Skip to main content

Open Problems

The Grothendieck Constant and the Lovász Theta Function (An Open Problem)

  • Chapter
Fete of Combinatorics and Computer Science

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 20))

  • 1143 Accesses

Abstract

The Grothendieck constant K(G) of a graph G = (V, E) is the least constant K such that for every A: ER,

$$ \begin{gathered} \mathop {sup}\limits_{f:V \to S^{\left| V \right| - 1} } \sum\limits_{\{ u,v\} \in E} {A(u,v) \cdot \left\langle {f(u),f(v)} \right\rangle } \hfill \\ \leqslant K\mathop {sup}\limits_{f:V \to \{ - 1, + 1\} } \sum\limits_{\{ u,v\} \in E} {A(u,v) \cdot f(u)f(v)} . \hfill \\ \end{gathered} $$

This notion was introduced in [2], where it is shown that there is an absolute positive constant c so that for every graph G, K(G) ≤c log \( \vartheta (\bar G) \), with \( \vartheta (\bar G) \) being the Lovász theta function of the complement of G, defined in [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and E. Berger, The Grothendieck constant of random and pseudo-random graphs, Discrete Optim., 5 (2008), no. 2, 323–327.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon, K. Makarychev, Y. Makarychev and A. Naor, Quadratic forms on graphs, Invent Math., 163 (2006), no. 3, 499–522.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. C. Cater, F. Harary and R. W. Robinson, One-color triangle avoidance games, Proceedings of the Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001), vol. 153, 2001, pp. 211–221.

    MATH  MathSciNet  Google Scholar 

  4. K. Chandrasekaran, N. Goyal and B. Haeupler, Determininistic algorithms for the Lovász Local Lemma, in: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2010).

    Google Scholar 

  5. V. Chvátal and L. Lovász, Every directed graph has a semi-kernel, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ.,Columbus, Ohio, 1972; dedicated to Arnold Ross), Springer, Berlin, 1974, pp. 175. Lecture Notes in Math., Vol. 411.

    Google Scholar 

  6. J. Cibulka, J. Kynčl, V. Mészáros, R. Stolař and P. Valtr, Solution of Peter Winkler’s pizza problem, this volume.

    Google Scholar 

  7. B. Courcelle, J. A. Makowsky and U. Rotics, On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic, Discrete Appl. Math., 108 (2001), no. 1-2, 23–52, International Workshop on Graph-Theoretic Concepts in Computer Science (Smolenice Castle, 1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. P. L. Erdős and L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics, 309 (2009), no. 10, 3040–3048.

    Article  MathSciNet  Google Scholar 

  9. A. J. Goodall and S. D. Noble, Counting cocircuits and convex two-colourings is #P-complete, preprint, arXiv: 0810.2042, 2008. http://arxiv.org/pdf/0810.2042

  10. T. Kotek, J. A. Makowsky and B. Zilber, On counting generalized colorings, CSL ‘08: Proceedings of the 22nd international workshop on Computer Science Logic (Berlin, Heidelberg), Springer-Verlag, 2008, pp. 339-353.

    Google Scholar 

  11. N. Linial, Hard enumeration problems in geometry and combinatorics, SIAM J. Algebraic Discrete Methods, 7 (1986), no. 2, 331–335.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Lovasz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979), no. 1, 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. A. Makowsky and B. Zilber, Polynomial invariants of graphs and totally categorical theories, MODNET Preprint No. 21, http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server, 2006.

  14. N. Mehta and A. Seress, Graph Games, manuscript, in preparation.

    Google Scholar 

  15. S. Moran and S. Snir, Efficient approximation of convex recolorings, J. Comput. System Sci., 73 (2007), no. 7, 1078–1089.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Moser and G. Tardos, A constructive proof of the general Lovász Local Lemma, Journal of the ACM, 57 (2010) (2), Art. 11.

    Google Scholar 

  17. P. Prälat, A note on the one-colour avoidance game on graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 9pp (programs in C/C++), to appear.

    Google Scholar 

  18. J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraps 2-coloring, Random Structures Algorithms, 16(3) (2000).

    Google Scholar 

  19. Á. Seress, On Hajnal’s triangle-free game, Graphs Combin., 8 (1992), no. 1, 75–79.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Alon, N. (2010). Open Problems. In: Katona, G.O.H., Schrijver, A., Szőnyi, T., Sági, G. (eds) Fete of Combinatorics and Computer Science. Bolyai Society Mathematical Studies, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13580-4_14

Download citation

Publish with us

Policies and ethics