
F. Eliassen and R. Kapitza (Eds.): DAIS 2010, LNCS 6115, pp. 15–28, 2010.
© IFIP International Federation for Information Processing 2010

Hosting and Using Services with QoS Guarantee in
Self-adaptive Service Systems

Shanshan Jiang1, Svein Hallsteinsen1, Paolo Barone2, Alessandro Mamelli2,
Stephan Mehlhase3, and Ulrich Scholz3

1 SINTEF ICT, Postboks 4760 Sluppen, 7465 Trondheim, Norway
shanshan.jiang@sintef.no, svein.hallsteinsen@sintef.no

2 HP Italy, 20063 Cernusco sul Naviglio, Italy
paolo.barone@hp.com, alessandro.mamelli@hp.com

3 European Media Laboratory GmbH, 69118 Heidelberg, Germany
stephan.mehlhase@eml-d.villa-bosch.de,

ulrich.scholz@eml-d.villa-bosch.de

Abstract. In service-oriented computing, the vision is a market of services with
alternative providers offering the same services with different cost and quality
of service (QoS) properties, where applications form and adapt dynamically
through dynamic service discovery and binding. To ensure decent and stable
QoS to end users and efficient use of resources, it is required that both client
applications and service implementations are able to adapt both their internal
configuration and their binding to other actors in response to changes in the en-
vironment. To this end, service level negotiation and agreements (SLA) are im-
portant to ensure coordinated end to end adaptation. In this paper we propose a
solution based on the integration of an SLA mechanism into a compositional
adaptation planning framework and describe a simple yet powerful implementa-
tion targeted for resource constrained mobile devices. As validation we include
a case study based on a peer-to-peer distributed mobile application.

Keywords: Service level agreement, service level negotiation, self-adaptation,
service-oriented architecture, adaptation planning.

1 Introduction

In service-oriented computing, the vision is that systems providing functionality to
end users form dynamically through service discovery and binding at runtime. This is
supported by a service “market”, where alternative service providers offer different
service levels (SL) for the same services and where service offers appear and disap-
pear and change dynamically. Service level agreement (SLA) serves to establish
terms and conditions, especially SL guarantees, between service providers and service
consumers, and thus allows systems to control the SL provided to end users.

In our work on self-adaptation in mobile and ubiquitous computing environments,
we have advocated a combination of component oriented and service oriented adapta-
tion. Service consumers and providers adapt dynamically both their internal compo-
nent configuration and their service bindings in order to optimize the utility to the end

16 S. Jiang et al.

users as well as ensuring efficient utilization of resources. The coordination of the
adaptation of part systems is facilitated by service level negotiation and agreements.
In the context of the MUSIC project (http://www.ist-music.eu) we have created a
development framework based on this approach, including both modeling and mid-
dleware support.

The principles of this approach to self-adaptation have already been presented and
discussed in several publications [1,2,3,4]. The contribution of this paper is to explain
the adopted service level negotiation mechanism and how it is integrated with the
component level adaptation apparatus to achieve the coordinated adaptation we are
seeking. To validate our design we have used the MUSIC framework to implement a
peer-to-peer media sharing application, allowing users to dynamically form communi-
ties and create and comment a common media collection. By analyzing the design and
behavior of this application we can demonstrate that our solution works as intended.

The paper is organized as follows: Section 2 presents the MUSIC approach to self-
adaptation. Section 3 describes the design and implementation of the MUSIC Nego-
tiation Framework as well as its integration into the adaptation framework. Section 4
presents the InstantSocial case study and demonstrates how SLAs are considered in
the adaptation reasoning both at the provider side and the consumer side. Section 5
discusses related work before concluding the paper.

2 Adaptation Framework

The MUSIC approach is an externalized approach to the implementation of self-
adaptation where the adaptation logic is delegated to generic middleware working on
the basis of models of the software and its context represented at runtime [1,2].

These models understand systems as collections of collaborating components,
modeled as compositions with typed roles and connectors. A connector models col-
laboration between two components, where one provides a service to the other. A role
models a component providing services to or requiring services from other compo-
nents. A component is either atomic, or a composition itself, thus allowing hierarchic
decomposition. A composition may delegate the provisioning or consumption of a
service to the level above it by leaving the appropriate end of the connector unbound.

To build system instances according to the above model, we need to find compo-
nents which conform to the roles in the composition specification, instantiate these
components, and connect the component instances according to the composition
specification.

Typically there will be several component variants matching a role, differing in
terms of a set of varying properties. This is modeled by property predictor functions
associated with components. Property predictor functions are expressions over the
context, the resources and the properties of collaborating components, and in the case
of composite components, also the properties of the constituting components.

Varying properties typically model variation in extra functional properties (i.e.,
QoS properties) and resource needs, but may also represent variation in functionality.
Thus, by selecting components with different varying properties we can build systems
with different properties from the same system model and we can modify the proper-
ties of a running system by replacing one or more components.

 Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems 17

A system has a utility function, which expresses how well suited a given configura-
tion is in a given situation based on the predicted values for the varying properties.
The utility function is an expression over the predicted properties of the system and
the properties of the current context. The adaptation middleware aims to adapt the
running systems so as to maximize the overall utility.

In Service-Oriented Architecture (SOA) based computing environments, systems
are typically distributed with part systems1 deployed on a potentially large number of
computers owned and administered by different organizations. Part systems represent
end user applications or service providing components, or both. The goal of the adap-
tation planning is to select appropriate variants that can be used in a composition to
optimize the overall utility. However, optimizing utility over the entire set of com-
puters involved is likely to be intractable both from a technical and an administrative
point of view. Therefore we limit the scope of system models and the optimization of
the utility to part systems, and rely on dynamic service discovery and binding to con-
nect part systems, and on service level negotiation between them to ensure coordi-
nated adaptation. The adaptation planning process considers components installed on
its computer to populate the roles of the part system model, service providers located
by dynamic service discovery to bind dependencies on external service providers, and
takes into account service level agreements with consumers of provided services.
Serving external clients consumes resources, and therefore whether or not to publish a
service outside the part system or to accept new clients, is also decided at runtime by
the adaptation middleware.

System models are represented at runtime as plans. A plan contains the details and
the QoS properties (in the form of property predictors) of a certain realization. The
dependency on an external service is represented as a special kind of plan called ser-
vice plan, with an associated set of plan variants representing the available service
providers.

MUSIC provides generic middleware to support running and adapting applications
created using the above models. Obviously, components and services will have to be
designed to be dynamically replaceable, and handle the transfer of state between vari-
ants where necessary.

The MUSIC middleware is based on a pluggable architecture and implemented
based on an OSGi framework [2], where it is convenient to extend the architecture by
plug-ins. The initial architecture proposed has been modified and extended during the
implementation process for incorporating the SLA mechanism.

Figure 1 gives a simplified view of the MUSIC middleware. Plans and plan variants
are stored in the Plan Repository in the Kernel. The Adaptation Manager handles the
adaptation planning process for a part system, which is triggered basically by context
changes detected by the Context Manager, and by plan changes in the plan repository.
The Adaptation Controller coordinates the adaptation process. The Adaptation Rea-
soner supports different planning heuristics using metadata provided by the plans. The
Reasoner builds valid application configurations by solving their dependencies and
ranks the configurations by evaluating their utility based on the computation of the
predicted properties. The Configuration Executor handles the reconfiguration process

1 In MUSIC a part system may actually span several nodes. However, since this is transparent

to the SLA mechanism, we do not explain it further in this paper.

18 S. Jiang et al.

using the plans selected by the Reasoner. The Communication provides basic support
for SOA in distributed environment. The Discovery Service publishes and discovers
services based on service descriptions using different discovery protocols. Whenever a
service is discovered which matches a service dependency of a part system running in
a node, a corresponding service plan variant is created in the plan repository. The plan
variants are removed from the plan repository whenever the provider disappears or
retires the offer. The plan variants will also be updated when the QoS properties pro-
vided by the services are changed. The Remoting Service is responsible for the binding
and unbinding of services. At the service provider side, it exports services hosted by
the provider (i.e. enable them to accept service requests), and at the service consumer
side, it provides bindings (i.e. remote access) to the discovered remote services.

Fig. 1. Simplified architecture of MUSIC middleware

In the following we will discuss the design and implementation of the MUSIC Ne-
gotiation Framework (MNF, depicted in grey), and its integration with the adaptation
framework. The MNF is responsible for service level negotiation and violation han-
dling (cf. Sect. 3.3). It interacts with the Adaptation Manager and the Communication
to realize the adaptation process integrated with SLA mechanism.

3 Integrating SLA with the Adaptation Framework

Current state-of-the-art work for SLA specification is WS-Agreement [5], a proposed
recommendation of the Open Grid Forum. It specifies the general structures and terms
for SLA definition and a simple single round negotiation protocol. We have selected
WS-Agreement as a starting point for our work. However, WS-Agreement is techni-
cally too heavy for resource constrained mobile devices. Therefore, we adopt a cus-
tom, lightweight implementation. Below we present the overall approach for the inte-
gration work and then describe the main extensions in detail.

3.1 Requirements for the SLA Mechanism

In order to achieve coordinated adaptation of part systems, a service provider needs to
know about its consumers (e.g. who and how many) and what they need (e.g. service

 Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems 19

level) and incorporate such information into the adaptation process. We have identi-
fied a set of requirements for the SLA mechanism in our context:

(i) To allow providers to take into account the needs of the current consumers
when adapting. The provider should consider the QoS requirements from the
consumers (typically as required service levels) and the number of consumers
when allocating resources. Such information should be reflected in the utility
function so that it can be integrated into the utility-based adaptation reasoning.

(ii) To allow providers to notify consumers if they change the service level as a re-
sult of adaptation.

(iii) To allow the propagation of service level changes throughout the network of
providers and consumers.

(iv) To give providers the flexibility of withdrawing a service offer, while main-
taining the provisioning of the service to current consumers in order to avoid
being overloaded.

For the server side of the mechanism we have focused on service exchange be-
tween peer nodes, typical of collaboration oriented mobile applications, and not spe-
cialized service provider nodes. This is also reflected in the case used for validation.
However the client side of our solution may also exploit services offered by special-
ized service provider nodes not using the MUSIC technology.

3.2 Overall Description of the Approach

Below we give an overview of how services, service level negotiation, agreement and
monitoring are integrated into the adaptation process in MUSIC:

1. Service publication and discovery: In MUSIC, services are advertised with the
service levels predicted by the current variant of the service providing application.
The advertisement mechanism delivers service descriptions to all the MUSIC
nodes which are interested. Such service description contains information needed
to properly specify and locate the service, together with a set of properties describ-
ing the current service level offered. The service level advertised consists of the
predicted property values associated to the component providing the service. When
a service is discovered at the consumer side, the advertised service level is used to
create a service plan variant in the plan repository, which can be later evaluated by
the Adaptation Reasoner when computing the utility of the available compositions.
There can be multiple service plan variants for a service plan corresponding to al-
ternative providers that a MUSIC node in the SLA-Consumer role (cf. Sect. 3.3)
can select from.

2. Service selection and negotiation: The Adaptation Reasoner selects the most ap-
propriate service offerings among a set of different service providers and different
service levels available, each considered as a variant, by deciding if the variant
with its service level can contribute to the composition configuration that gives the
highest overall utility. If a service variant is selected by the reasoning process, a
negotiation process is initiated towards the provider with an offer created based on

20 S. Jiang et al.

the selected service level. If negotiation is successful, an SLA will be created and
the service will be provisioned with the guaranteed service level. If negotiation
fails2, the Reasoner selects another variant and re-negotiates. The negotiation proc-
ess thus provides the adaptation planning with a mechanism to bind to the appro-
priate service provider with guaranteed service levels.

3. Service monitoring. In a ubiquitous service environment, the provided service
levels may be dynamically changed. We use a simplified mechanism (cf. Sect. 3.3)
to check the conformance of SLAs according to the predicted property values de-
fined in the property predictors leveraging the MUSIC planning mechanism.

4. Service violation and re-negotiation. A service violation discovered by service
monitoring will trigger the re-adaptation process of the Adaptation Manager. The
violated SLA will be terminated and the Reasoner may select another available
service variant and initiate the negotiation process.

3.3 The MUSIC Negotiation Framework

The MUSIC middleware can, at the same time, play two separate roles with respect to
the negotiation process: It can provide negotiable services to remote nodes (provider-
side negotiation) and use negotiable services provided remotely (consumer-side negotia-
tion). Provider-side negotiation consists of evaluating an offer coming from a remote
node and, possibly, creating an SLA between the parties; consumer-side negotiation
consists of creating and submitting a request for reaching an SLA towards a service
provider. All the SLAs reached as a result of the negotiation process must be properly
monitored to verify their compliance with the agreement terms over the time. The ser-
vice level negotiation and monitoring capabilities in MUSIC are provided by a custom,
lightweight negotiation model, called MUSIC Negotiation Framework (MNF) and im-
plemented by the SLA Manager. The internal components of the SLA Manager and
their relationship are depicted in Fig. 2 and briefly described in the following. For a
detailed description of interfaces and behavior, readers may refer to [6].

The SLARepresentation allows the creation of a MUSIC-specific, internal repre-
sentation of an SLA describing the terms of the agreement, the actors involved and
their roles, the associated QoS, the SLA state, etc. Once created, an SLARepresenta-
tion is stored into the SLARepository, a component which collects all the SLAs cre-
ated by the MUSIC middleware (both when acting as an SLA-Provider and an SLA-
Consumer). In addition, it allows other MUSIC middleware components to register as
listeners for repository change events happening in the repository.

The SLAMonitor constantly monitors the QoS of an offered service and checks it
against an SLA reached with a service consumer. In MUSIC, we adopt a simplified
mechanism called provider-side SLA monitoring: The provider checks SLA confor-
mance at the end of the adaptation planning process, which is based on the predicted
QoS values calculated from the property predictors defined in the service plan variants;

2 Due to the time gap between the adaptation reasoning and the negotiation, negotiation may

fail in cases like the provider disappears, changes its service level, or can not accept more
consumers. However, as the reasoning time is short, the probability of such failure is small.

 Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems 21

cmp Components

SLA NegotiatorSLA Monitor

SLA Repository

SLA
Representation

Consumer-side
Negotiation

Provider-side
Negotiation

SLA Consumer
Plugin

SLA Provider
Plugin

SLA Manager

Fig. 2. Structure of the SLA Manager

the consumer relies on the provider for SLA monitoring by periodically checking the
SLA state with the provider3.

The SLANegotiator performs all the steps enabling consumer-side and provider-
side negotiation, described at the beginning of this section. The negotiation logic is
supported by corresponding SLA plug-ins that implement specific service level nego-
tiation protocols. The current MNF has available plug-ins for a MUSIC internal nego-
tiation protocol, which is a customized version of WS-Agreement with single round
negotiation.

In order to integrate MNF into the MUSIC framework (cf. Fig. 1), two additional
actions are performed at the end of the planning process:

• For all SLA-enabled service plan variants selected by the Adaptation Man-
ager, an SLA negotiation process is triggered for each service. If the negotia-
tion for a service fails, the corresponding service plan variant will be invali-
dated and a re-adaptation process is triggered.

• The Adaptation Manager invokes the SLA Manager to check SLA states for
all active SLAs provided by the MUSIC node as a mechanism for provider-
side SLA monitoring.

3.4 Discussion

The current MNF implementation and its integration into the MUSIC adaptation
framework fulfills the first three requirements listed in Sect. 3.1. For (i): The number
of consumers is the same as the number of SLAs and can be easily obtained from the
MNF. The QoS requirements of the consumer are reflected in the service offer sub-
mitted by the consumer during service level negotiation. Both information can be

3 A common approach for service monitoring from the literature is to use context sensors to

gather data about service level metrics and parameters of the provided service at the con-
sumer side. We adopt the simplified mechanism for provider-side SLA monitoring so as to
eliminate the needs for consumer-side monitoring. However, context sensors can be readily
integrated into the MUSIC framework due to the extensible plug-in architecture. See Sect. 0
for explanation of the rationale for this approach.

22 S. Jiang et al.

included in the utility function for adaptation reasoning. For (ii): The provider updates
the SLA states when there is a change in the offered service level and the consumer
can detect such change by periodically checking the SLA states with the provider. For
(iii): The propagation of service level changes is realized by leveraging the service
discovery and the SLA monitoring mechanisms. Requirement (iv) is currently unsup-
ported, but we have designed a mechanism based on special flags that can realize it.

The integration implementation has leveraged MUSIC specific features in SLA
monitoring to simplify the processing and improve the performance. Firstly, since the
MUSIC adaptation framework uses predicted property values for reasoning (i.e.,
evaluated property values based on the property predictors at the given context), we
use the predicted property values when performing provider-side monitoring. In addi-
tion, the consumer relies on the provider for SLA monitoring. This mechanism elimi-
nates the need for additional context sensors to collect real-time QoS data both at the
provider side and at the consumer side. Secondly, as any cause for service property
changes will trigger an adaptation planning process, it is sufficient to check the prop-
erty values at the end of the planning process. These mechanisms allow for a practi-
cal, lightweight implementation for mobile devices.

Although our implementation is MUSIC specific, it is quite flexible due to the
plug-in architecture. Our current MNF implementation provides plug-ins for the MU-
SIC internal negotiation protocol. However, by delegating the negotiation logic to
plug-ins, alternative negotiation protocols and technologies can easily be incorporated
into the MUSIC framework. For example, the MUSIC internal protocol assumes that
a service provider will publish only the current service level. To work with non-
MUSIC nodes using a negotiation protocol [7] that provides alternative service levels
in the service description, plug-ins for that negotiation protocol can be implemented
on MUSIC nodes. Such plug-ins must create a service plan variant for each alterna-
tive service level, such that they are considered as different variants in the adaptation
reasoning, and negotiate the selected service level with the provider.

Because our simplified monitoring mechanism relies on the provider for SLA moni-
toring, it implicitly requires the consumer to trust the provider. If such assumption does
not hold in a dynamic environment, the consumer can use context sensor plug-ins to
provide consumer-side SLA monitoring as adopted by other SLA frameworks.

4 InstantSocial Case Study

InstantSocial (IS) [3] is a media sharing platform for transient user groups that allows
members to tag, to comment, and to search for text and images. IS has three design
goals: (i) Maintaining a peer-to-peer network yielding high connectivity, (ii) provid-
ing access to a large number of media despite varying availability of devices, and (iii)
balancing the load upon multiple resource-limited devices. IS accomplishes these
goals by building on the previously described SLA capabilities of the MUSIC mid-
dleware. The following design extends and refines the IS version described in [3].

4.1 Design and Utility Function of InstantSocial

Figure 3 shows the design of the InstantSocial application: Variant configurations,
components, their properties and associated property predictors. Table 1 lists the

 Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems 23

property types and their descriptions. InstantSocial is divided into two parts: The user
interface (UI) and the content repository (CR). The content repository instance holds
the media items and their associated data, e.g., comments and tags. This component
provides and consumes two different services: The context access service (ca) and the
routing service (rs).

<ca

<rs2
>rs

>ca

<rs1

Full

>ca >rs

<rs1
<rs2

rsu=1}

>rs.conn=<rs1.conn <rs2.conn {id}}∪∪

{>ca.avy=f(|<rs1.conn <rs2.conn|),∪
>ca.rut=f(ca.noc+rs.noc),

rut=(<ca.rut+C.rut)/2,

>rs.rut=f(ca.noc+rs.noc),

{avy=(<ca.avy),

{avy=(>ca.avy),rut=(>ca.rut+C.rut)/2,
rsu=(<rs1.rut+<rs2.rut)/2}

service s: >s provided, <s consumed
s.p: property p of service s
C.rut: Resource utilization based on

the local context
id: The id of the local node
f(x)=x/(x+1)

CR

UI UI

Mini CR

Fig. 3. Design of the InstantSocial application

The content repository is the computationally most demanding part of the Instant-
Social application. InstantSocial can run in two variants to allow the reduction of
resource usage, if necessary. In the Full variant, the application consists of both parts
described above, whereas in the Mini variant InstantSocial does not start a content
repository. Instead, it uses the content access service provided by a Full instance in its
proximity. Each variant configuration is characterized by three properties: Availability
(avy), as a measure for how much media is accessible in the current configuration;
resource utilization (rut), indicating how much the node is in use; and routing service
utilization (rsu), indicating how much the consumed routing services are under load.

The quality of the ca service is characterized by two properties: The availability
(ca.avy) and the resource utilization (ca.rut). The ca.avy property serves as an indica-
tor for the amount of media that is accessible through the service. The ca.rut property
signalizes how much the providing node is currently used; it depends on the number
of consumers (noc) for the provided ca and rs services.

InstantSocial instances use a routing service rs to interconnect. Each instance hosts
one such service and consumes two (rs1 and rs2). The rs service provides means to
route messages through the network and builds an overlay network on the nodes. Note
that the overlay network uses directed links between nodes, as opposed to standard
network protocols like TCP. The quality of the rs service is determined by a resource
utilization (rs.rut) property and a connectivity (rs.conn) property. The rs.rut property
is an indicator for how much the routing service is currently used. The rs.conn prop-
erty indicates the number of other nodes reachable by using this provider.

In MUSIC, the utility is a value between 0 and 1. The described properties are
mapped into this interval by using the function f(x) (cf. Fig. 3). The utility function of a
configuration is defined as: utility= c1⋅avy+c2⋅(1-rut)+c3⋅(1-rsu), where c1, c2, and c3
are relative weights of the properties and they sum up to 1. As media availability is of
high importance of InstantSocial, avy should be dominant. For the following scenario,
we use c1=0.6, c2=0.3, and c3=0.1. The rut property of a service provider depends on

24 S. Jiang et al.

the number of its service consumers and thus enables its utility function to consider the
consumer’s needs during adaptation. The rsu property is used to select rs providers
which have less workload. Therefore, it regards the needs (workload) of the provider
and helps to spread service uses, thus preventing the overload of individual nodes.

Table 1. List of the property types of InstantSocial instances

Property type Description Value range
rut Measure for the resource utilization of a node 0..1
rsu Measure for the routing service utilization 0..1
avy Measure for the availability of media items 0..1
conn Connectivity of the node Set of nodes

4.2 The InstantSocial Scenario

The following scenario – Andy is travelling home after visiting a concert – demon-
strates the previously described design.

B E

C D

 B E

C D

A

Fig. 4. Network layout before (left) and after (right) Andy joins the InstantSocial network

Scene 1: Andy visited a Björk concert and now sits in the train on his way back
home. Betty, Chris, David, and Erika, also Björk fans, were already in the train. All of
them have their InstantSocial instances (B, C, D, and E, respectively) running in Full
mode and they already built the network depicted in Fig. 4 (left) when Andy enters
the train. The arrows point from an rs service consumer to the provider. In the de-
picted initial situation, the connectivity property (avy) of all nodes has the same value
because each node can reach the media of all others. However, during network
changes, this property differs among the nodes. Each node has its own value of the
resource utilization property (rut): For example, the services provided by B are used
by one consumer only (rs.rut = 0.5), while D’s services are consumed by three nodes
(rs.rut = 0.75). Because the routing service utilization property (rsu) of a node de-
pends on rut of other nodes, this property differs between the nodes.

When Andy starts his instance A, the middleware finds the services provided by
the nodes that already established the network. After the best combination of services
is identified (Table 2), the nodes negotiate SLAs for the routing services. After A
arbitrarily connects to B and C, the rs.conn property of A’s provided rs service is
updated. Note that in order to avoid numerous re-adaptations, only the rs.conn prop-
erty is subject to the SLA. In other words, if rs.rut of a consumed service changes
then the SLA is not violated. Note that the resource utilization (rut) is independent of
rs1 and rs2, and therefore it is not included in Table 2. In this scene, its value is 0, as
the services of A have no consumers and there are plenty of local resources available.

 Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems 25

Table 2. Utility of node A based on the its choice of routing services

rs1 rs2 avy rsu utility

B C 0.8 0.5833 0.5216
 D 0.8 0.6250 0.5175

 E 0.8 0.5833 0.5216

C D 0.8 0.7083 0.5091
 E 0.8 0.6667 0.5133

D E 0.8 0.7083 0.5091

Scene 2: We assume that B is the first node noting this change to its plans. Therefore
node B re-adapts and its utility function indicates that it is better to disconnect from D
in order to connect to A. This decision is based on the higher availability property of
the variants that include A. After negotiating with and connecting to A, B also up-
dates its rs.conn property, which leads to SLA violations on all nodes using B. After
all re-adaptations have settled, the network reaches full mutual reachability again,
now including node A (Fig. 4, right).

Scene 3: On Chris’ mobile the resources start getting too low to run a Full configura-
tion. Because Chris is still browsing through some media items, the adaptation mid-
dleware reconfigures his application into the Mini mode and therefore has to choose a
content access provider. Candidates are the ca services of A, B, D, and E. These
nodes still provide the same availability but different resource utilization (ca.rut), as
this latter value depends on number of consumers: The node E has two consumers
while A, B, and D have only one each. Therefore, C is free to choose from the latter
and finally connects to A.

B E

DC

A

 B E

DC

A

Fig. 5. Network layout after node C has switched to Mini mode (left) and after the resulting re-
adaptation of node D (right)

Scene 4: After C re-configured into the Mini mode (Fig. 5, left), D and E are no
longer able to reach A and B. By chance, D notices the removal of C first. The result-
ing re-adaptation has to select two nodes among A, B, and E to which D connects. All
variants using E have high utility, so this connection is maintained. The choice be-
tween A and B is based on their rsu property. Both have one consumer of their rout-
ing service, but A has another consumer: The provided content access service is now
used by C. The resulting higher rut value of A leads to a higher rsu value for variants
that include A. Therefore, D connects to B and again reaches all the nodes in the net-
work (Fig. 5, right).

26 S. Jiang et al.

4.3 Experiences Gained with the MUSIC Approach

The adaptive behavior of the system described in the previous section is quite com-
plex and relies on the dynamic balancing of multiple and partly conflicting concerns
across a number of users and computers. Nevertheless, the approach described in this
paper keeps modeling such systems relatively simple, because a) the separation of the
application logic from the adaptation logic decreases complexity significantly, b) the
property predictor and utility functions provides a natural way to express the decision
logic, and c) the dynamic service discovery and service level negotiation support
ensures the necessary coordination between the involved nodes.

In our approach a service providing component advertises one service level at any
time, the one predicted by the model in the given context. This approach appears to be
appropriate in peer-to-peer oriented scenarios like our case study. However, in more
client-server oriented scenarios, a server might want to advertise different service
levels and prioritize requests in accordance with the agreed service level. Since MU-
SIC has been perceived primarily as a client-side technology, we have not focused on
such requirements. However the consumer side of the MNF allows MUSIC nodes to
discover and use services provided by non-MUSIC nodes, which may behave in this
way, as already discussed in Sect. 3.4.

Another limitation of our approach is that the SLAs may be overly strict. Changing
the service property of a MUSIC hosted service always causes a violation of all its
SLAs. In some cases, the consumer might prefer a looser SLA and be notified only if
the provided service level was decreased or moved outside given bounds. Consider
for example the property rs.conn defined above. If a node is added to this set, the
change does not have to constitute an SLA violation. The desired semantics of the
agreement between provider and consumer in this case is that a particular set of nodes
is reachable through the provided service. Consequently, extending this set does not
violate this condition. Of course, a proper utility function will choose the same service
again, so that the application is not re-configured and for the user everything stays the
same. However, preventing SLA violations in such cases would reduce the resources
spend on adaptation reasoning.

In summary, the proposed SLA architecture is sound and applicable. In particular,
it is lightweight compared to existing approaches like WS-Agreement, and thus is
more suitable for mobile devices.

5 Related Work

Several SLA specifications have been proposed targeting for software-based SLA
negotiation, such as WSLA [7] and WS-Agreement [5]. WS-Agreement is the most
mature one and we have selected it as the starting point for our work. There exist also
several SLA frameworks proposed by projects, such as SLA@SOI [8], BREIN [9],
BEinGRID [10], and AssessGrid [11]. These SLA frameworks with their software
implementations, however, do not specifically target for self-adaptive service sys-
tems, nor do they consider specific resource constraints on mobile devices. In fact,
current SLA implementations, e.g. based on WS-Agreement, are technically heavy
and not suitable for resource constrained mobile devices.

 Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems 27

Several works have addressed self-adaptation supported by generic middleware,
similar to the MUSIC approach. CARISMA [12] focuses on adaptation of middleware
level services. Planning consists of choosing among predefined rule-based adaptation
policies using utility functions and resolving policy conflicts using an auction-like
procedure. CARISMA does not support dynamic service discovery that can trigger
application reconfiguration and the rule-based policies do not consider prediction of
non-functional properties. However, the auction-like procedure used by CARISMA
could be integrated to the MUSIC middleware as a particular negotiation protocol.

The self-adaptation techniques proposed by Rainbow [13] are also similar to MU-
SIC. Rainbow uses component-based architecture model and adaptation strategies
based on situation-action rules are scored using utility preferences specified for the
quality dimensions, where the adaptation manager selects the highest scoring strategy.

QuA [14] is a QoS-aware adaptation framework also based on utility functions. It
calculates predicted quality using predictors and specifies quality requirements and
adaptation policies using utility functions that map quality prediction to a scalar value.
QuA has been applied to support self-adaptive SOA applications by integrating both
interface layer and application layer mechanisms providing cross-layer adaptations
[15]. However, the QuA middleware has no prototype implementation and does not
focus on mobile applications.

Genie [16] adopts a similar approach to self-adaptation using component frame-
work and architecture models to support runtime adaptability. It is however not ser-
vice-oriented and has no dynamic service discovery and SLA support.

As far as we know, these self-adaptive systems do not provide an SLA mechanism
for adaptation targeted for mobile domain. We are unaware of other work that uses
SLA as a mechanism to achieve coordinated end-to-end adaptation. We therefore
consider our integration of SLA mechanisms into the adaptation framework and a
fully working reference implementation for mobile devices an essential contribution
for ensuring QoS-aware and guaranteed self-adaptation.

6 Conclusions and Future Work

In this paper we have described how we use and integrate an SLA mechanism in an
adaptation framework for self-adaptive service systems in order to allow service pro-
viders to take into account the needs of their clients in their adaptation logic and thus
achieve coordinated end-to-end adaptation. This approach has been implemented in
the MUSIC adaptation framework. As a preliminary validation of the implemented
solution, a case study is included, demonstrating how it is exploited in the peer-to-
peer mobile application InstantSocial to achieve coordinated dynamic adaptation of a
set of collaborating application instances on different devices. Initial test shows that
the application behaves as described. Performance measurements are currently in
progress using several trial applications in addition to InstantSocial.

We intend to improve the implementation by extending some capabilities of the
framework, which are currently provided at a proof-of-concept level. To simplify
implementation, the compliance of a service level with an offer is currently based on
an exact match between the values of the QoS required and provided. We plan to
introduce a more complex reasoning for handling flexible logic conditions on the QoS

28 S. Jiang et al.

terms to be compared, such as “greater than”, “less then”, “between”, etc. We plan to
improve the current implementation to fulfill the last requirement mentioned in Sect.
3.1, i.e., to support the flexibility of selective SLA creations. In addition, we intend to
provide additional plug-ins that enhance the MNF by interacting with negotiation
protocols different from the MUSIC-specific one.

Acknowledgements. This work was partly funded by the European Commission
through the project MUSIC (EU IST 035166).

References

1. Rouvoy, R., et al.: Composing Components and Services using a Planning-based Adapta-
tion Middleware. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 52–67.
Springer, Heidelberg (2008)

2. Rouvoy, R., et al.: MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and
Service-Oriented Environments. In: Cheng, B.H.C., et al. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 164–182. Springer, Heidelberg (2009)

3. Fraga, L., Hallsteinsen, S., Scholz, U.: InstantSocial – Implementing a Distributed Mobile
Multi-user Application with Adaptation Middleware. EASST Communications 11 (2008)

4. Hallsteinsen, S., Jiang, S., Sanders., R.: Dynamic software product lines in service oriented
computing. In: 3rd Int. Work. on Dynamic Software Product Lines, DSPL (2009)

5. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement). Open Grid
Forum Recommended Specification (2005)

6. Barone, P.: D4.3 System design of the MUSIC architecture. MUSIC deliverable (2009)
7. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. Journal of Network and Systems Management 11(1) (2003)
8. SLA@SOI project, http://sla-at-soi.eu/
9. BREIN project, http://www.eu-brein.com/

10. BEinGRID project, http://www.beingrid.eu/
11. AssessGrid project, http://www.assessgrid.eu/
12. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-Aware Reflective Middle-

ware System for Mobile Applications. IEEE Trans. On Software Engineering 29(10)
(2003)

13. Garlan, D., et al.: Rainbow:Architecture-based self-adaptation with reusable infrastructure.
Computer 37(10), 46–54 (2004)

14. Gjørven, E., et al.: Self-adaptive systems: A middleware managed approach. In: Keller, A.,
Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS, vol. 3996, pp. 15–27. Springer, Heidelberg
(2006)

15. Gjørven, E., Rouvoy, R., Eliassen, F.: Cross-layer Self-adaptation of Service-Oriented Ar-
chitectures. In: MW4SOC 2008, pp. 37–42. ACM, New York (2008)

16. Bencomo, N., Blair, G.: Using Architecture Models to Support the Generation and Operation
of Component-Based Adaptive Systems. In: Cheng, B.H.C., et al. (eds.) Software Engineer-
ing for Self-Adaptive Systems. LNCS, vol. 5525, pp. 183–200. Springer, Heidelberg (2009)

	Hosting and Using Services with QoS Guarantee in Self-adaptive Service Systems
	Introduction
	Adaptation Framework
	Integrating SLA with the Adaptation Framework
	Requirements for the SLA Mechanism
	Overall Description of the Approach
	The MUSIC Negotiation Framework
	Discussion

	InstantSocial Case Study
	Design and Utility Function of InstantSocial
	The InstantSocial Scenario
	Experiences Gained with the MUSIC Approach

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

