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Abstract. In this paper we present a smart card implementation of the
quantum computer resistant McEliece Public Key Cryptosystem (PKC)
on an Infineon SLE76 chip. We describe the main features of the im-
plementation which focuses on performance optimization. We give the
resource demands and timings for two sets of security parameters, the
higher one being in the secure domain. The timings suggest the usability
of the implementation for certain real world applications.
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1 Introduction

Current public key schemes like RSA and elliptic curve based cryptosystems
depend on the complex mathematical problems of integer factorization and the
calculation of discrete logarithms [1I2J3l4]. These systems are known to be vul-
nerable against so-called quantum algorithms which could be run efficiently on
quantum computers [Bl6l7]. Today, practically useful quantum computers have
not been build, but they are subject to intensive research. It is virtually impos-
sible to predict how long it will take scientists to construct a quantum computer
of sufficient potency to break today’s cryptographic schemes. But once this is
the case, new classes of cryptographic schemes will be needed to furthermore
guarantee data security. These new types of cryptographic schemes we refer to
as quantum computer resistant cryptographic schemes or post quantum cryptog-
raphy. Examples for theses types of algorithms are the hash-based cryptography,
such as the Merkle signature scheme [8/9], and code-based cryptography like the
McEliece PKC [TI0/TT], which is the subject of this paper.

While in principle it would suffice to switch to a quantum computer resis-
tant signature scheme just when quantum computers become an actual threat,
matters stand different for encryption schemes. Data that is encrypted today
and sent through a public channel might be recorded and stored by an attacker.
Then, once quantum computers are available to him, he is able to decrypt his
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recorded ciphertexts. This scenario shows the importance and urgency of taking
precautions against the threat that quantum computers pose for today’s public
key cryptosystems.

In this paper we present an implementation of the McEliece PKC on a smart
card. In Section [2] we describe the key generation as well as the encryption and
decryption operations of the McEliece PKC. A description of the hardware plat-
form and the most basic software design choices are given in Section Bl In Section
@ we show timings for the encryption and decryption operations using realistic
security parameters. The timings are in the magnitude of seconds and thus imply
the usability of the implementation for certain purposes. In Section [l we give the
conclusion and consider possible future improvements to the implementation.

2 Preliminaries

In the following we will give a brief definition of classical Goppa codes and the
McEliece PKC. In this section we assume that the reader is familiar with the
basics of error correcting codes. We use the notation given e.g. in [12].

2.1 Classical Goppa Codes

Goppa codes [13] are a class of linear error correcting codes. The McEliece PKC
makes use of irreducible binary Goppa codes, so we will restrict ourselves to this
subclass.

Definition 1. Let the polynomial

9(X) = g:X" € Fom[X] (1)
=0

be monic and irreducible over Fom[X], and let m, t be positive integers. Then
9(X) is called a Goppa polynomial (for an irreducible binary Goppa code).
Then an irreducible binary Goppa code is defined as

n—1
Ci
G(Fon,9(X)) = {e €FyISe(X):=3  “  =0modg(X)} ()
i=0 v
where n < 2™, S.(X) is the syndrome of ¢, the v;, i =0,...,n — 1 are pairwise

distinct elements of Fom, and c¢; are the entries of the vector c.

The code defined in such way has length n, dimension & = n — mt and can
correct up to t errors. Please note that our implementation only allows lengths
n = 2™. The canonical check matrix H for G(Fam, g(X)) can be computed from
the syndrome equation and is given in Appendix [Al
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2.2 The McEliece PKC

The McEliece PKC is named after its inventor [10]. It is a public key encryption
scheme based on general coding theory. Specifically, the McEliece PKC uses
Goppa codes. The strongest known attack against this scheme is based on solving
the NP-hard decoding problem, and no quantum algorithm has been proposed
which increases the efficiency of this attack [14].

In the following, we will give a brief description of the individual algorithms for
key generation, encryption and decryption, without presenting the mathematical
foundations behind the scheme or the consideration of its security. For these
considerations, the reader is referred to [I5].

It was shown that the original McEliece PKC is vulnerable against chosen-
ciphertext attacks, see [15] for an overview. However, this problem can be solved
by incorporating a CCA2-conversion in the scheme. A number of such conver-
sions have been proposed for the McEliece PKC [II]. The conversion we are
using in our implementation is described in Section

Parameters of the McEliece PKC. The security parameters m € N and
t € N with t <« 2™ have to be chosen in order to set up a McEliece PKC. An
example for secure values would be m = 11, ¢ = 50. These values can be derived
from the considerations given in [16] and [17].

2.3 McEliece Key Generation

The private key. The private key consists of two parts. The first part of the
secret key in the McEliece PKC is a Goppa polynomial g(X) of degree ¢ over
Fom according to Definition [, with random coefficients. The second part is a
randomly created n X n permutation matrix P.

The public key. The public key is generated from the secret key as follows. First,
compute H as the parity check matrix corresponding to g(X). Then take GP"P> =
[Ix | R] as the generator in systematic form corresponding to the parity check
matrix HP " (refer to Appendix [A] for the creation of the parity check matrix
and the generator of a Goppa code). Please note that choosing the generator
in systematic form would be a security problem if the McEliece PKC was used
without a CCA2-conversion.

2.4 McEliece Encryption

Assume Alice wants to encrypt a message m € F5. Firstly, she has to create a
random binary vector e of length n and Hamming weight wt (e) = ¢. Then she
computes the ciphertext z = mGP'> @ e.

2.5 McEliece Decryption

In order to decrypt the ciphertext, Bob computes 2’ = zP~!. He then computes
the syndrome S, = 2’H”. Afterwards he applies error correction by executing
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an error correction algorithm, which receives as its input the syndrome and the
permuted distorted codeword z’. It outputs the so called error locator polynomial
defined as

oe(X)= [[ (X =) € Fan[X],
JET

where Ter = {ile} = 1} and €’ is the error vector of the permuted distorted code
word z’. Once the error locator polynomial is known, the permuted error vector
is computed as

e = (Je/(70)708/(’)/1)7 T 708’('77171)) D (17 1. 3 1)7

ie. e =1if oe(7;) =0 and e, = 0 otherwise. The error vector then is found by
undoing the permutation: e = ¢’P. Then the message is recovered as the first k
bits of z @ e.

In our implementation, we use the Patterson Algorithm [I8] as error correction
algorithm.

The Patterson Algorithm. The Patterson Algorithm. is an efficient algo-
rithm for the determination of the error locator polynomial. We will give a brief
description of the algorithm without any proofs.
The algorithm uses the fact that the error locator polynomial can be written
as
0o(X) = a%(X) + XB2(X), (3)

Defining
7(X) = /S71(X) + X mod g(X), (4)

with S, (X) being the syndrome of the distorted code word z, the following
equation holds:
B(X)7(X) = a(X) mod g(X) ()

Then, assuming that no more than ¢ errors occurred, Equation ] can be solved
by applying the Euclidean algorithm with a breaking condition concerning the
degree of the remainder [I5]. Specifically, the remainder in the last step is taken
as a(X) and the breaking condition is deg ((X)) < |4 ]. It can be shown that
then, deg (B(X)) < |5'].

Thus, once a(X) and B(X) are determined, the error locator polynomial o,
is known.

2.6 CCA2-Conversion

As mentioned in Section[2.2] the original McEliece PKC needs to be extended by
a CCA2-conversion to achieve security against chosen-ciphertext attacks. The
conversion we are using in our implementation is introduced in [I9] and was
designed with respect to optimized computation time and side channel resistance.
A security proof for this conversion will be given elsewhere. Note that in the
implementation the CCA2-conversion is easily exchangeable.
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In the following, we will use
(z,€) «— Egpun(m)

to denote the McEliece encryption of the message m to the ciphertext z using the
public key GP"P. as depicted in Section[Z4l The error vector e is also modeled as
an output of the encryption function, since it is needed in the CCA2-conversion
which encapsulates the McEliece encryption. The same applies to the decryption

(m,e) — D(pyx))(2),

i.e. here e is also an output of the algorithm.

The conversion makes use of a hash function H () which outputs a bit vector of
length [. In the implementation, we are using SHA256, so [ = 256. Furthermore,
by || we denote concatenation.

Note that in Algorithm [l and 2] the ciphertext part z; has a bit length equal
to the parameter n of the McEliece PKC, whereas z5 and z3 are of bit length .

Algorithm 1. McEliece - CCA2 secure encryption

Require: message m € F}, public key GPuP
Ensure: ciphertext z € Fy 2!

u1 < random (k — [)-bit string.

u2 < random [-bit string.

(zh e) — 5Gpub (Ul ”H(mHU‘?))

ze |z || (Hu)@m) || (uz ® He))

~ - ~ -
z2 z3

Algorithm 2. McEliece - CCA2 secure decryption

Require: ciphertext z = (21, 22, z3) € Fi 2 secret key (P, g(X))
Ensure: decrypted message m € [y
(w, €) < D(pg(x))(21)
r « the first k — [ bits of w
h «— the bitsat k — 1+ 1,---,k of w.
m «— zo® H(r)
if h = H(m||(H(e) @ z3)) then
return m
else
return error
end if

3 Features of the Implementation

In this Section we outline the most basic features of our software implementation
and the hardware platform we are using.
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3.1 The Hardware Platform

As hardware platform, we use an SLE7T6CF5120P controller out of the SLE76-
family [20] by Infineon Technologies AG. It features a 16 bit CPU based on the
80251 architecture. It has a clock rate of 33 MHz and provides 12 kByte of RAM.
It es equipped with 504 kByte of non-volatile memory (NVM, i.e. flash memory).
It also features a unified data and code cache of 1 kByte.

3.2 Design of the Software

As we did not use a preexisting smart card operating system, we had to imple-
ment the basic functions for memory management and I/O. This encompasses
sending and receiving data via the serial interface, command processing and
management of the heap memory. Despite from this, a large number of mathe-
matical routines is needed for the encryption and decryption algorithms of the
McEliece PKC. The source code is written in the C programming language but
is strongly object oriented. In the following we give a brief overview of the most
important mathematical objects modeled in the code.

With respect to the prototypic nature of our implementation, we chose to
optimize with regard to execution time, not memory usage. This is based on
the following considerations. In a real world application the available RAM and
NVM would be firmly determined by the actual hardware and OS platform.
There, the time-memory tradeoffs arising in the implementation would have to
be shifted towards reducing memory usage until the limitations are fulfilled.
Without being given any concrete limitations, it seems more useful to show the
so far best achievable performance.

The field Fam. The Galois Field implementation is taken from the open source
McEliece implementation [21]], results concerning this implementation are given
in [22]. This implementation uses lookup tables for the computation of expo-
nentiations and logarithms of elements. These in turn are used to build most
other operations in Fom. All of these operations are implemented as preprocessor
macros. The Galois Field implementation determines the speed of the decryption
operation to a large extent, as it realizes the lowest level of implementation for
all polynomial operations.

Polynomials over Fam. In order to minimize execution time, each coefficient is
implemented as a two byte word. This in turn means that for our actual choices
of the parameter m = 10 and m = 11 (see Section ET]), a considerable number
of bits in each word is unused.

Permutations. Permutations are implemented as lookup tables. Again, each
entry is two bytes wide. Accordingly, a number of bits is in each word remains
unused. Note that there is no need to store the inverse of the permutation. A
function to apply the inverse of the permutation is easily implemented.
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Matrices over Fa. Clearly, no memory-time tradeoff choices arise with respect
to binary matrices. Matrices are stored row-wise. It is, however, important to
realize that in the binary case, by using the efficient “vector x matrix” type
multiplication, the Hamming weight of the vector is leaked through the running
time of the operation. This is not a problem in the decryption operation, as
according to Section the only operation preceding the computation of the
syndrome vector (by multiplying 2’ by the parity check matrix) is the application
of the permutation P. Note that the application of the permutation leaves the
Hamming weight of the vector invariant. Accordingly, in our implementation,
we use this type of matrix-vector multiplication for syndrome computation.

In case of the encryption operation (Section [Z4]) however, the message vector
is multiplied by the generator matrix. Here we have to use a “matrix x vector”
type multiplication in order not to leak the Hamming weight of the message
through a timing side channel. Accordingly, the public key is stored as Ggrub”
in the implementation.

Private Key. As shown in Section 23] the private key consists of the Goppa
polynomial ¢(X) and the permutation P. However, to allow for an efficient
decryption operation, further precomputed objects have to be available.

Parity Check Matriz. In order to perform efficient computation of the syndrome
(see Section 28] the parity check matrix H has to be stored. It makes up the
major part part of the private key, as is shown in section

Square root matriz. Furthermore, as the Patterson Algorithm involves the com-
putation of a square root in Fam [X]/g(X) (Equation [, it is helpful to store a
so called square root matrix [2324] as part of the private key. With the help
of this matrix, computing square roots in Fam[X]/g(X) is split into a matrix
multiplication and computing square roots in Fom. In this way, performance is
greatly enhanced. The square root matrix is computed during the key generation
in the following way. First, the squaring matrix @ for squarings in Fom [X]/g(X)
is generated as a t x t matrix with coefficients in Fom as follows: Generate the
i-th column as as X2 mod g(X) for i € {0,...t— 1}, where each coefficient goes
into one row.

(0) (s)

Y1 Y0 YoY0 .- 499" --- 4o

0 ‘

Yo Yo Yo Y0 --- Y0 qg) qgg)

(0) (s)

YoY1 Y0 Y -7 4 .- Q4o

(0) (s)

0 YoYoY0o Y0 ---7Y0 43" ... g3 (6)

= 0 ‘
Yo Yo Y1 Y0 -0 QE;) qz(lg)

(0) (s)

YoY YoY% ---7Y 45 --- G5

(0) ()

Y0 Y0 Y0 YO -+ VL Gy -+ Gy
Here, 79 and 77 represent the neutral element regarding addition and multipli-
cation in Fom, respectively. The buildup of the matrix @ is as follows. The first
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[t/2 — 1] columns simply represent the mapping v; — 71, X — X2, X2 — X4,
etc. and thus are independent of g(X). Once the squaring causes a polynomial

of degree t or higher, the reduction by ¢g(X) must be carried out, causing the

entries qlga) to depend on the Goppa Polynomial. Here, the subscript and super-

script of ¢ simply indicate the rows and columns of the submatrix dependent on
g(X) and thus s =¢—1—[t/2 —1].

Note that the matrix depicted in Equation [0l is for an even value of the pa-
rameter t. In the case of ¢ odd, the column containing the ; in the last row
would not exist.

The squaring of a polynomial with coefficients a = (g, a1, ..., @;—1) can now
be carried out by computing

where o/ = (a3, 03,...,a2 ;).

The desired square root matrix is found as Q~'. Taking the square root of a
polynomial 3 then amounts to compute ' = Q18 and /8 = (/B /Bl - -,

VBi_1)-

4 Timings and Resource Usage

In this section we give timings and resource demands of our implementation for
two sets of security parameters.

4.1 Parameter Sets

The parameters m and ¢ of the McEliece PKC determine the security of the
scheme and its resource demands. We tested our implementation with two sets
of parameters, shown in the table below. The bit security is given with respect
to the attack given in [I7], which is to the best of our knowledge the strongest
known attack today. Note that the message size is determined merely by the
length of the output of the hash function used in the CCA2-conversion. In our
implementation, this is always SHA256 (see Section 2.0]).

Table 1. Security parameter sets for the McEliece PKC

m,t security bits message size ciphertext
in byte size in byte
10,40 62 32 2-32+128 =
192
11,50 102 32 232+ 256 =

320
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4.2 Timings

In TableRlwe give timings for the two parameter sets. For comparability, we also
give timings for the same operations on a personal computer (PC). The computer
is an Intel Core Duo T7300 2GHz running Linux with kernel version 2.6.24.
The application uses the same source code as the smart card implementation,
compiled with GCC-4.1.3, optimization level 02.

The column labeled “time” lists the overall timing including the data transmis-
sion to and from the smart card. In the rightmost column we provide the time that
is used by the mere computation on the card, excluding the transmission times.
The gross bit rate of the transmission is 9600 bit/s. Please note that the SLE76
hardware platform generally supports much faster transmission rates than this.

Table 2. Timings for encryption and decryption operation of the McEliece PKC on a
personal computer and the SLE76 smart card

platform parameter operation time time with-
set out I/0

PC m=10, t=40 encryption 0.75 ms -

PC « decryption 0.8 ms -

SLET76 « encryption 1.26s 0.97s

SLET6 « decryption 0.98s 0.69s

PC m=11, t=50 encryption 1.2ms -

PC « decryption 1.6ms -

SLET76 « encryption 1.85s 1.39s

SLET76 « decryption 1.52s 1.06s

Concerning the encryption operation, we must point out that the measure-
ment results are of small practical relevance. This is due to the fact that we
perform the encryption by using a public key stored in the NVM of the device.
In real life applications, this key would have to be exchanged for every new com-
munication partner. Considering the public key size, this would cause totally
impractical transmission times.

4.3 Resource Demands

In TableBlwe give the resource demands, i.e. the RAM and non-volatile memory
(NVM) space needed by the implementation. Again, we distinguish the two pa-
rameter sets we are examining in this work. The demanded RAM size is made up
of a fixed stack size of 1024 bytes and the peak amount of allocated heap mem-
ory. Note that the RAM demands given below are with respect to the decryption
operation. They are lower for the encryption operation.

The main contribution to the private key size stems from the parity check
matrix H, which makes up about 143,000 bytes in case of m = 11, ¢ = 50 and
about 53,000 bytes for m = 10, ¢ = 40. This corresponds to portions of 95%
and 88%, respectively. Please note that in addition to the raw matrix data, the
given sizes also include certain management data overhead.
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Table 3. Resource demands of the McEliece PKC smart card implementation with
accuracy of 100 byte for RAM and 1000 byte for NVM

resource space in 10® byte
RAM (m=11,t=50) 4.4
RAM (m=10,t=40) 34
NVM code 45

NVM public key (m=10,t=40) 33
NVM private key (m=10,t=40) 60
NVM public key (m=11,t=50) 106
NVM private key (m=11,t=>50) 151
NVM Fsi0 lookup tables 4
NVM Fj11 lookup tables 8

4.4 Key Generation

So far, our smart card implementation does not feature key generation. The
reason for this is that this operation involves operations on matrices that by far
exceed the card’s RAM size. Since writing to the NVM takes much more time
than writing to RAM, an optimized key generation algorithm would be needed
in order to minimize those NVM write accesses.

In our implementation, we have realized a set of commands to write the private
key parts from the PC to the card.

5 Conclusion and Outlook

The McEliece PKC, though existing for 30 years, has not experienced any serious
use in real world applications so far. The main drawbacks of this scheme are the
large sizes of the private and public key. But as shown by our work, the NVM
and RAM provided by today’s smart cards are already sufficient to support im-
plementations of McEliece using parameters that provide about 100 bit security.
Also, the achievable performance seems sufficient for certain applications.

The implementation presented in this work is fully functional, yet there are
a number of possible improvements that could be applied to it. First of all, the
code size could probably be reduced further by removing certain redundancies.
Concerning the performance, a major improvement should result from the re-
placement of 32 bit pointers used throughout the code by 16 bit pointers. This
is because the 16 bit CPU can handle the smaller pointers much faster. But
since at least for the larger parameter set the private key size exceeds the 16
bit addressable area, this could only be achieved with the usage of the Mem-
ory Management Unit (MMU) available on the SLE76 platform. An alternative
would be to use a 32 bit platform, of course.

Furthermore, our implementation will undergo a thorough analysis with re-
spect to side channels and appropriate countermeasures will be incorporated.
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The problem of the transmission and storage of the public key for the encryption
operation, which arises in certain applications will also be addressed in future
work.

Considering the fact that the McEliece PKC is providing security even in the
presence of quantum computers, our results should encourage decision makers
to examine applications of public key encryption schemes within their author-
ity with respect to the need and possibility to switch to a quantum computer
resistant scheme. As stated in the introduction, the replacement of the classi-
cal encryption schemes like RSA and elliptic curve based cryptography may not
be delayed until the very moment at which potent quantum computers become
available to attackers.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644654 (1976)

2. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2), 120-126 (1978)

3. Miller, V.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417-426. Springer, Heidelberg (1986)

4. ElGamal, T.: A Public Key Cryptosystem and A Signature Based on Discrete
Logarithms. IEEE Transactions on Information Theory (1985)

5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings, 35th Annual Symposium on Foundation of Computer Science
(1994)

6. Shor, P.W.: Polynomial time algorithms for prime factorization and discrete log-
arithms on a quantum computer. STAM Journal on Computing 26(5), 1484-1509
(1997)

7. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Technical Report quant-ph/0301141, arXiv (2006)

8. Merkle, R.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218-238. Springer, Heidelberg (1990)

9. Buchmann, J., Garcia, L., Dahmen, E., Doering, M., Klintsevich, E.: CMSS-An Im-
proved Merkle Signature Scheme. In: 7th International Conference on Cryptology
in India-Indocrypt, vol. 6, pp. 349-363 (2006)

10. McEliece, R.J.: A public key cryptosystem based on algebraic coding theory. DSN
progress report 42-44, 114-116 (1978)

11. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems - con-
versions for McEliece PKC. In: Practice and Theory in Public Key Cryptography
- PKC ’01 Proceedings (2001)

12. MacWilliams, F.J., Sloane, N.J.A.: The theory of error correcting codes. North-
Holland, Amsterdam (1997)

13. Goppa, V.D.: A new class of linear correcting codes. Problems of Information
Transmission 6, 207-212 (1970)

14. Menezes, A., van Qorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996), http://www.cacr.math.uwaterloo.ca/hac/

15. Engelbert, D., Overbeck, R., Schmidt, A.: A Summary of McEliece-Type Cryp-
tosystems and their Security. Journal of Mathematical Cryptology (2007)


http://www.cacr.math.uwaterloo.ca/hac/

58 F. Strenzke

16. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to primitive narrow-sense BCH-codes of length 511.
IEEE Transactions on Information Theory 44(1), 367-378 (1998)

17. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31-46. Springer, Heidelberg (2008)

18. Patterson, N.: Algebraic decoding of Goppa codes. IEEE Trans. Info. Theory 21,
203-207 (1975)

19. Overbeck, R.: An Analysis of Side Channels in the McEliece PKC (2008),
https://www.cosic.esat.kuleuven.be/nato arw/slides participants/
Overbeck slides natoO8.pdf

20. Infineon Technologies AG: SLE76 Product Data Sheet,
http://www.infineon.com/cms/de/product/
channel .html?channel=db3a3043156£d57301161520ab8blc4c

21. Biswas, B., Sendrier, N.: HyMES - Hybrid McEliece System,
http://ralyx.inria.fr/2008/Raweb/secret/uid18.html

22. Biswas, B., Sendrier, N.: McEliece cryptosystem in real life: theory and practice.
In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47-62.
Springer, Heidelberg (2008)

23. Doring, M.: On the Theory and Practice of Quantum-Immune Cryptography. PHD-
Thesis (2008),
http://www.cdc.informatik.tu-darmstadt.de/reports/README.diss.html

24. The FlexiProvider group at Technische Universitat Darmstadt: FlexiProvider, an
open source Java Cryptographic Service Provider, http://wuw.flexiprovider.de

A Parity Check Matrix and Generator of an Irreducible
Binary Goppa Code

The parity check matrix H of a Goppa code determined by the Goppa polynomial
g can be determined as follows. H = XYZ, where

g 00---0 1 1 .- 1

919t 0 -+ 0 Yoo M Ye-1
X=| . ... . LhYy=. . .|

g1 9293 Gt %

. 1 1 1
Z = diag (g(%) Tgn) g(%l)) '

Here diag(...) denotes the diagonal matrix with entries specified in the argu-
ment. H is ¢t x n matrix with entries in the field Fom

As for any error correcting code, the parity check matrix allows for the com-
putation of the syndrome of a distorted code word:

SL(X)=zHT (X1 ... x, 1)

The multiplication with (Xt*17 e X 1)—r is used to turn the coefficient vector
into a polynomial in Fom:.
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The generator of the code is constructed from the parity check matrix in the
following way:

Transform the ¢ x n matrix H over Fom into an mt x n matrix Hs over Fy by
expanding the rows. Then, find an invertible matrix S such that

S-Hy = [I: |RT],

i.e., bring H into a systematic form using the Gauss algorithm. Here, I, is the
x X x identity matrix. Now take G = [I | R] as the public key. G is a k x n
matrix over Fo, where kK = n — mt.

B The Extended Euclidean Algorithm (XGCD)

The extended Euclidean algorithm can be used to compute the greatest common
divisor (ged) of two polynomials[I2].

In order to compute the ged of two polynomials r_1(X) and 7¢(X) with
deg (r9) (X) < deg (r—1(X)), we make repeated divisions to find the following
sequence of equations:

r-1(X) = q(X)ro(X) +71(X), deg(r1) < deg(ro),
70(X) = q2(X)r1(X) + r2(X), deg (r2) < deg (1),

ri2(X) = q(0r -1 (X) +15(X), deg (1) < deg (ri1),
ri—1(X) = qir1(X)ri(X)

Then r;(X) is the ged of r_1(X) and ro(X).
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