
Workflow Soundness Revisited:

Checking Correctness in the Presence of Data
While Staying Conceptual

Natalia Sidorova, Christian Stahl, and Nikola Trčka

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{N.Sidorova,C.Stahl,N.Trcka}@tue.nl

Abstract. A conceptual workflow model specifies the control flow of a
workflow together with abstract data information. This model is later
on refined to be executed on an information system. It is desirable that
correctness properties of the conceptual workflow would be transferrable
to its refinements. In this paper, we present classical workflow nets ex-
tended with data operations as a conceptual workflow model. For these
nets we develop a novel technique to verify soundness. This technique
allows us to conclude whether at least one or any refinement of a con-
ceptual workflow model is sound.

1 Introduction

Information systems are a key technology in today’s organizations. Prominent
examples of information systems are Enterprise Resource Planning Systems and
Workflow Management Systems. Processes are the core of most information sys-
tems [9]. They orchestrate people, information, and technology to deliver prod-
ucts. In this paper, we focus on workflows—processes that are executed by an
IT infrastructure.

A workflow is usually iteratively designed in a bottom-up manner. First the
control flow of the workflow is modeled. The control flow consists of a set of co-
ordinated tasks describing the behavior of the workflow. Later the control flow is
extended with some data information. The resulting model is an abstract or con-
ceptual workflow model, which is typically constructed by a business analyst. This
conceptual model can be used for purposes of documentation, communication,
and analysis. It may abstract from concrete data values, such as the condition
of an if-then-else construct, and it does usually not specify how concrete data
values are stored.

To actually execute this workflow on a Workflow Management System, the
conceptual workflow model is instantiated with full details, a task typically done
by business programmers (who often have insufficient background knowledge
of the process) and not by the business analysts themselves. For instance, the
business programmer specifies concrete data values and how they are stored.

B. Pernici (Ed.): CAiSE 2010, LNCS 6051, pp. 530–544, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Workflow Soundness Revisited 531

Modeling both abstract and executable workflows is supported by industrial
workflow modeling languages available on the market.

Designing a workflow model is a difficult and error-prone task even for expe-
rienced modelers. For a fast and thus cost-efficient design process it is extremely
important that errors in the model are detected during the design phase rather
than at runtime. Hence, verification needs to be applied at an early stage—that
is, already on the level of the conceptual model.

Formal verification of a conceptual workflow model imposes the following two
challenges. First, it requires an adequate formal model. With adequate we mean
that the model captures the appropriate level of abstraction and enables efficient
analysis. So the question is, how can we formalize commonly used conceptual
workflow models? Second, verification must not be restricted to the control flow,
but should also incorporate available data information. Thereby the conceptual
workflow model may specify abstract data values that will be refined later on.
Here the question is, can we verify conceptual workflows in such a way that
the results hold in any possible data refinement (i.e., in all possible executable
versions)?

In this paper, we investigate these two questions. We focus on one of the most
important requirements for workflow correctness, namely the soundness prop-
erty [1]. Soundness guarantees that every task of the workflow can be potentially
executed (i.e., it is not dead), and that the workflow can always terminate (i.e.,
it is free of deadlocks and livelocks). However, current techniques for verifying
soundness are restricted to control flow only.

To answer the first question, we propose workflow nets with data (WFD-nets)
as an adequate formalism for modeling conceptual workflows. A WFD-net is basi-
cally a workflow net (i.e., a Petri net tailored towards the modeling of the control
flow of workflows) extended with conceptual read/write/delete data operations.
WFD-nets generalize our previous model in [18,19] by means of supporting arbi-
trary guards (previously only predicate-negation and conjunctions were allowed).
As a second contribution, we develop a novel technique for analyzing soundness
of WFD-nets. Unlike existing approaches which could give false positives (i.e.,
the analysis gives sound, but the workflow is actually unsound when the data
information is refined) or false negatives (i.e., the analysis gives unsound, but
the workflow with refined data is sound), our proposed technique gives neither
false positives nor false negatives. It is based on may/must semantics [14] that
guarantees the results to be valid in any concrete data refinement. If a WFD-net
is proven must-sound, then it is sound in any possible data refinement; if it is not
may-sound, then no data refinement can make it sound. In case where a WFD-
net is may-sound but not must-sound, our approach gives an honest answer “I
do not know; it is sound in some data refinement and unsound in some other”.
We interpret WFD-net as hyper transition systems, not as standard may/must
transition systems. Doing this we achieve much better precision (i.e., less “I do
not know” answers).

The paper is structured as follows. In Sect. 2, we show the potential problems
with soundness verification for conceptual workflow models by means of two

532 N. Sidorova, C. Stahl, and N. Trčka

examples. Afterwards, we introduce the conceptual workflow model in Sect. 3
and its semantics in Sect. 4. In Sect. 5, we define soundness for workflow nets
with data in the may/must setting. Finally, Sect. 6 draws the conclusion and
discusses future work.

2 Motivating Examples

We illustrate the idea of modeling conceptual workflows with WFD-nets on the
WFD-net in Figure 1 modeling a shipping company. Ignoring the transition
guards (shown within squared brackets above transitions), and the read and
write operations (denoted by rd and wt inside the transitions), Figure 1 depicts
an ordinary workflow net that consists of 10 places (depicted as circles) and 9
transitions (depicted as squares). There are two distinguished places start and
end modeling the initial and the final state, respectively.

Initially there is a token on start. The shipper receives goods from a client
(receive good) to be shipped. In the model, transition receive good writes
the data of the client (cl), the goods (gds), and the destination of the goods
(ads). Then the shipper calculates the price (calculate price). Afterwards the
shipment department and the customer adviser execute their tasks concurrently.
If the price of the goods is high (i.e., isHigh(price) evaluates to true; the exact
bound is left unspecified), express shipment is used (ship express). Otherwise,
the cheaper standard shipment is used (ship normal). Based on the same con-
dition, the customer advisor either calculates a bonus (calculate bonus) for
the client and registers this bonus (register bonus) or no bonus is calculated
(no bonus). In addition, clients sending goods of a high price are notified about
their bonus and the shipment (inform by call), other clients receive only a
notification of the shipment (inform by mail).

Clearly, this WFD-net is sound, i.e., starting with a (colored) token on initial
it is always possible to reach a marking where only one token is on place end.
In contrast, if we abstract from data and consider only the underlying workflow
net, the net may deadlock. For example, without data the shipment department
may decide to use express shipment, but the customer advisor does not calcu-
late any bonus. This yields a token in p5 and in p8, and the net gets stuck. This
shows that ignoring data information in verification can lead to obtaining false
negatives.

Suppose now that instead of the same predicate isHigh(price), two pos-
sibly different predicates (say isHighLeft(price) and isHighRight(price))
are used in the left and the right part of the workflow (this is realistic, because
these parts correspond to two different departments of the shipper). As we did
not change the control flow, the classical WF-net method would still say that
the workflow is not sound. Our previous work [19] on soundness of (simplified)
WFD-nets would give the same verdict: the workflow is not sound due to the
possibility that the predicates can have different truth values. With the meth-
ods we will introduce in this paper we will be able to give the correct answer:
“I do not know—the workflow is sometimes sound (when isHighLeft(price)

Workflow Soundness Revisited 533

start

receive goods

wt: cl, gds,
ads

calculate price

rd: gds
wt: price

calculate bonus

rd: price
wt: bon

no bonus

register bonus

rd: cl, bon
wt: cl

end

inform by call

rd: bon, cl

ship normal

rd: gds, ads

ship express

rd: gds, ads

[isHigh(price) [¬isHigh(price)]

[isHigh(price)

[¬isHigh(price)]

p1

p2 p3

p4

p5 p6 p7 p8

rd: cl

inform by mail

Fig. 1. WFD-net modeling a shipper – The workflow is sound, but verification ignoring
data leads to the verdict “unsound”

and isHighRight(price) always evaluates to the same values), and sometimes
it is not (when isHighLeft(price) and isHighRight(price) valuations can
differ)”.

It is also possible to construct examples where the verification of classical WF-
nets (without data information) would give a false positive, and our previous
work on WFD [19] would give a false negative. For instance, consider the loop

534 N. Sidorova, C. Stahl, and N. Trčka

start p1 p2
t1 t2

wt: d
end

t4

del: d

[not pred(d)]

t3

[pred(d)]

Fig. 2. WFD-net that is (non-)sound in some, but not in all, data refinements

in Figure 2 that is exited when some predicate depending on a data element d
evaluates to true. The data element d is initialized inside this loop (transition t2)
and it is deleted (denoted by del inside transition t4) and written in every loop
cycle. In this case, proper termination is only possible if d eventually sets the
exiting predicate to true. Therefore, the correct answer is again, “I do not know”,
as the soundness property depends on the concrete data refinement. However,
when using classical WF-nets, the data information is ignored and the possibility
to exit the loop is considered to be available, which results in the verdict that the
WF-net is sound. Similarly, the previous WFD-net method would see that there
is a possible bad execution sequence (namely the infinite looping) and would
report non-soundness.

Remark 1. It is important to note that the problems addressed in this paper
are independent of the actual version of workflow soundness definition used.
Although we restrict ourselves to classical soundness, ignoring data when con-
sidering other notions of soundness can result in obtaining false positive or false
negative answers. If we, for example, consider relaxed soundness (requiring that
for every task there is a completing path executing this task) (see [8]), the work-
flow in Figure 1 would be correctly reported relaxed sound. However, if we used
different predicates in the left and in the right side, the workflow was not relaxed
sound. The verification result on the workflow without data is then obviously
incorrect. Moreover, by swapping the guards on the right side of the net in
Figure 1 we construct a workflow that has no completing execution at all. Note
that also the unfolding of a workflow to have the data information incorporated
into the control-flow (by the means of [18,19]) does not help in this situation
either: Consider again the example in Figure 2. Unfolding the workflow, we ob-
tain a relaxed sound net. It is, however, obvious that there are data refinements
that certainly prevent t4 from being ever executed. Similar problems arise with
all other soundness notions. These problems can also be addressed by using the
may/must approach we are going to present in this paper.

3 Workflow Nets with Data

Given the motivation for incorporating data into workflow nets, this section
formally defines workflow nets with data (WFD-nets). WFD-nets are based on
Petri nets and workflow nets, so we define these two models first.

Workflow Soundness Revisited 535

Definition 1 (Petri net). A Petri net N = 〈P, T, F 〉 consists of two disjoint
non-empty, finite sets P of places and T of transitions and of a flow relation
F ⊆ (P × T) ∪ (T × P).

For a transition t ∈ T , we define the pre-set of t as •t = {p | (p, t) ∈ F}, and the
post-set of t as t• = {p | (t, p) ∈ F}. Analogously we define the pre-set •p and
the post-set p• for a place p ∈ P . A place p is called a source place if •p = ∅,
and a sink place if p• = ∅.

At any time a place contains zero or more tokens, depicted as black dots. A
state of a Petri net, called a marking, is a distribution of tokens over its places.
Formally, a marking is defined as a mapping m : P → N, i.e., as a multiset over
P . We use standard notation for multisets and write, e.g., m = [2p + q] for a
marking m with m(p) = 2, m(q) = 1, and m(x) = 0 for x ∈ P \{p, q}. We define
+ and − for the sum and the difference of two markings and =, <, >,≤,≥ for
comparison of markings in the standard way. For the marking m above we have,
e.g., m ≤ [3p + 2q + r] and m + [q + 3r] = [2p + 2q + 3r]. A pair (N, m), where
N is a Petri net and m is a marking, is a marked Petri net.

A transition t ∈ T is enabled at a marking m, denoted by m
t→, if m ≥ •t.

An enabled transition t may fire, which results in a new marking m′ defined by
m′ = m − •t + t•. This firing is denoted as m

t→ m′.
Workflow nets [1] impose syntactic restrictions on Petri nets to comply to the

workflow concept. The notion was triggered by the assumption that a typical
workflow has a well-defined starting point and a well-defined ending point.

Definition 2 (WF-net). A Petri net N = 〈P, T, F 〉 is a Workflow net (WF-
net) if it has a single source place start and a single sink place end, and if every
place and every transition is on a path from start to end (i.e., if (start, n) ∈ F ∗

and (n, end) ∈ F ∗, for all n ∈ P ∪ T , where F ∗ is the reflexive-transitive closure
of F).

Transitions in a WF-net are called tasks. A case is a workflow instance, i.e., a
marked WF-net in which the place start is marked with one token and all other
places are empty. Executing a workflow means to create a running instance of
this workflow. Such an instance is a called a case. Several cases of a workfow
may coexist. Cases are assumed to be completely independent from each other
(they only possibly share resources). Hence, each case is modeled as a copy of
the corresponding workflow net N . We refer to the properties of (N, [start]) as
the properties of N .

Example 1. Ignoring the transition guards and the read and write operations,
Figure 1 depicts a WF-net. Places start and end are the source place and the sink
place, respectively. Clearly, every place and transition is on a path from start to
end. Each transition, such as Inform by call, models a task. The pre-set of
Inform by call is the set {p5, p7}, and the post-set is the set {end}.

Adding data information. A workflow net with data elements is a workflow
net in which tasks can read from, write to, or delete data elements. A task can

536 N. Sidorova, C. Stahl, and N. Trčka

also have a (data dependent) guard that blocks its execution when it is evaluated
to false.

We assume a finite set D = {d1, . . . , dm} of data elements, and we fix a set
of predicates Π = {π1, . . . , πn}. We also assume a function � : Π → 2D, called
the predicate labeling function, that assigns to every predicate the set of data
elements it depends on. When �(π) = {d1, . . . , dn} for some predicate π ∈ Π ,
we sometimes write π(d1, . . . , dn) to emphasize this fact. A guard is constructed
from predicates by means of the standard Boolean operations; the set of all
guards (over Π) is denoted by GΠ . The function � naturally extends to guards.

We now define a workflow net with data as a WF-net where every transition t
is annotated with at most four sets: a set of data elements being read when firing
t, a set of data elements being written when firing t, a set of data elements being
deleted when firing t, and a transition guard. Note that we do not explicitly
consider the update of data elements, because this is simply the combination of
read and write at the same transition.

Definition 3 (WFD-net). A workflow net with data (WFD-net) N =
〈P, T, F, rd, wt, del, grd〉 consists of a WF-net 〈P, T, F 〉, a reading data labeling
function rd : T → 2D, a writing data labeling function wt : T → 2D, a delet-
ing data labeling function del : T → 2D, and a guard function grd : T → GΠ ,
assigning guards to transitions.

Example 2. An example of a WFD-net is the workflow of a shipper in Fig-
ure 1. Its data elements are D = {cl, gds, ads, price, bon}. Consider transition
calculate bonus, for instance. The labeling functions are rd(calculate bonus)
= {price}, wt(calculate bonus) = {bon}, del(calculate bonus) = ∅, and
grd(Ship normal) = ¬isHigh(price).
The next section assigns formal semantics to WFD-nets.

4 Semantics of WFD-nets

The model of WFD-nets is a conceptual model, a schema for characterizing
several executable workflows. In this section we introduce a special semantics
for WFD-nets that is based on hyper transition systems [14,17] and allows us to
capture all possible refinements of a WFD-net in one graph.

4.1 Behavior of WFD-nets

In a WFD-net data values are not specified, but we can distinguish non-created
data values from created ones. In our semantics we choose to keep the exact value
for the predicates in a state. Predicates and guards can be evaluated to true,
false, or undefined (if some data element assigned to them does not have a value).
This is formalized by the three abstraction functions assigning abstract values
to the data elements, the predicates, and the guards, respectively. Function σD :
D → {�,⊥} assigns to each data element d ∈ D either � (i.e., defined value) or

Workflow Soundness Revisited 537

⊥ (i.e., undefined value); Function σΠ : Π → {T, F,⊥} assigns to each predicate
one of the values true, false, and undefined. A consistency requirement that
σ(π) = ⊥ whenever σ(d) = ⊥ and d ∈ �(π) is imposed. A pair σ = (σD , σΠ) is
called a state, and the set of all states is denoted by Σ. We use the following
simplified notation: σ(d) = σD(d) for d ∈ D, and σ(π) = σΠ(π) for π ∈ Π . As
a guard g ∈ GΠ is built from Boolean operations, σ(grd) ∈ {T, F,⊥} can be
evaluated with the help of functions σD and σΠ .

The next definition lifts the definition of a state of a WF-net to a WFD-net.
We refer to a state of a WFD-net as a configuration1. A configuration consists
of a marking m of a WFD-net and a state.

Definition 4 (Configuration). Let N = 〈P, T, F, rd, wt, del, grd〉 be a WFD-
net. Let m be a marking of N , and let σ be as defined above. Then, c = 〈m, σ〉 is
a configuration of N . The start configuration of N is defined by 〈[start], ({d1
→
⊥, . . . , dn
→ ⊥}, {π1
→ ⊥, . . . , πn
→ ⊥})〉. With Ξ we denote the set of all con-
figurations, and Cf = {〈[end], σ〉 | σ ∈ Σ} defines the set of final configurations.

In the initial configuration, only place start is marked, all data elements are
undefined, and all predicates are evaluated to undefined. A configuration is a
final configuration if it contains the final marking [end].

Example 3. The initial configuration of the shipper in Figure 1 is defined to be
〈[start], σ〉, where σ assigns ⊥ to all data elements cl, gds, ads, price, bon. In
addition, predicate isHigh(price) is ⊥. Note that in Figure 1 no data element
is deleted. However, we assume that upon reaching a final configuration (i.e., the
case is completely executed), all data elements are deleted.

As Definition 4 lifts the notion of a state of a WF-net to a configuration of
a WFD-net, we have to define the behavior of a WFD-net. For this purpose,
we define when a transition t of a WFD-net N is enabled at a configuration
c = 〈m, σ〉 of N .

The enabling of a transition t requires two conditions to be fulfilled. The first
condition takes the control flow into account and requires that transition t must
be enabled at marking m. The second condition considers the data values in
configuration c. Any data element that is read by t or that is assigned to a
predicate of t must be defined. In addition, the guard of t must evaluate to true.

An enabled transition t may fire. Firing of t changes the marking as well as
the values of the data elements that have been written or deleted. As we do
not know the concrete operations nor the values of the predicates, we have to
consider any evaluation of the predicates. Hence, the firing of t yields a set of
successor configurations 〈m′, σ′〉. Each of these successor configurations has a
marking m′, where firing t at marking m yields marking m′.

On the data level, we assign undefined (i.e., ⊥) to each data element d that
has been deleted when firing t, and we assign undefined to each predicate that

1 The meaning of the term configuration here is “a state that includes data informa-
tion”, and not the one related to configuring processes.

538 N. Sidorova, C. Stahl, and N. Trčka

contains a data element that has been deleted. The reason is that reading always
precedes writing, and writing always precedes deleting. Thus, no matter whether
this data element has been also written, it is undefined after the firing of t. In
addition, we assign defined (i.e., �) to each data element d that has been written
and not deleted when firing t, and evaluate each predicate that contains at least
one data element that has been written and no data elements that have been
deleted. The different evaluations of the predicates actually result in a set of
successor configurations. This is formalized in the following definition.

Definition 5 (Firing rules for WFD-nets). Let N = 〈P, T, F, rd, wt, del, grd〉
be a WFD-net. A transition t ∈ T of N is enabled at a configuration c = 〈m, σ〉
of N if m

t→, all data elements d ∈ rd(t) are defined, all data elements as-
signed to any predicate occurring in the transition guard grd(t) of t are de-
fined, and σ(grd(t)) = T. Firing t yields a set C ⊆ Σ of configurations with
C = {〈m′, σ′〉 | m

t→ m′ ∧ (∀d ∈ del(t) : σ′(d) = ⊥ ∧ ∀π ∈ Π : d ∈ �(π) =⇒
σ′(π) = ⊥)∧ (∀d ∈ wt(t)\del(t) : σ′(d) = �∧ (∀π ∈ Π : ∀d̄ ∈ �(π)\ {d} : σ(d̄) =
�) =⇒ σ′(π) ∈ {T, F})} and is denoted by c

t→ C.

Example 4. Consider transition calculate price in Figure 1. Suppose there
is a token in place p1. Transition calculate price is enabled if data element
gds is defined. Firing this transition means that the token in p1 is removed,
and a token in p2 and in p3 is produced. In addition, calculate price takes
data element gds as its input and stores its output in data element price. We
implicitly assume that inside a task reading always precedes writing, and writing
always precedes deleting. As price did not have a value before the occurrence
of calculate price, a new value of price is created (otherwise it would have
been updated). Moreover, as price is assigned to predicate isHigh(price), this
predicate is evaluated to either true or false, yielding two configurations.

4.2 Reachability

Definition 5 defines the semantics of firing a single transition. Now we extend
the firing of a single transition to sequences of transitions. In other words, we
define the set of reachable configurations of N . To take into account that we do
not know the concrete values of predicates a priori, we define may- and must-
reachability. May-reachability guarantees that the reachability holds in at least
one data refinement, whereas must-reachability guarantees that the reachability
holds in every data refinement.

Given a configuration c, a may-step from c specifies the existence of a successor
configuration c′ of c. Accordingly, a may-path of length n specifies the existence
of a sequence of n may-steps from c to a configuration c′. In this case, c′ is
may-reachable from c. A must hyper-path of length n from c defines the set C
of all configurations c′ such that a may-path of length n exists from c to c′. In
case there exists a may-path of length n− 1 from c to a configuration c′′, and c′′

has no successor configuration (i.e., c′′ is a deadlock), then c′′ is also contained
in the set C of configurations being reachable via a may-path of length n. In

Workflow Soundness Revisited 539

other words, a must hyper-path of length n contains both the configurations
that are reachable from c via a may-path of length n and all the deadlocks that
are may-reachable from c. We refer to the set C as the set of configurations that
are must-reachable from c.

Whenever a configuration c has due to the data abstraction more than one
successor configuration, may-reachability considers always one successor—that
is, it considers only one data refinement. In contrast, a must hyper-path contains
all successor configurations of c. Hence, it considers all possible data refinements.

Definition 6 (Reachability). Let N = 〈P, T, F, rd, wt, del, grd〉 be a WFD-
net, c, c′ be configurations of N , and C, C′ ⊆ Ξ be sets of configurations of N .

– A set C of configurations is reachable from a configuration c, denoted by
c → C, if and only if there is a transition t ∈ T being enabled at c and the
firing of t yields C (i.e., c

t→ C).
– There is a may-step from a configuration c to a configuration c′, denoted by

c→may c′, if and only if c′ is an element of a set C of configurations that is
reachable from c.

– A may-path (of length n) from a configuration c is a sequence of configu-
rations c1, . . . , cn of N , n ≥ 0, where c1 = c and ci →may ci+1 for every
i = 1, . . . , n−1; we denote the existence of a may-path c1, . . . , cn with c1 = c
and cn = c′ by c →∗

may c′.
– A must hyper-path (of length n) from a configuration c is a set of may-paths

from c inductively defined as follows: Ω1 = {c} and Ωi+1 = {ω, c′ | ω ∈
Ωi ∧ ∃C : c → C ∧ c′ ∈ C} ∪ {ω | ω ∈ Ωi ∧ c �→ } for i = 1, . . . , n − 1.

– By c �must C we denote the existence of a must hyper-path Ωn such that, for
every c′ ∈ C, there is a may-path c1, . . . , cn ∈ Ωn with c1 = c and cn = c′.

Example 5. The state space of the shipper is depicted in Figure 3. From the start
configuration c0 only the singleton set {c1} can be reached by firing transition
receive goods. Configuration c1 consists of a marking [p1], and the abstraction
function σ assigns the value � to data elements cl, gds, and ads. Predicate
isHigh(price) is undefined in c1. Transition calculate price is enabled at
c1. Firing this transition yields the set {c2, c3} of successor configurations. The
difference between both configurations is that in c2 predicate isHigh(price) is
evaluated to true (denoted isHigh), whereas in c3 this predicate is evaluated to
false (denoted ¬isHigh). From c0 → c1 → {c2, c3}, we conclude that there is
a may-step from c0 to c1, a mat-step from c1 to c2 as well as from c1 to c3. So
there is a may-path of length 2 from c0 to c2 and from c0 to c3. Consequently,
{c2, c3} but also {c1} is must-reachable from c0, because a must hyper-path of
length 2 and 1 exists, respectively. Observe that there is also a must hyper-path
(of length 5) from c0 to {c11, c12}. Only configuration c13 is may-reachable
from c11. Unlike c11, configuration c12 does not have any successor. Hence,
we conclude from the definition of a must hyper-path that there exists a must
hyper-path of length 6 from c0 to {c13, c12}.

540 N. Sidorova, C. Stahl, and N. Trčka

c0: [start]
—

c1: [p1]
cl,gds,ads

c13: [end]
cl,gds,ads,price,bon

isHigh

c12: [end]
cl,gds,ads,price

¬isHigh

c2: [p2,p3]
cl,gds,ads,price

isHigh

c4: [p5,p3]
cl,gds,ads,price

isHigh

c8: [p5,p4]
cl,gds,ads,price,bon

isHigh

c5: [p2,p4]
cl,gds,ads,price,bon

isHigh

c11: [p5,p7]
cl,gds,ads,price,bon

isHigh

c9: [p2,p7]
cl,gds,ads,price,bon

isHigh

c3: [p2,p3]
cl,gds,ads,price

¬isHigh

c6: [p6,p3]
cl,gds,ads,price

¬isHigh

c7: [p2,p8]
cl,gds,ads,price

¬isHigh

c10: [p6,p8]
cl,gds,ads,price

¬isHigh

receive goods

ship express calculate bonus ship normal no bonus

ship normal no bonusship express
calculate bonus register bonus

register bonus ship express inform by mail

calculate price

inform by call

Fig. 3. State space of the shipper in Fig 1. Each rounded rectangle specifies a con-
figuration of the shipper. In the first line, the identifier of the configuration and the
marking is depicted, the second line presents all defined data elements, and the third
line evaluates the predicate isHigh(price).

5 Soundness

With the help of may- and must-reachability we can formalize soundness for
WFD-nets. The soundness property, originally defined for WF-nets, ensures that
from any reachable marking the final marking can be reached, and every task can
potentially be executed. In this section, we extend the definition of soundness
to WFD-nets. We present two notions: may-soundness and must-soundness. A
WFD-net is may-sound if and only if there exists a data refinement such that
the concrete workflow model (that contains all data information) is sound. In
contrast to may-soundness, the notion of must-soundness guarantees that the
WFD-net is sound in all possible data refinements.

Definition 7 (May- and Must-soundness). Let N = 〈P, T, F, rd, wt, del, grd〉
be a WFD-net, let c0 be the start configuration of N , and let Cf ⊆ Ξ denote the
set of final configurations of N . N is

Workflow Soundness Revisited 541

– may-sound if and only if for every set C of configurations of N being must-
reachable from the start configuration c0 (i.e., c0 �must C), there exists a
configuration c ∈ C such that a configuration cf ∈ Cf is may-reachable from
c (i.e., c →∗

may cf).
– must-sound if and only if for every configuration c being may-reachable from

the start configuration c0 of N (i.e., c0 →∗
may c), there exists a set C ⊆ Cf

of final configurations that is must-reachable from c (i.e., c �must C).

May-soundness ensures that for any set C of configurations that are must-
reachable from the start configuration, there exists a configuration c ∈ C from
which a final configuration is may-reachable. The set C contains all configura-
tions that are reachable from the initial configuration in any data refinement
(because must-reachability considers all may-paths). The existence of a configu-
ration c ∈ C from which a final configuration is may-reachable guarantees that
there exists at least one data refinement of N (i.e., one may-path) in which a
final marking can be reached.

Must-soundness ensures that from any configuration c that is may-reachable
from the start configuration, a subset of the final configurations is must-reachable.
That means, from every marking that is reachable in the WFD-net N , a final con-
figuration can be reached in any data refinement of N (because must-reachability
considers all may-paths).

Example 6. Consider again the state space of the shipper in Figure 3. As pre-
viously mentioned, there exists a must hyper-path from the start configuration
c0 to the set {c13, c12} of configurations. Both configurations, c13 and c12, are
final configurations (and clearly c13 is may-reachable from c13 and c12 is may-
reachable from c12). As this is the longest must hyper-path in the state space,
we conclude that from any other must hyper-path, there always exists a state
from which either c13 or c12 is may-reachable. Thus, the shipper is may-sound.
It can also be easily seen that from each state being may-reachable from c0,
there exists a must hyper-path to a final configuration. Hence, we conclude that
the WFD-net of the shipper is also must-sound. In other words, the soundness
property holds in any data refinement of the WFD-net in Figure 1.

Let us now come back to the modification of the shipper (cf. Section 2) where
different predicates (isHighLeft(price) and isHighRight(price)) are used in
the left and the right part of the shipper. In this case, c2 corresponds to a con-
figuration where both predicates are true, and c3 corresponds to a configuration
where both predicates are false. In addition, c1 has two more successors, say
c2′ and c3′, corresponding to configurations where isHighLeft(price) is true
and isHighRight(price) is false and vice versa. In configuration c2′ transitions
ship express and no bonus are enabled. Firing these transitions yields a con-
figuration, say c, where the shipper is in the marking [p5, p8]. Configuration c is a
deadlock, and it is may-reachable from the start configuration. Hence, there does
not exist a must hyper-path from c to a final configuration, and thus the modified
shipper is not must-sound. However, the modified shipper is may-sound: there
exists a data refinement in which a final configuration can be reached, namely, if

542 N. Sidorova, C. Stahl, and N. Trčka

c0: [start]
—

t1 c1: [p1]
—

c3: [p2]
d

pred

c2: [p2]
d

¬pred
t2

t3 c4: [end]
d

pred

t4

Fig. 4. State space of the example from Figure 2

the two predicates isHighLeft(price) and isHighRight(price) always eval-
uate to the same value.

Figure 4 shows the state space of the WFD-net from Figure 2. As there is no
guarantee that both branches of t2 will lead to proper completion (there exists
an infinite sequence c1 → c2 → c1 → c2 . . .), we conclude that this WFD-net is
not must sound. However, we see that one branch of t2, namely the one going
to c3, always leads to completion. Therefore, the workflow is may-sound.

6 Conclusion

In this paper we showed how to obtain reliable verification results when verifying
conceptual workflow nets with data information. Our work is in fact a cross-
fertilization of design and modeling frameworks coming from the field of Process-
Aware Information Systems (PAIS), and verification and abstraction approaches
developed in the field of Formal Methods.

The final target of researchers working in the area of formal methods is usually
the verification of programs/systems which may contain complex data coming
from large or infinite data domains, consist of a large number of distributed com-
ponents, etc. To cope with the complexity of the objects to be verified, many
abstraction techniques [4,5,6,7,10,15] such as predicate abstractions, and ab-
straction methodologies, such as CEGAR (counter-example guided abstraction
refinement) [3,13], are proposed. The concept of may/must transition systems
was defined in this area [14] and then found multiple applications there.

In our work, the verification target is not a refined system but a conceptual
model, which may later on be refined in different ways. We do not need to apply
abstractions to cope with the complexity of data, as it is done in [16,11,12] for
WS-BPEL processes—the data is still underdefined, abstract, in the models we
consider.

We use WFD-nets to specify conceptual workflows. As we showed in [19],
WFD-nets can be seen as an abstraction from notations deployed by popular
modeling tools, like Protos of Pallas Athena, which uses a Petri-net-based mod-
eling notation and is a widely-used business process modeling tool. (It is used
by more than 1500 organizations in more than 20 countries and is the leading

Workflow Soundness Revisited 543

business process modeling tool in the Netherlands.) By building on the classi-
cal formalism of Petri nets, we keep our framework easily adaptable to many
industrial and academic languages.

Future work. For the future work we plan to integrate our implementation of
the may/must-based soundness verification of WFD-nets in the process analy-
sis/discovery framework ProM [2]. As a basis, we use the generic CTL model-
checking algorithm presented in [17], and restrict it to the soundness property.
This algorithm shall then replace the standard algorithm [19] for checking sound-
ness. As ProM provides import functionality for many industrial process model-
ing languages, by integrating our implementation in ProM we will achieve direct
applicability of our framework to real-world conceptual workflows.

Another item for the future work concerns the diagnostic methods for the
identification of possible causes of incorrectness in the workflow, which would be
fit to work within the may/must framework.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de
Medeiros, A.K., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters,
A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer,
Heidelberg (2007)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
Abstraction Refinement for Symbolic Model Checking. Journ. of the ACM 50(5),
752–794 (2003)

4. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994); A
preliminary version appeared in the Proc. of the POPL 1992

5. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
the 4th ACM SIGACT-SIGPLAN Symp. on Principles of programming languages
(POPL 1977), pp. 238–252. ACM Press, New York (1977)

6. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD dissertation, Eindhoven University of Technology (July 1996)

7. Dams, D., Gerth, R., Grumberg, O.: Abstract Interpretation of Reactive Systems.
ACM Transactions on Programming Languages and Systems (TOPLAS) 19(2),
253–291 (1997)

8. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

9. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software through Process Technology. Wiley &
Sons, Chichester (2005)

10. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

544 N. Sidorova, C. Stahl, and N. Trčka

11. Heinze, T.S., Amme, W., Moser, S.: Generic CSSA-based pattern over boolean
data for an improved WS-BPEL to petri net mappping. In: Mellouk, A., Bi, J.,
Ortiz, G., Chiu, D.K.W., Popescu, M. (eds.) Third International Conference on
Internet and Web Applications and Services, ICIW 2008, Athens, Greece, June
8-13, pp. 590–595. IEEE Computer Society, Los Alamitos (2008)

12. Heinze, T.S., Amme, W., Moser, S.: A restructuring method for WS-BPEL business
processes based on extended workflow graphs. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 211–228. Springer, Heidelberg
(2009)

13. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental Verification by
Abstraction. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
98–112. Springer, Heidelberg (2001)

14. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

15. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property Preserving
Abstractions for the Verification of Concurrent Systems. Formal Methods in System
Design 6(1), 11–44 (1995)

16. Moser, S., Martens, A., Görlach, K., Amme, W., Godlinski, A.: Advanced verifica-
tion of distributed WS-BPEL business processes incorporating CSSA-based data
flow analysis. In: 2007 IEEE International Conference on Services Computing (SCC
2007), Salt Lake City, Utah, USA, July 9-13, pp. 98–105. IEEE Computer Society,
Los Alamitos (2007)

17. Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for ctl. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer,
Heidelberg (2004)

18. Trčka, N.: Workflow Soundness and Data Abstraction: Some negative results and
some open issues. In: Workshop on Abstractions for Petri Nets and Other Models
of Concurrency (APNOC), pp. 19–25 (2009)

19. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-Flow Anti-Patterns: Discov-
ering Data-Flow Errors in Workflows. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

	Workflow Soundness Revisited: Checking Correctness in the Presence of Data While Staying Conceptual
	Introduction
	Motivating Examples
	Workflow Nets with Data
	Semantics of WFD-nets
	Behavior of WFD-nets
	Reachability

	Soundness
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

