sub-trees in S. 2

Dist [][] = new [0...M][0…N] 3
Dist[0][0] = CostUpd(R(Q), R(S), , {SN}) //Update operation 4

For (i = 1 ; i M ; i++) { Dist[i][0] = Dist[i-1][0] + CostDelTree(Qi) } 5

For (j = 1 ; j N ; j++) 6
{ 7

If (QType=’Template’) {Dist[0][j] = Dist[0][j-1] + CostInsTree(Sj) } 8
Else {Dist[0][j] = Dist[0][j-1]} // QType = ‘Minimal Constraint’ 9

 } 10
For (i = 1 ; i M ; i++) { 11

For (j = 1 ; j N ; j++) { 12
 Dist[i][j] = min{ 13

Dist[i-1][j-1] + TED(Qi, Sj), //Dynamic programming 14
Dist[i-1][j] + CostDelTree(Qi), 15
If (QType=’Template’) { Dist[i][j-1] + CostInsTree(Sj) } 16
 Else { Dist[i][j-1] } // QType=‘Minimal Constraint’ 17

 } 18
 } 19

} 20
Return Dist[M][N] // Sim =1 / (1 + Dist)) 21

End

Fig. 6. Edit distance algorithm TED

City GeoEntity

Name Tag

Rome Text Monuments Tag

Artistic guide Tag

Cathedral Tag

Type TagName Tag

St Peter Text Renaissance Text

Church Tag

Style TagName Tag

Text St Mary Text Gothic

City guide Tag

Restaurant Tag ...

1370

Foundation Tag

Date

1

0.5
0.5 T1

Location

Coordinates Geo

Point

Geo

Geo

T2

= Rome

City

Cathedral

Location

Q3

GeoEntity

P_Text GeoEntity

GeoEntity

0.5

Dist(Q3, S1) = CostES(Q3, S1= 1.5
Sim(Q3, S1) = 0.4

QType = ‘Minimal Constraint’
 = 1 (structural similarity only)

ES(Q3, S1) = {Upd(Q3[0], S1[0]), Upd(Q3[1], S1[1]),
 Upd(Q3[2], S1[3]), Upd(Q3[3], S1[4])

S1

…

Fig. 7. GML query/CAT tree mappings

computational details being omitted due to space limitations). Note that with QType=
‘Template’, all additional nodes in S1 (i.e., S1[6], S1[7], ...), would have to be
considered in the similarity evaluation process, which would drastically decrease the
similarity value.

Recall that similarity is computed based on the sum of the minimum cost edit
operations corresponding to the query and CAT trees, i.e., inverse of edit distance (cf.
Figure 6 line 21, and Figure 7 for computation example).

30 J. Tekli et al.

4.2.3 GML Query Answer Identification Component
The GML Query Answer Identification component underlines the elements in the data
tree (CAT) which are to be returned to the user. These correspond to the nodes (along
with their sub-trees), in the data tree, that match the GML query’s distinguished node
(cf. Definition 3). Such matches could be identified following a post-processing of the
results (i.e., edit operations and mappings) produced by the GML Tree Comparison
component.

In fact, one of the main advantages of using tree edit distance is that along the
similarity (distance) value, a mapping between the nodes in the compared trees is
provided in terms of the edit script, allowing the identification of correspondences
between elements of the query tree and data tree (CAT) being compared. Consider for
instance the edit distance mappings between GML query tree Q3 and data CAT S2,
depicted in Figure 7. The number next to each mapping link designates its mapping
score, which is inversely proportional to the cost of the corresponding edit operation.
Consequently, mappings reveal the data node matching the distinguished query node,
in our case S1[10]=(‘Location’, GeoEntity). Hence data node S1[10] is returned to the
user, along with its sub-tree (i.e., the geographic coordinates of the St Peter cathedral
in Rome).

In the case where multiple data nodes match the query’s distinguished node, we
simply identify those with the highest mapping scores, i.e., those corresponding to the
most relevant mappings. Note that a dedicated threshold, specifying the minimum
acceptable mapping score for a node to be considered as a relevant match to the
query’s distinguished node, can be considered. In addition, when the query’s
distinguished node is the same as its root node (e.g., queries Q1 and Q2), its matching
node in the data CAT would be none other than the data tree’s root node itself. Thus,
the whole data tree would be returned to the user.

5 Experimental Evaluation and Validation Tests

We have implemented our GML query evaluation approach in the XS3 prototype
system2.Hereunder, we provide preliminary precision and recall results w.r.t. a select
collection of GML queries (including Q1, Q2, Q3 and Q4 of Figure 4) applied on a
GML data repository constructed based on geographic data sampled from Wikipedia
(Figure 3). The current data repository includes geographic information concerning 40
major historical and artistic monuments in the cities of Rome, Dijon and Sao Paolo.
Ten queries were considered, distributed equally between minimal constraint (Q1-3

and Q5-6) and partial template (Q4 and Q7-10) styles. Queries were first manually
evaluated, identifying the set of relevant answers for each query, ranked following
their order of relevance w.r.t. to the user (three different test subjects, one doctoral
student and two post-doctoral researchers, were involved in the experiment). Manual
answers were mapped to system generated ones so as to compute precision (PR),
recall (R) and F-measure values (F-value) accordingly.

Results in Figure 8 depict overall PR, R and F-value results for each query. These
underline our approach’s applicability and potential in identifying relevant answers to

2 Available online at http://www.u-bourgogne.fr/DbConf/XS3

 Toward Approximate GML Retrieval Based on Structural 31

simple GML queries. Note that in our evaluation, we adopted the range query
formalism without however utilizing a predefined similarity threshold in identifying
answers. We rather selected the whole set of ranked system generated answers
(CATs) bound by the least similar relevant one, i.e., the last answer (CAT) to actually
correspond to a user defined answer (which similarity value was considered as the
range query threshold). This allowed us to verify the performance of our method in
selecting relevant answers (achieving high recall, crucial for any method to be
admissible in search applications [22]), and most importantly its effectiveness in
filtering out non-relevant ones (precision).

a. Precision b. Recall c. F-value

Fig. 8. Precision (PR), Recall (R) and F-measue (F-Value) results

High recall was particularly achieved when integrating semantic similarity
evaluation, whereas quite a few relevant answers were missed when disregarding
semantics (Figure 8.b). Semantic similarity evaluation also seemed crucial in
amending precision (Figure 8.a). Queries Q5, Q7 and Q8 are typical examples, where
all relevant answers were missed by the system, when disregarding semantics
(PR=R=F-value=0). However, the impact of semantic similarity evaluation seemed to
decrease when searching geographic data based on their geometric attributes (e.g.,
coordinates) rather than textual descriptions, which was expected.

On the other hand, a major difference between the results achived with and without
semantic similarity evaluation is relevance ranking. While single answers were
usually obtained (for each query) when disregarding semantics and relying solely on
GML data structure, the integration of semantic similarity resulted in the generation
of a ranked set of answers, underlining their semantic similarities w.r.t. the geo-
concepts in the query at hand. Ranking results are depicted in the PR/R graphs of
Figure 9. Figures 9.a and 9.b show rather regular PR/R curves (precision decreasing
gradually with the increase of recall), with queries Q1 and Q3 (Figure 9.a) clearly
reflecting higher retrieval quality than their counterparts in Figure 9.b. Nontheless,
some queries (e.g., Q5, Q7 and Q9 of Figure 9.c) underlined relatively poor ranking
capabilities, the system identifying and ranking non relevant answers (CATs) prior to
relevant ones (precision starting at zero, and then increasing gradually w.r.t. recall, as
relevant answers are added to the answer set). Further experiments are being
conducted to analyze this effect, making use of dedicated relevance ranking metrics
such as Kendall’s tau and Spearman’s footrule [2].

In addition, we have conducted timing experiments to verify the time complexity
of the query evaluation process. Results show that the approach is linear in the size of

32 J. Tekli et al.

Fig. 9. PR/R graphs, obtained with semantic similarity evaluation

each of the query/data trees, as well as the size of the reference semantic network,
when semantics comes to play, i.e., O(|Q|×|CAT|×max(|SNGeo|, |SNText|)). Compexity
graphs were omitted due to lack of space. Details concerning all experimental results
are available online3.

6 Conclusion

GML has been gaining growing attention as an effective means for geographic data
representation and exchange in GISs on the Web. In this paper, we introduce the
building blocks for an approximate GML retrieval method, considering both structural
and semantic features of GML data, in the query evaluation process. Our query
formalism is based on approximate tree matching as a simple and efficient technique
to query GML. It allows the formulation of structure-and-content queries with only
partial knowledge of the data collection structure and semantics, and enables both
template and minimum constraint querying.

Preliminary experiments are promising, and underline the impact of semantic
similarity on the query evaluation process. We are currently expanding our data testbed,
in order to conduct more extensive experiments, also testing the ranking capabilities of
the proposed methods using dedicated relevance ranking metrics such as Kendall’s tau
and Spearman’s footrule [2]. We are also developing a web-based GUI to support the
user in formulating queries, dynamically suggesting, following the corresponding input
GML schema, the list of possible query nodes following the context of the query at
hand. Considering spatio-temporal relations and predicates remains an obvious
upcoming step. In this context, it might be interesting to extend our tree model to a more
generic graph model, encompassing spatio-temporal links between geographic features,
and thus try to adapt our tree edit distance algorithm accordingly.

References

[1] Amer-Yahia, S., Lakshmanan, L., Pandit, S.: FleXPath: Flexible Structure and Full-Text
Querying for XML. In: Proc. of the ACM Inter. Conf. on Management of Data
(SIGMOD), pp. 83–94 (2004)

[2] Bar-Ilan, J.: Comparing rankings of search results on the Web. Information Processessing
and Management (41), 1511–1519 (2005)

3 At http://www.u-bourgogne.fr/DbConf/GMLSearch

 Toward Approximate GML Retrieval Based on Structural 33

[3] Chawathe, S.: Comparing Hierarchical Data in External Memory. In: Proceedings of
VLDB, pp. 90–101 (1999)

[4] Dalamagas, T., et al.: A Methodology for Clustering XML Documents by Structure.
Information Systems 31(3), 187–228 (2006)

[5] Ferri, F., Grifoni, P., Rafanelli, M.: The Management of Spatial and Temporal
Constraints in GIS using Pictorial Interaction on the Web. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 92–105. Springer, Heidelberg (2004)

[6] Fuhr, N., Großjohann, K.: XIRQL: A Query Language for Information Retrieval. In:
Proc. of the ACM-SIGIR Conference, pp. 172–180 (2001)

[7] Grabs, T., Schek, H.-J.: Generating Vector Spaces On-the-fly for Flexible XML
Retrieval. In: Proc. of ACM SIGIR Workshop on XML and Information Retrieval, pp.
4–13 (2002)

[8] Guo, L., et al.: XRANK: ranked keyword search over XML documents. ACM SIGMOD,
16–27 (2003)

[9] Hammiche, S., et al.: Semantic Retrieval of Multimedia Data. In: ACM MMDB
Workshop, pp. 36–44 (2004)

[10] Jones, C., Purves, R.: Geographic Information Retrieval. J. of Geo. Info. Science 22(3),
219–228 (2008)

[11] Larson, R.: Geographic Information Retrieval and Spatial Browsing. In: GIS and
Libraries: Patrons Maps and Spatial Information, pp. 81–124 (1996)

[12] Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. of the ICML
Conference, pp. 296–304 (1998)

[13] Maguitman, A., et al.: Algorithmic Detection of Semantic Similarity. In: WWW
Conference, pp. 107–116 (2005)

[14] Marian, A., et al.: Adaptive Processing of Top-k Queries in XML. In: ICDE Conference,
pp. 162–173 (2005)

[15] Miller, G.: WordNet: An On-Line Lexical Database. International Journal of
Lexicography 3(4) (1990)

[16] Motro, A.: Vague: A User Interface to Relational Databases that Permits Vague Queries.
ACM Transactions on Office Information Systems 6(3), 187–214 (1988)

[17] Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In:
Proc. of the ACM WebDB Workshop, pp. 61–66 (2002)

[18] Open Geospatial Consortium. Geography Mark-up Language,
http://www.opengeospatial.org/standards/gml

[19] Paul, M., Gosh, S.K.: An Approach for Geospatial Data Management for Efficient Web
Retrieval. In: Proc. of the 6th IEEE International Conference on Computer and
Information Technology (2006)

[20] Pokorny, J., Rejlek, V.: Databases and Info. Systems, Frontiers in Artificial Intelligence
and Applications. In: Barzdins, J., Caplinskas, A. (eds.) A Matrix Model for XML Data,
pp. 53–64. IOS Press, Amsterdam (2005)

[21] Rodriguez, M.A., Egenhofer, M.J.: Comparing Geospatial Entity Classes: an Asymmetric
and Content-Dependent Similarity Measure. Journal of Geographical Information
Science 18(3), 229–256 (2004)

[22] Salton, G.: The SMART Retrieval System. Prentice Hall, New Jersey (1971)
[23] Schlieder, T.: Similarity Search in XML Data Using Cost-based Query Transformations.

In: Proc. of the International ACM WebDB Workshop, pp. 19–24 (2001)
[24] Schlieder, T., Meuss, H.: Querying and Ranking XML Documents. Journal of the

American Society for Information Science, Special Topic XML/IR 53(6), 489–503
(2002)

34 J. Tekli et al.

[25] Tekli, J., Chbeir, R., Yetongnon, K.: Extensible User-based Grammar Matching. In: ER
Conf., pp. 294–314 (2009)

[26] Tekli, J., Chbeir, R., Yetongnon, K.: Efficient XML Structural Similarity Detection using
Sub-tree Commonalities. In: Brazilian Symposium on Databases (SBBD) and SIGMOD
DiSC, pp. 116–130 (2007)

[27] Torres, M., et al.: Retrieving Geospatial Information into a Web-Mapping Application
using Geospatial Ontologies. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C.
(eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 267–277. Springer, Heidelberg
(2007)

[28] World Wide Web Consortium. The Document Object Model (DOM) (May 2009),
http://www.w3.org/DOM

[29] Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: Proc. of the 32nd Annual
Meeting of the Associations of Computational Linguistics, pp. 133–138 (1994)

[30] Zhang, Z., Li, R., Cao, S., Zhu, Y.: Similarity Metric in XML Documents. In: Knowledge
Management and Experience Management Workshop (2003)

[31] Zhu, F., Guan, J., Zhou, J., Zhou, S.: Storing and Querying GML in Object-Relational
Databases. In: Proc. of the 14th Annual ACM Inter. Symp. on Advances in Geographic
Information Systems, pp. 107–114 (2006)

	Toward Approximate GML Retrieval Based on Structural and Semantic Characteristics
	Introduction
	State of the Art in GML and XML Retrieval, and Related Issues
	Background and Motivation
	A Glimpse on GML
	Querying GML Data

	Proposal
	GML Data and Query Models
	GML Query Evaluation

	Experimental Evaluation and Validation Tests
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

