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Abstract. We revisit the problem of constructing efficient secure two-
party protocols for set-intersection and set-union, focusing on the model
of malicious parties. Our main results are constant-round protocols that
exhibit linear communication and a linear number of exponentiations
with simulation based security. In the heart of these constructions is a
technique based on a combination of a perfectly hiding commitment and
an oblivious pseudorandom function evaluation protocol. Our protocols
readily transform into protocols that are UC-secure.
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1 Introduction

Secure function evaluation (SFE) allows two distrusting parties to jointly com-
pute a function of their respective inputs as if the computation is executed in
an ideal setting where the parties send inputs to a trusted party that performs
the computation and returns its result. Starting with the work of [37,20,6,4],
it is by now well known that (in various settings, and considering semi-honest
and malicious adversaries) any polynomial-time computation can be generically
compiled into a secure function evaluation protocol with polynomial complexity.
However, more often than not, the resulting protocols are inefficient for practical
uses and hence attention was given to constructing efficient protocols for specific
functions. This approach that proved quite successful for the semi-honest setting
(see, e.g., [26,13,28,1,17,25,5,30,24,27]), while the malicious setting remained, at
large, elusive (a notable exception is [1]).

We focus on the secure computation of basic set operations (intersection and
union) where the parties P1, P2, holding input sets X, Y , respectively, wish to
compute X ∩ Y or X ∪ Y . These problems have been widely looked at by re-
searchers in the last few years, and our main goal is to come up with protocols
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for set-intersection and set-union that are secure in the malicious setting and
are of better complexity to those known.

We begin by briefly surveying the current constructions of two-party secure
computation for set intersection and union that are most relevant to our work:

– Freedman, Nissim and Pinkas studied set intersection in [17]. They represent
a set by a polynomial that zeros exactly on the set elements. Their construc-
tion for the semi-honest setting utilizes oblivious polynomial evaluation and
a balanced allocation scheme and exhibits linear communication (counting
field elements) and (almost) linear computation (counting modular exponen-
tiations). See Section 3.

They also present variants of the above protocol, for the cases where one of
the parties is malicious and the other is semi-honest. For efficiency, generic
zero-knowledge proofs of adherence to the protocol are avoided. The protocol
for malicious P1 (denoted client in [17]) and semi-honest P2 (server) utilizes a
cut-and-choose strategy and hence communication is inflated by a statistical
security parameter. The protocol for malicious P2 and semi-honest P1 is in
the random oracle model. A protocol that is secure in the fully malicious
setup, that combines both techniques, is sketched in Section 3.1.

– Kissner and Song [25] used polynomials to represent multi-sets. Letting the
roots of QX(·) and QY (·) coincide with elements of the multi-sets X and Y ,
they observed that if r(·), s(·) are polynomials chosen at random then the
roots of r(·) · QX(·) + s(·) · QY (·) coincide with high probability with the
multi-set X∩Y . This beautiful observation yields a set-intersection protocol
for the semi-honest case, where the parties use an additively homomorphic
encryption scheme (the Paillier scheme is suggested in [25]) to perform the
polynomial multiplication, introducing quadratic computation costs in the
set sizes. For the security of the protocol, it is crucial that no party should be
able to decrypt on her own. Hence, the secret key should be shared and joint
decryption should be deployed. Assuming a trusted setup for the encryption
scheme, the communication costs for the two-party case are as in the protocol
for semi-honest parties of [17].

For malicious parties [25] introduced generic zero-knowledge proofs for
proving adherence to the prescribed protocol (e.g., zero-knowledge proofs
of knowledge for the multiplication of the encrypted Qx(·) with a randomly
selected r(·)). While this change seems to be of dire consequences to the pro-
tocol efficiency, the analysis in [25] ignores its effects. Furthermore, the costs
of setting the shared key for the Paillier scheme are ignored in the analysis.
To the best of our knowledge, there are currently no efficient techniques for
generating the shared Paillier keys, which do not incorporate an external
trusted dealer (the latter schemes include [14,15] referenced in [25]).

In addition to that, Kissner and Song presented a protocol for the threshold
set-union problem, where only the elements that appear in the combined
inputs more than t times are learnt by the parties. Their protocol employs the
same technique of polynomial multiplication and thus introduces quadratic
computation costs as above.
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– Hazay and Lindell [21] revisited secure set intersection, with the aim of
achieving efficient protocols in presence of a more realistic adversarial be-
havior than in the benign semi-honest model, and under standard crypto-
graphic assumptions. Two protocols were presented, one achieves security
in the presence of malicious adversaries with one-sided simulatability, the
other is secure in the presence of covert adversaries [2]. The main tool used
in these protocols is a secure implementation of oblivious pseudorandom
function evaluation.

Having P1, P2 hold sets of sizes mX , mY respectively, both protocols in [21]
are constant round, and incur the communication of O(mX ·p(n)+mY ) group
elements and the computation of O(mX · p(n) + mY ) modular exponentia-
tions, where set elements are taken from {0, 1}p(n).

We note that the protocols in [21] can be made secure in the malicious
setup, e.g., by introducing a secure key selection step for the oblivious prf
and by adding zero-knowledge proofs of knowledge to show correctness at
each step. Namely, for proving that the same prf key is indeed used by party
P1 in each iteration and to enable extraction of its input (as a pseudoran-
dom function is not necessarily invertible). While this would preserve the
complexity of these protocols asymptotically (in mX , mY ), the introduction
of such proofs would probably make them inefficient for practical use since
there is no effieicnt known way to construct them.

– Recently, Jarecki, and Liu [23] presented a very efficient protocol for comput-
ing a pseudorandom function with a committed key (informally, this means
that the same key is used in all invocations), and showed that it yields an
efficient set-intersection protocol. The main restriction of this construction
is that the input domain size of the pseudorandom function should be poly-
nomial in the security parameter (curiously, the proof of security for the
set-intersection protocol makes use of the ability to exhaustively search over
the input domain, so removing the restriction on the input domain of the
pseudorandom function does not immediately yield a set-intersection proto-
col for a super-polynomial domain).

– Finally, Dachman-Soled et al. [11] present a protocol for set-intersection in
the presence of malicious adversaries without restricting the domain. Their
construction uses polynomial evaluation but takes a different approach than
ours by incorporating a secret sharing of the inputs to the polynomials.
They avoid generic zero-knowledge by utilizing the fact that Shamir’s secret
sharing implies Reed Solomon code. Their protocol incurs communication
of O(mk2 log2 n + kn) group elements and computation of O(mnk log n +
mk2 log2 n).

1.1 Our Contributions

Our main contributions are efficient set-intersection and set-union protocols that
are secure in the setup of malicious parties. Our constructions are in the standard
model, and are based on standard cryptographic assumptions (in particular, no
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random oracle or a trusted setup). We begin by briefly describing the construc-
tion of Freedman et al. [17] for semi-honest parties that serves as our starting
point.

Secure Set Intersection with Semi-Honest Parties. The main tool used in the
construction of [17] is oblivious polynomial evaluation. The basic protocol works
as follows:

1. Party P1 chooses encryption/decryption keys (pk, sk)← G(1n) for a homo-
morphic encryption scheme (G, E, D) and sends pk to P2.

2. P1 computes the coefficients of a polynomial Q(·) of degree mX , with roots
set to the mX elements of X , and sends the encrypted coefficients to P2.

3. For each element y ∈ Y (in random order), party P2 chooses a random value
r (taken from an appropriate set depending on the encryption scheme), and
uses the homomorphic properties of the encryption scheme to compute an
encryption of r ·Q(y) + y. P2 sends the encrypted values to P1.

4. Upon receiving these encrypted values, P1 extracts X∩Y by decrypting each
value and then checking if the result is in X . Note that if y ∈ X ∩Y then by
the construction of the polynomial Q(·) we get that r ·Q(y)+y = r ·0+y = y.
Otherwise, r ·Q(y) + y is a random value that reveals no information about
y and (with high probability) is not in X .

Note that the communication complexity of this simple scheme is linear in mX +
mY , as mX +1 encrypted values are sent from P1 to P2 (these are the encrypted
coefficients of Q(·)), and mY encrypted values are sent from P2 to P1 (i.e., Q(y)
for every y ∈ Y ). However, the work performed by P2 is high, as each of the mY

oblivious polynomial evaluations includes performing O(mX) exponentiations,
totaling in O(mX ·mY ) exponentiations.

To save on computational work, Freedman et al. introduced a balanced al-
location scheme into the protocol. Loosely speaking, they used the balanced
allocation scheme of [3] with B = mX

log log mX
bins, each of size M = O(mX/B +

log log B) = O(log log mX). Party P1 now uses the balanced allocation scheme
to hash every x ∈ X into one of the B bins resulting (with high probability)
with each bin’s load being at most M . Instead of a single polynomial of degree
mX party P1 now constructs a degree-M polynomial for each of the B bins,
i.e., polynomials Q1(·), . . . , QB(·) such that the roots of Qi(·) are the elements
put in bin i. As some of the bins contain less than M elements, P1 pads each
polynomial with zero coefficients up to degree M . Upon receiving the encrypted
polynomials, party P2 obliviously evaluates the encryption of r0 · Qh0(y)(y) + y
and r1 · Qh1(y)(y) + y for each of the two bins h0(y), h1(y) in which y can be
allocated, enabling P1 to extract X ∩ Y as above.

Neglecting constant factors, the communication complexity is not affected
as P1 now sends BM = O(mX) encrypted values and P2 replies with 2mY

encrypted values. There is, however, a dramatic reduction in the work performed
by P2 as each of the oblivious polynomial evaluations amounts now to performing
just O(M) exponentiations, and P2 performs O(mY ·M) = O(mY · log log mX)
exponentiations overall.



316 C. Hazay and K. Nissim

Our main goal is to come up with protocols that exhibit low asymptotic com-
munication and computation costs in the presence of malicious behavior. Noting
that asymptotic complexity does not reveal everything about a protocol’s effi-
ciency or practicality, we avoid using generic zero-knowledge proofs of adherence
to the prescribed protocols, even when they involve relatively short statements,
and costly set up commutations that make the efficient only for very large inputs.
Our contributions are realized as follows,

Preventing the Players from Deviating from the Protocol: We inherit the obliv-
ious polynomial evaluation and balanced allocation techniques used in [17]. On
top of these we introduce an efficient zero-knowledge proof that P1 uses to show
that her encrypted polynomials were correctly produced (unlike in [17], our proof
does not use a cut-and-choose strategy), and a technique preventing player P2

from deviating meaningfully from the protocol. This technique combines a per-
fectly hiding commitment scheme with an oblivious pseudorandom function eval-
uation protocol.

Eliminating the Random Oracle: In some sense, our construction replaces the
random oracle used in [17] in the case of a malicious sender with a prf, but this
‘replacement’ is only in a very weak sense: In our construction P2 holds the key
for the pseudorandom function, and hence the function does not look random to
P2, nor does P2 does not need to invoke the oblivious pseudorandom evaluation
protocol to compute it. The consequence is that, unlike with the simulator for
the protocol in the random oracle model that can easily monitor all invocations
of the oracle, our simulator cannot extract P2’s input to the pseudorandom
function.

We note that the protocols of [21] also use an oblivious pseudorandom function
evaluation primitive, where the player analogous to P2 knows the key for the
function. Their usage of this primitive is, however, very unlike in our protocols.
In the protocols of [21] the pseudorandom function is evaluated on the set of
elements that P2 holds, using the same prf key for all evaluations. Whereas
in our protocols it is evaluated on a random payload using (possibly) different
keys. A payload sy is a random element that is chosen independently for each
element y ∈ Y with the aim to fix the randomness used by P2. Meaning that
the randomness for the oblivious polynomial evaluation of y is determined by
the prf evaluation of sy. Furthermore, the protocols in [21] are designed for the
covert adversary model and for the one-sided simulatability model, and hence a
technique enabling full simulation of P2 is not needed, whereas our constructions
allow simulation of both parties.

Choosing the Underlying Encryption Scheme: Our protocols make extensive use
of a homomorphic encryption scheme, and would remain secure (with only small
modifications) under a variety of choices. We chose to work with the El Gamal
scheme (that is multiplicatively homomorphic) although it may seem that the
more natural choice is the Paillier scheme [32], that is additively homomorphic
(indeed, our initial constructions were based on the Paillier scheme).
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Using the Paillier scheme, a subtle problem emerges (this was overlooked, e.g.,
in [17]). Recall that for the Paillier scheme pk = N, sk = φ(N). Now, if P1 knows
sk when she constructs her polynomials, then she may construct a polynomial
Q(·) such that Q(y) �∈ Z

∗
N for some specific ‘target’ value y. This would allow

her to learn about P2’s input beyond the intended protocol output. A possible
solution is that P1, P2 would first engage in a protocol to jointly generate pk and
shares of sk, whereas P1 would learn sk only after committing to her polynomials.
This, however, introduces high key setup costs, and the result is a protocol that
exhibits low asymptotic costs, but, because of its high setup costs, its efficiency
is gained only for very large inputs.

Efficiency: Our protocols for set intersection and set union π∩, π∪ are constant
round, work in the standard model and do not require a trusted setup. The
underlying encryption scheme is El Gamal where the keys are selected by party
P1. Both protocols do not employ any generic zero-knowledge proof.

Assuming the protocols of [16,21] (that require p(n) oblivious transfers for
realizing the oblivious pseudorandom function evaluation), we get that for sets
X, Y ⊂ {0, 1}p(n) of mX , mY elements respectively, the costs of π∩, π∪ are of
sending O(mX + mY · p(n)) group elements, and the computation of O(mX +
mY ·(log log mX +p(n))) modular exponentiations. Note that this is significantly
better than O(mX ·mY ).

A significant improvement can be achieved by using a more efficient pseu-
dorandom function evaluation instead of using the function of [29] which re-
quires a single oblivious transfer for every input bit. This is due to the fact
that our protocol uses oblivious pseudorandom function evaluation as a black
box. Furthermore, for set intersection, another significant improvement can be
achieved if the size of the intersection mX∩Y is allowed to be leaked (to P2).
The resulting protocol is of sending O(mX + mX∩Y · p(n)) and computing
O(mX + mY · log log mX + mX∩Y · p(n)). When mX∩Y � mY we get a pro-
tocol that is more efficient than that of [21]. This type of improvement does not
apply for [21] as well since the parties apply the prf directly on the input set Y
and thus cannot deduce mX∩Y before that.

UC Security: Our protocols readily transform into the UC framework as all our
simulators are straight-line in an hybrid model with access to some specific zero-
knowledge proofs. We show how to modify our set intersection protocol to one
that is secure in the UC framework (in the common reference string model).

For lack of space, we focus only on the protocol for secure set intersection in
the malicious model, and omit the more standard details of the construction,
and its proof of security. The missing details and proofs can be found in the full
version of this paper [22].

2 Preliminaries

Throughout the paper, we denote the security parameter by n, and, although
not explicitly specified, input lengths are always assumed to be bounded by some
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polynomial in n. A probabilistic machine is said to run in polynomial-time (ppt)
if it runs in time that is polynomial in the security parameter n alone. A function
μ(n) is negligible (in n) if for every polynomial p(·) there exists a value N such
that μ(n) < 1

p(n) for all n > N ; i.e., μ(n) = n−ω(1).

2.1 Secure Two-Party Computation – Definitions

We use standard definitions of security for two party commputation in the mali-
cious model, which we now briefly review. The reader is referred to [18, Chapter
7] for more details and motivating discussion.

We prove the security of our protocols in the setting of malicious adversaries,
that may arbitrarily deviate from the specified protocol. Security is analyzed by
comparing what an adversary can do in a real protocol execution to what it can
do in an ideal scenario. In the ideal scenario, the computation involves an incor-
ruptible trusted third party to whom the parties send their inputs. The trusted
party computes the functionality on the inputs and returns to each party its
respective output. Informally, the protocol is secure if any adversary interacting
in the real protocol (i.e., where no trusted third party exists) can do no more
harm than what it could do in the ideal scenario. We consider the static setting
where the adversary is only able to corrupt a party at the outset of the protocol.
There are technical issues that arise, such as that it may be impossible to achieve
fairness or guaranteed output delivery. E.g., it is possible for the an adversarial
party to prevent an honest party from receiving outputs.

2.2 The El Gamal Encryption Scheme

The El Gamal encryption scheme operates on a cyclic group G of prime order q.
We will work in the group Z

∗
q′ where q′ = 2q + 1 is prime, and set G to be the

subgroup of Zq′ of quadratic residues modulo q′ (note that membership in G can
be easily checked). Let g denote a random generator in G, then the public and
secret keys are 〈G, q, g, h〉 and 〈G, q, g, x〉 where x←R Zq and h = gx. A message
m ∈ G is encrypted by choosing y ←R Zq and the ciphertext is 〈gy, hy ·m〉. A
ciphertext c = 〈α, β〉 is decrypted as m = β/αx. We use the property that given
y = logg α one can reconstruct m = β/hy and hence a party encrypting m can
prove knowledge of m by proving knowledge of y.

The semantic security of the El Gamal scheme follows from the hardness of
decisional Diffie-Hellman (ddh) in G. The El Gamal scheme is homomorphic
relative to multiplication. I.e., if 〈α1, β1〉 encrypts m1 and 〈α2, β2〉 encrypts m2

then 〈α1 · α2, β1 · β2〉 encrypts m1m2. We additionally consider a modified ver-
sion of El Gamal where the encryption is performed by choosing y ←R Zq and
computing 〈gy, hy · gm〉. Decryption of a ciphertext c = 〈a, b〉 is performed by
computing gm = b · a−x. The fact that m cannot be efficiently recovered is not
problematic for the way El Gamal is incorporated in our protocols. Moreover,
this variant of El Gamal is additively homomorphic and can be used to perform
oblivious linear computations (e.g., polynomial evaluation) in the exponent.



Efficient Set Operations in the Presence of Malicious Adversaries 319

2.3 Perfectly Hiding Commitment

We use a perfectly-hiding commitment scheme (com, dec) with a zero-knowledge
proof of knowledge πCOM for the relation

RCOM =
{(

c, (r, m)
) ∣∣ c = com(m; r)

}
,

where com(m; r) denotes the commitment to a message m using random coins
r. We instantiate com(·; ·) with Pedersen’s commitment scheme [33], using the
same underlying group G used for the El Gamal scheme. I.e., let q′ = 2q + 1
where q′, q are primes and let g, h be generators of the subgroup G of quadratic
residues modulo q′. A commitment to m is then defined as com(m; r) = gmhr

where r ←R Zq−1. The scheme is perfectly hiding as for every m, r, m′ there
exists a single r′ such that gmhr = gm′

hr′
. The scheme is binding assuming

hardness of computing logg h. However, given logg h, it is possible to decommit
any commitment c into any message m ∈ Zq. We instantiate πCOM with the
proof of knowledge from [31] (this proof is not a zero-knowledge proof, yet can
be modified using standard techniques [19]).

2.4 Zero-Knowledge Proofs

Our protocols employ zero-knowledge proofs of knowledge for the following re-
lations (in the following, G is a group of prime order):

Type Protocol Relation/Language Reference
ZKPK πDL RDL = {((G, g, h), x) | h = gx} [35]
ZKPK πDDH RDDH = {((G, g, g1, g2, g3), x) | g1 = gx ∧ g3 = gx

2}} [7]

ZK πNZ LNZ =
{

(G, g, h, 〈α, β〉) | ∃ (m �= 0, r) s.t.
α = gr ∧ β = hrgm

}
Sec. 2.4

Zero-Knowledge Proof for LNZ. We use standard techniques for construct-
ing a zero-knowledge proof for the language of encryptions 〈α, β〉 of non-zero
exponents of g:

LNZ = {(G, g, h, 〈α, β〉) | ∃ (m �= 0, r) s.t. α = gr ∧ β = hrgm} .
The construction is based on a zero-knowledge protocol πMULT for the language

LMULT =
{

(G, g, h, c1, c2, c3) | ∃ m, m′ ∈ Zq s.t. c1, c2, c3 are
encryptions of gm, gm′

, gmm′
resp.

}
.

πMULT is a modification of a protocol by Damg̊ard and M. Jurik [9] designed for
the Paillier encryption scheme.

2.5 Balanced Allocation

We employ a scheme for randomly mapping elements into bins, as suggested
in [17]. We use the balanced allocation scheme of [3] where elements are inserted
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into B bins as follows. Let h0, h1 : {0, 1}p(n) → [B] be two randomly chosen
hash functions mapping elements from {0, 1}p(n) into bins 1, . . . , B. An element
x ∈ {0, 1}p(n) is inserted into the less occupied bin from {h0(x), h1(x)}, where
ties are broken arbitrarily. If m elements are inserted, then except with negligible
probability over the choice of the hash functions h0, h1, the maximum number
of elements allocated to any single bin is at most M = O(m/B + log log B).
Setting B = m

log log m we get that M = O(log log m).1 In the protocol we devi-
ate insignificantly from the description above, and let P1 choose seeds for two
pseudorandom functions, that are used as the hash functions h0, h1.

2.6 Oblivious prf Evaluation

We use a protocol πPRF that obliviously evaluates a pseudorandom function in
the presence of a malicious adversary. Let IPRF be the indexing algorithm for a
pseudorandom function ensemble, and let k ←R IPRF(1n) be a sampled key. The
functionality FPRF is defined as

(k, x) �→ (λ, FPRF(k, x)). (1)

The prf may be instantiated with the Naor-Reingold pseudorandom function
[29] with the protocol presented in [16] (and proven in [21]). The function is
defined as

FPRF((a0, . . . , an), x) = ga0
∏n

i=1 a
x[i]
i ,

where G is a group of prime order q, g is a generator of G, ai ∈ Zq and x =
(x[1], . . . , x[n]) ∈ {0, 1}n. The protocol involves executing an oblivious transfer
for every bit of the input x. Combining this with the fact that n oblivious
transfers runs require 11n + 29 exponentiations using the protocol in [34] (the
analysis in [34] includes the cost for generating a common reference string), one
gets a constant-round protocol that securely computes FPRF in the presence of
malicious players using a constant number of exponentiations for every bit of
the input x.

3 Secure Set Intersection

We now consider the functionality of set intersection, where each party’s input
consists of a set, and the size of the other party’s input set. If the set sizes
match, then the functionality outputs the intersection of these input sets to P1.
Otherwise P1 is given ⊥. More formally:

Definition 1. Let X and Y be subsets of a predetermined domain (w.l.o.g., we
assume X, Y ⊂ {0, 1}p(n) for some polynomial p() such that 2p(n) is

1 A constant factor improvement is achieved using the Always Go Left scheme in [36]
where h0 : {0, 1}p(n) → [1, . . . , B

2
], h1 : {0, 1}p(n) → [ b

2
+ 1, . . . , B]. An element x is

inserted into the less occupied bin from {h0(x), h1(x)}; in case of a tie x is inserted
into h0(x).
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super-polynomial in n, and that the set elements can be represented as elements
of some finite group), the functionality F∩ is:

((X, mY ), (Y, mX)) �→
{

(X ∩ Y, λ) if |X |=mX , |Y |=mY and X, Y ⊆{0, 1}p(n)

(⊥, λ) otherwise

In the rest of this section we present in detail our construction for a protocol
realizingF∩ in the presence of malicious adversaries. For completeness we include
a description of the protocol by Freedman et al. for semi-honest parties:

Protocol 1. (set-intersection protocol secure in the presence of semi-honest
parties):

– Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX

items; the input of P2 is mX and a set Y ⊆ {0, 1}p(n) containing mY items.
– Auxiliary inputs: A security parameter 1n.
– The protocol:

1. Key setup: P1 chooses the secret and public keys (sk, pk) for the un-
derlying homomorphic encryption scheme (e.g., Paillier or El Gamal).
She sends pk to P2.

2. Setting the balanced allocation scheme: P1 computes the parame-
ters B, M for the scheme and chooses the seeds for two (pseudo-)random
hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B, M, h0, h1 to P2.

3. Creating polynomials for the set X: For every x ∈ X, P1 maps x
into the less occupied bin from {h0(x), h1(x)} (ties broken arbitrarily).
Let Bi denote the set of elements mapped into bin i and let Qi(x) def=∑M

j=0 Qi,j · xj denote a polynomial with the set of roots Bi. P1 encrypts
the coefficients of the polynomials and sends the encrypted coefficients to
P2.

4. Substituting in the polynomials: Let y1, . . . , ymY be a random order-
ing of the elements of set Y . P2 does the following for allα ∈{1, . . . , mY }:
(a) He sets ĥ0 = h0(yα), ĥ1 = h1(yα).
(b) He chooses two random elements in the underlying group of the ho-

momorphic encryption scheme r0, r1. He then uses the homomor-
phic properties of the encryption scheme to compute an encryption
of r0 ·Qĥ0

(yα)+ yα and r1 ·Qĥ1
(yα)+ yα. Both encrypted values are

sent to P1.
5. Computing the intersection: P1 decrypts each received value. If the

decrypted value is in X then P1 records as part of her local output.

Note that, since the parties are semi-honest, P1 outputs X ∩ Y with probability
negligibly close to 1: (i) For elements yα ∈ X ∩ Y we get that Qh0(yα)(yα) = 0
or Qh1(yα)(yα) = 0, hence one of the corresponding encrypted values is yα itself,
and P1 would record it in its local output. (ii) For yα �∈ X ∩ Y we get that
Qh0(yα)(yα) �= 0 and Qh1(yα)(yα) �= 0 and hence corresponding encrypted values
are two random values r0 +y and r1 +y that fall within X with only a negligible
probability.
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Efficiency. The protocol runs in a constant number of rounds. The commu-
nication costs are of sending the encrypted polynomials (BM values) and the
encrypted r0 · Qĥ0

(yα) + yα and r1 · Qĥ1
(yα) + yα (2mY values). Using the El

Gamal or Paillier encryption schemes, the computation costs are of encrypting
the polynomials (O(BM) exponentiations) and of obliviously computing the en-
cryptions of r0 ·Qĥ0

(yα)+ yα and r1 ·Qĥ1
(yα)+ yα (O(MmY ) exponentiations).

Overall, we get that the overall communication costs are of sending O(mX +mY )
encryptions, and the computation costs are of performing O(mX +mY log log n)
modular exponentiations.

3.1 Constructing a Protocol for Malicious Parties

We note a couple of issues that need to be addressed in transforming the above
protocol for semi-honest parties to a protocol for malicious parties:

1. It is easy for P1 to construct the B polynomials such that it would learn
about elements that are not in the intersection X∩Y . For instance, if Qi(·) is
identically zero then P1 learns all elements {y ∈ Y : h0(y) = i or h1(y) = i}.
Similarly, if the sum of degrees of Q1, . . . , QB exceeds mX then P1 may learn
about more than mX elements in P2’s input.

To resolve these problems we introduce a zero-knowledge protocol for
verifying that Qi �≡ 0 for all i ∈ {1, . . . , B}, and

∑
i∈{1,...,B} deg(Qi) = mX .

2. While party P2 is supposed to send mY pairs of encryptions resulting from
substituting a value y (known to P2) in the (encrypted) polynomials Qh0(y)

and Qh1(y) it may deviate from his prescribed computation. Thus, P2’s in-
put to the protocol may be ill defined. A solution suggested in [17] solves
this problem partially, as it deals with the case where each element y is sub-
stituted in a single polynomial. This solution avoids the standard usage of
zero-knowledge proofs by P2 that it indeed followed the protocol. Instead, it
enables party P1 to redo the entire computation supposedly carried out by
P2 on y and verify that its outcome is consistent with the messages received
from P2 (this is where the construction uses a random oracle).

We remove the dependency on the random oracle and present a solution
to the case where y is substituted in two polynomials.

3.2 Checking the Polynomials

Our set-intersection protocol utilizes a zero-knowledge proof of knowledge for
the relation2

RPOLY =
{(
{qi,j}i,j , mX , pk

)
,
(
{Qi,j , ri,j}i,j

)∣∣∣
∀i, j qi,j = Epk(Qi,j ; ri,j) ∧∑

i deg(Qi(·)) = mX ∧
∀i, Qi(·) �≡ 0

}

where i ∈ {1, . . . , B}, j ∈ {0, . . . , M}.
2 We will use the convention that the degree of a polynomial Qi(·) can be chosen to be

any integer j′ such that Qi,j = 0 for all j ≥ j′, hence equality with mX can always
be achieved.
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3.3 Secure Set-Intersection in the Presence of Malicious Adversaries

We now get to the main contribution of this work – a protocol that securely
computes F∩ in the presence of malicious adversaries, in the standard model;
see Figure 1. The main ingredient is a subtle combination of an oblivious pseudo-
random function evaluation protocol and a perfectly hiding commitment scheme.
Somewhat counter intuitively, the oblivious prf need not be committed (in a
sense that the same key is being reused) – the proof of security shows that al-
though party P2 that controls the key may change it between invocations, this
does not get him any advantage.

The oblivious prf is used to save on using a (generic) zero-knowledge protocol
for party P2’s adherence to the protocol. Recall that in the protocol of Freedman
et al. P1 learns for every y ∈ Y two values: r0 ·Qh0(y)(y)+y and r1 ·Qh1(y)(y)+y
where r0, r1 are randomly distributed. If y �∈ X then both values are random,
and reveal no information about y. If, y ∈ X then one of these values equals
y. In our protocol, the ‘payload’ y of this computation is replaced by a secret s
(meaning, P1 learns two values: r0 · Qh0(y)(y) + s and r1 · Qh1(y)(y) + s). The
result of the polynomial evaluation step is, hence, that if y �∈ X then P1 learns
no information about s, and if y ∈ X then P1 learns s.

The crux of our construction is that the strings r0, r1 (as well as other) are not
really random. These are pseudorandom strings that are directly derived from
FPRF(k, s). What we get, is that if y �∈ X then P1 learns nothing about s or y.
If, on the other hand, y ∈ X then P1 learns s, and furthermore after P1 invokes
the oblivious prf protocol, she can recover y and check that the computations
P2 performed based on the other ‘random’ strings were performed correctly.

A complication arises as P2 (who selects the key k for the prf) computes
FPRF(k, s) by himself, and hence it is impossible for the simulator to extract
s from this computation. We thus provide the simulator with an alternative
means of extracting s (and also the corresponding y value) by having P2 commit
to both. To guarantee independence of inputs (i.e., that P1 would not be able to
choose his inputs depending on P2’s commitment or vise versa), this commitment
is perfectly hiding and is performed before P1 sends the encrypted polynomials
representing her input set X .

We continue with a formal description of the protocol.

Protocol 2. (π∩ – secure set-intersection):

– Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX

items; the input of P2 is mX and a set Y ⊆ {0, 1}p(n) containing mY items
(hence, both parties know mX and mY ).

– Auxiliary inputs: A security parameter 1n, a prime q′ such that q′ = 2q+1
for a prime q. The group G is the subgroup of quadratic residues modulo q′

and g is a generator of G.
– Convention: Both parties check every received ciphertext for validity (i.e,

that it is in G), and abort otherwise.
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P1(X,my) P2(Y = {yα}α∈{1...mY },mX)

For all α ∈ {1 . . .mY } :

� comα = hyαgsα
sα ←R Zq

← ZKPOK πcom ←

encrypted Q1(·), . . . , QB(·)�
Q1(·) . . . QB(·) −→ πPOLY

←− encrypted Q1(·), . . . , QB(·)
−→ output

If output = 0, abort

Otherwise :
k ← IPRF(1

n) and
For all α ∈ {1 . . .mY } :
r0‖r1‖r̂0‖r̂1 = FPRF(k, sα)
q0 = r0 ·Qh0(yα)(yα),
q1 = r1 ·Qh1(yα)(yα).

�

e0α = Epk

(
(sα)

2 · gq0); r̂0
)

e1α = Epk

(
(sα)

2 · gq1); r̂1
)

For all α ∈ {1 . . .mY } :
z0α = Dsk(e

0
α)

z1α = Dsk(e
1
α)

Check if ∃ x ∈ X and
root ρ of z0α, z

1
α s.t.

comα = hx · gρ

ρ −→
FPRF(k, ρ) ←− πPRF

←− k

r′0‖r′1‖r̂′0‖r̂′1 = FPRF(k, ρ)

Check if e0α, e
1
α,

consistent with x

Fig. 1. A high-level diagram of π∩

– The protocol:
1. Key setup for the encryption and commitment schemes: P1

chooses t, t′ ←R Zq, sets h = gt, h′ = gt′ and sends h, h′ to P2. The
key for the Pedersen commitment scheme is h. The public and private
keys for the El Gamal scheme are pk = h′ and sk = t′. P1 proves knowl-
edge of logg h and logg h′ using the zero-knowledge proof of knowledge
for RDL.
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2. Setting the balanced allocation scheme: P1 computes the parame-
ters B, M for the scheme and chooses the seeds for two (pseudo-)random
hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B, M, h0, h1 to P2 that
checks that the parameters B, M were computed correctly, and aborts oth-
erwise.

3. P2 commits to his input set: Let y1, . . . , ymY be a random ordering of
the elements of set Y . For all α ∈ {1, . . . , mY }, P2 chooses sα ←R Zq and
sends comα = com(yα; sα) = hyαgsα to P1. P2 then proves the knowledge
of yα and sα by invoking the zero-knowledge proof of knowledge for RCOM.

4. P1 Creates the polynomials representing her input set: For every
x ∈ X, P1 maps x into the less occupied bin from {h0(x), h1(x)} (ties
broken arbitrarily). Let Bi denote the set of elements mapped into bin
i. P1 constructs a polynomial Qi(x) def=

∑M
j=0 Qi,j · xj of degree at most

M whose set of roots is Bi.3 P1 encrypts the polynomials’ coefficients,
setting qi,j = Epk(gQi,j ; ri,j), and sends the encrypted coefficients to P2.

5. Checking the polynomials: P1 and P2 engage in a zero-knowledge ex-
ecution πPOLY for which P1 proves that the sets {qi,j}i∈{1,...,B},j∈{0,...,M}
were computed correctly, using its witness
{Qi,j, ri,j}i∈{1,...,B},j∈{0,...,M}. If the outcome is not 1 then P2 aborts.

6. Evaluating the polynomials: P2 chooses k ← IPRF(1n). Then, P2

performs the following for all α ∈ {1, . . . , mY }:
(a) P2 computes FPRF(k, sα) and parses the result to obtain pseudoran-

dom strings r0, r1, r̂0, r̂1 of appropriate lengths for their usage below
(i.e., r0‖r1‖r̂0‖r̂1 = FPRF(k, sα)).

(b) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).
(c) He uses the homomorphic properties of the encryption scheme

to evaluate e0
α = Epk(((sα)2 mod q′) · gr0·Qĥ0

(yα); r̂0) and e1
α =

Epk(((sα)2 mod q′)·gr1·Qĥ1
(yα); r̂1) (where r̂0, r̂1 denote here the ran-

domness used in the re-encryptions). Then he sends e0
α, e1

α to P1.
7. Computing the intersection: For each α ∈ {1, . . . , mY }:

(a) P1 computes z0
α = Dsk(e0

α) and z1
α = Dsk(e1

α). For each of the (up to
four) roots ρ of z0

α, z1
α (roots are computed modulo q′ = 2q+1 and the

result is considered only if it falls within Zq), she checks if comα/gρ

coincides with hxα for some xα ∈ X (this can be done efficiently by
creating a hash table for set {hx : x ∈ X}), and if this is the case
sets ŝα to the corresponding root and marks α.

(b) P1 and P2 engage in an execution of the protocol for FPRF. If α is
marked, then P1 enters ŝα as input, and otherwise she enters a zero.
P2 enters k as input. Let r′0‖r′1‖r̂′0‖r̂′1 denote P1’s output from this
execution.

3 If Bi = ∅ then P1 sets Qi(x) = 1. Otherwise, if |Bi| < M then P1 sets the M +1−|Bi|
highest-degree coefficients of Qi(·) to zero.
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(c) If α is marked, then P1 checks that e0
α =Epk((ŝα)2·gr′

0·Qh0(xα)(xα); r̂′0),
and e1

α = Epk((ŝα)2 · gr′
1·Qh1(xα)(xα); r̂′1) result from applying the ho-

momorphic operations on the encrypted polynomials and randomness
r′0, r

′
1. If all checks succeed P1 records xα as part of her output.

A word of explanation is needed for the computation done in Step 6. A natural
choice for the payload is sα itself. However, sα ∈ Zq whereas the message space
of the El Gamal encryption is G. Noting that Zq ⊂ Z

∗
q′ (neglecting 0 ∈ Zq), and

that by squaring an element of Zq′ we get an element of G, we get that treating
sα as an element of Z

∗
q′ and computing (sα)2 mod q′ we get an element of G.

In this mapping, (up to) two elements of Zq share an image in G, and hence in
Step 7a we need to recover and check both pre-images.

Before getting into the proof of security, we observe that if both parties are hon-
est, then P1 outputs X ∩ Y with probability negligibly close to one. In this case, if
for an element yα ∈ Y is holds that yα ∈ X then one of Qh0(yα)(yα), Qh1(yα)(yα)
is zero, and otherwise none of Qh0(yα)(yα), Qh1(yα)(yα) is zero. We get:

1. If yα ∈ X ∩ Y then one of e0
α, e1

α encrypts (sα)2 mod q′. Hence, there exists
a root ρ of z0

α, z1
α such that comα/gρ coincides with hxα for some xα ∈ X ,

resulting in P1 marking α. Furthermore, as r0, r1, r̂0, r̂1 are derived from
FPRF(k, sα), the check done by P1 in Step 7 succeeds and P1 records yα in
her output.

2. If yα �∈ X ∩ Y then none of e0
α, e1

α encrypts (sα)2 mod q′ and (except for
a negligible probability) comα/gρ coincides with hxα for no root ρ of z0

α, z1
α

and xα ∈ X . Hence, P1 does not mark α, and yα is not considered in Step 7,
and not included in P1’s output.

Theorem 1. Assume that πDL, πPRF and πPOLY are as described above, that
(G, E, D) is the El Gamal encryption scheme, and that com is a perfectly-hiding
commitment scheme. Then π∩ (Protocol 2) securely computes F∩ in the presence
of malicious adversaries.

Efficiency. We first note that the protocol is constant round (as all its zero-
knowledge proofs and subprotocols are constant round). The costs of using cur-
rent implementations of FPRF on inputs of length p(n) is that of p(n) oblivious
transfer invocations [21], and hence of O(p(n)) modular exponentiations. We get
that the overall communication costs are of sending O(mX + mY p(n)) group el-
ements, and the computation costs are of performing O(mX +mY (log log mX +
p(n))) modular exponentiations.

Optimizations. Notefirst that if the functionality is changed to allowP2 learn the
size of the intersection mX∩Y , then, in Step 7b, it is possible to avoid invoking πPRF

when α is not marked. This yields a protocol where O(mX + mX∩Y · p(n)) group
elements are sent, and O(mX +mY · log log mX +mX∩Y ·p(n)) exponentiation are
computed. When mX∩Y � mY , this protocol is significantly more efficient than
those suggested in [21] for weaker adversarial models. Furthermore, an improved
scheme for oblivious pseudorandom function evaluation with overall complexity
which is independent of the input length yields a better efficiency as well.
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3.4 A Very Efficient Heuristic Construction

Note that we can now modify protocol π∩ to get a protocol in the random oracle
model πRO

∩ by performing the following two changes: (1) the computation of
FPRF(k, sα) performed by P2 in Step 6a of π∩ is replaced with an invocation of
the random oracle, i.e., P2 computes H(sα); and (ii) the execution of the secure
protocol for evaluating FPRF by P1 and P2 in Step 7 of π∩ is replaced with an
invocation of the random oracle by P1, i.e., no communication is needed, and
instead of providing s′ to the protocol for FPRF, P1 computes H(s′).

A typical proof of security in the random oracle model relies on the simulator’s
ability to record the inputs on which the random oracle is invoked, and the
recorded information is used by the simulator for malicious P2 while recovering
his input. In other words, the proof of security relies on the property of the
random oracle that the only way to learn any information about H(s) is to
apply H on a well defined input s. Should πRO

∩ be implemented such that the
invocations of the random oracle are replaced by a concrete computation of some
function, it seems that this proof of security would collapse, even if very strong
hardness assumptions are made with respect to this implementation.

Nevertheless, the situation in protocol π∩ is very different. Note, in particular,
that the simulator for malicious P2 cannot monitor P2’s input to FPRF (nor is this
notion of inputs to the function well defined). Instead, the simulator extracts s
from the zero-knowledge proof of knowledge for the commitment on P2’s inputs
in Step 3 of π∩. This is inherited by the modified protocol πRO

∩ . Hence, should
the random oracle calls in πRO∩ be replaced with some primitive Gen, the proof of
security may still hold with small modifications, given the hardness assumption
on Gen (intuitively, some functions of the outcome of Gen(s) and s should look
random). πRO∩ can hence be viewed as an intermediate step between the protocol
in [17] that utilizes a random oracle to cope with malicious parties, and the
protocol suggested in the current paper. If the primitive Gen is realized efficiently
(e.g., if its computation incurs a constant number of exponentiations), we get
an extremely efficient protocol for F∩, where the communication costs are of
sending O(mX + mY ) group elements, and the number of exponentiations is
O(mX + mY log log mX).

For the sake of completeness we include a formal description of protocol πGen
∩ ,

that is identical to protocol π∩ except for the replacing every invocation of
FPRF(k, ·) by a computation of Gen(·). Note that unlike in an invocation of
FPRF(k, ·), no communication is needed for computing Gen(·).
Protocol 3. (πGen

∩ – secure set-intersection with a “generator”):

– Inputs: The input of P1 is mY and a set X ⊆ {0, 1}p(n) containing mX

items; the input of P2 is mX and a set Y ⊆ {0, 1}p(n) containing mY items
(hence, both parties know mX and mY ).

– Auxiliary inputs: A security parameter 1n, a prime q′ such that q′ = 2q+1
for a prime q. The group G is the subgroup of quadratic residues modulo q′

and g is a generator of G.
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– Convention: Both parties check every received ciphertext for validity (i.e,
that it is in G), and abort otherwise.

– The protocol:

1. Key setup for the encryption and commitment schemes: P1

chooses t, t′ ←R Zq, sets h = gt, h′ = gt′ and sends h, h′ to P2. The
key for the Pedersen commitment scheme is h. The public and private
keys for the El Gamal scheme are pk = h′ and sk = t′. P1 proves knowl-
edge of logg h and logg h′ using the zero-knowledge proof of knowledge
for RDL.

2. Setting the balanced allocation scheme: P1 computes the parame-
ters B, M for the scheme and chooses the seeds for two (pseudo-)random
hash functions h0, h1 : {0, 1}p(n) → [B]. She sends B, M, h0, h1 to P2 that
checks that the parameters B, M were computed correctly, and aborts oth-
erwise.

3. P2 commits to his input set: Let y1, . . . , ymY be a random ordering of
the elements of set Y . For all α ∈ {1, . . . , mY }, P2 chooses sα ←R Zq and
sends comα = com(yα; sα) = hyαgsα to P1. P2 then proves the knowledge
of yα and sα by invoking the zero-knowledge proof of knowledge for RCOM.

4. P1 Creates the polynomials representing her input set: For every
x ∈ X, P1 maps x into the less occupied bin from {h0(x), h1(x)} (ties
broken arbitrarily). Let Bi denote the set of elements mapped into bin
i. P1 constructs a polynomial Qi(x) def=

∑M
j=0 Qi,j · xj of degree at most

M whose set of roots is Bi.4 P1 encrypts the polynomials’ coefficients,
setting qi,j = Epk(gQi,j ; ri,j), and sends the encrypted coefficients to P2.

5. Checking the polynomials: P1 and P2 engage in a zero-knowledge ex-
ecution πPOLY for which P1 proves that the sets {qi,j}i∈{1,...,B},j∈{0,...,M}
were computed correctly, using its witness {Qi,j , ri,j}i∈{1,...,B},j∈{0,...,M}.
If the outcome is not 1 then P2 aborts.

6. Evaluating the polynomials: For all α ∈ {1, . . . , mY } P2 performs
the following :
(a) He sets ĥ0 = h0(yα) and ĥ1 = h1(yα).
(b) He parses Gen(sα) to obtain pseudorandom strings r1, r2, r̂0, r̂1 of ap-

propriate lengths for their usage below (i.e., r1‖r2‖r̂0‖r̂1 = Gen(sα)).
He uses the homomorphic properties of the encryption scheme

to evaluate e0
α = Epk(((sα)2 mod q′) · gr0·Qĥ0

(yα); r̂0) and e1
α =

Epk(((sα)2 mod q′)·gr1·Qĥ1
(yα); r̂1) (where r̂0, r̂1 denote here the ran-

domness used in the re-encryptions). Then he sends e0
α, e1

α to P1.
7. Computing the intersection: For each α ∈ {1, . . . , mY }:

(a) P1 computes z0
α = Dsk(e0

α) and z1
α = Dsk(e1

α). For each of the (up to
four) roots ρ of z0

α, z1
α (roots are computed modulo q′ = 2q+1 and the

4 If Bi = ∅ then P1 sets Qi(x) = 1. Otherwise, if |Bi| < M then P1 sets the M +1−|Bi|
highest-degree coefficients of Qi(·) to zero.
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result is considered only if it falls within Zq), she checks if comα/gρ

coincides with hxα for some xα ∈ X (this can be done efficiently by
creating a hash table for set {hx : x ∈ X}), and if this is the case
sets ŝα to the corresponding root and marks α.

(b) If α is marked, then P1 parses Gen(ŝα) to obtain r′0, r
′
1, r̂

′
0, r̂

′
1.

(c) P1 checks that e0
α=Epk((ŝα)2·gr′

0·Qh0(xα)(xα); r̂′0), and e1
α =Epk((ŝα)2·

gr′
1·Qh1(xα)(xα); r̂′1) result from applying the homomorphic operations

on the encrypted polynomials and randomness r′0, r
′
1. If all checks

succeed P1 records xα as part of her output.
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