A Lifting-Based Discrete Wavelet Transform
and Discrete Wavelet Packet Processor with
Support for Higher Order Wavelet Filters

Andre Guntoro and Manfred Glesner

Department of Electrical Engineering and Information Technology,
Institute of Microelectronic Systems,
Technische Universitat Darmstadt,
Karlstr. 15, 64283 Darmstadt, Germany
{guntoro,glesner}@mes.tu-darmstadt.de

Abstract. The major challenge in the wavelet transforms is that there
exist different classes of wavelet filters for different kinds of applications.
In this chapter, we propose a generalized lifting-based wavelet processor
that can perform various forward and inverse Discrete Wavelet Trans-
forms (DWTs) and Discrete Wavelet Packets (DWPs) that also sup-
ports higher order wavelet filters. Our architecture is based on Processing
Elements (PEs) which can perform either prediction or update on a con-
tinuous data stream in every two clock cycles. We also consider the nor-
malization step which takes place at the end of the forward DWT/DWP
or at the beginning of the inverse DWT/DWP. Because different applica-
tions require different number of samples for the transforms, we propose
a flexible memory size that can be implemented in the design. To cope
with different wavelet filters, we feature a multi-context configuration to
select among various forward and inverse DWTs/DWPs. For the 16-bit
implementation, the estimated area of the proposed wavelet processor
with 8 PEs configuration and 2x2x512 words memory in a 0.18-pm
technology is 2.5 mm square and the estimated operating frequency is
319 MHz.

1 Introduction

For the last two decades the wavelet theory has been studied extensively [4]
7,11, T719] to answer the demand for better and more appropriate functions
to represent signals than the ones offered by the Fourier analysis. Contrary to
the Fourier analysis, which decomposes signals into sine and cosine functions,
wavelets study each component of the signal on different resolutions and scales.
In analogy, if we observe the signal with a large window, we will get a coarse
feature of the signal, and if we observe the signal with a small window, we will
extract the details of the signal.

One of the most attractive features that wavelet transforms provide is their
capability to analyze the signals which contain sharp spikes and discontinuities.
The better energy compacting support the wavelet transforms offer and also the
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localizing feature [5] of the signal in both time and frequency domains these
transforms support have made wavelet outperforms the Fourier transform in
signal processing and has made itself into the new standard of JPEG2000 [9,[15].

Along with recent trends and research focuses in applying wavelets in image
processing, the application of wavelets is essentially not only limited to this area.
The benefits of wavelets have been studied by many scientists from different
fields such as mathematics, physics, and electrical engineering. In the field of
electrical engineering wavelets have been known with the name multi-rate signal
processing. Due to numerous interchanging fields, wavelets have been used in
many applications such as image compression, feature detection, seismic geology,
human vision, etc.

Contrary to the Fourier transform, which uses one basis function (and its
inverse) to transform between domains, there are different classes of wavelet
kernels which can be applied on the signal depending on the application. Be-
cause different applications require different treatments, researchers have tried
to cope with their own issues and implemented only a subset of wavelets which
are suitable for their own needs such as ones that can be found in image com-
pression [61[10,[15,22] and speech processing [I,8,14,[16]. The power of wavelet
tools is then limited due to these approaches.

In this chapter we propose a novel architecture to compute forward and inverse
transforms of numerous DWTs (Discrete Wavelet Transforms) and also DWPs
(Discrete Wavelet Packets) based on their lifting scheme representations. Most
lifting-based wavelet processors are dedicated to compute wavelet filters which
are used only in JPEG2000 image compression where the wavelet coefficients
can be represented as integers such as Andra in [2] which required two adders,
one multiplier, and one shifter on each row and column processor to compute
(5,3) and (9,7) filters with the prerequisite that prediction or update constants
of the actual and the delayed samples are equal (i.e. ¢(1 + 271)). Barua in [3]
described the similar architecture for FPGAs that optimizes the internal memory
usage. Dillen in [I3] detailed the combined architecture of (5,3) and (9,7) filters
for JPEG2000. Another example is from Martina, which encompassed multiple
MAC structure with recursive architecture in [I§].

Our new proposed architecture takes into account that each lifting step repre-
sentation of an arbitrary wavelet filter may have two different update constants
and the Laurent polynomial may have higher order factors (i.e. ¢127P 4 co2z79),
which are common in various classes of wavelet filters such as Symlet and Coiflet
wavelet filters. Additionally, the proposed architecture also considers the normal-
ization step which takes place at the end of the forward DWT/DWP or at the
beginning of the inverse DWT/DWP for the applications that require to conserve
the energy during the transform. In order to be flexible, the proposed architec-
ture provides a multi-context configuration to choose between various forward
and inverse DWTs/DWPs. Because wavelet transforms work with large number
of samples, the proposed architecture can be configured to have an arbitrary
memory size (i.e. the powers of two) to cope with the application demands.
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The rest of the chapter is organized as follows. Section [Z.1] describes the sec-
ond generation of wavelets and the concepts regarding wavelet transforms and
wavelet packets. The proposed architecture, including the processing element,
the MAC-unit, the configuration and the context switch, the memory, the con-
troller, are explained in Section Bl Section M discusses the performance of the
proposed architecture and finally Section [l concludes the contribution.

2 Backgrounds

2.1 Lifting Scheme

Contrary to the filter approach, which separates the signal into low and high
frequency parts and performs the decimation on both signals afterwards, the
second generation of wavelets reduces the computation by performing the deci-
mation in advance. The second generation of wavelets, more popular under the
name of lifting scheme, was introduced by Sweldens [21]. The basic principle of
lifting scheme is to factorize the wavelet filter into alternating upper and lower
triangular 2 x 2 matrix.
Let H(z) and G(z) be a pair of low-pass and high-pass wavelet filters:

kn
H(z) = Z hnz™" (1)

n:kl

kn
G =3 g )

n:kl

where h,, and g, are the corresponding filter coefficients. N = |k, — k| + 1 is
the filter length and the corresponding Laurent polynomial degree is given by
h = N — 1. By splitting the filter coefficients into even and odd parts, the filters
can be rewritten as:

H(z) = Ho(2%) + 27 H,(2?) (3)
G(2) = Ge(2%) + 271G (2?) (4)

and the corresponding polyphase representation is:

Daubechies and Sweldens in [12,21] have shown that the polyphase representa-
tion can always be factored into lifting steps by using the Euclidean algorithm to
find the greatest common divisors. Thus the polyphase representation becomes:

EREEN), ([ R
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Fig. 1. Forward lifting steps

where a;(z) and b;(z) are the Laurent polynomials and K is the normalization
factor.

Fig.[Mlshows the arrangement of the lifting scheme representation. The Laurent
polynomials b;(z) and a;(z) are expressed as predictor P;(z) and updater U;(z).
The signal S; is split into even and odd parts. Prediction and update steps occur
alternately. The predictor P;(z) predicts the odd part from the even part. The
difference between the odd part and the predicted part is computed and used
by the updater U;(z) to update the even part. At the end, the low-pass and the
high-pass signals are normalized with a factor of K and 1/K respectively.

By factoring the wavelet filters into lifting steps, it is expected that the com-
putation performed on each stage (either it is a prediction or an update) will be
much less complex. As an example, the famous Daub-4 wavelet filter with the
low-pass filter response:

_ 1+¢3+3+¢3Z_1+3—¢3Z_2+ 1—¢3Z_3
4v/2 4v/2 4v/2 4v/2

can be factored into lifting steps:
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Since the finding of the greatest common divisors is not necessarily unique, the
result of the Laurent polynomials may also differ. The Daub-6 and the popular
(5,3) and (9,7) wavelet filters can be factored into lifting steps with maximum
degree of +1 [12] whereas Symlet-6 and Coiflet-2 (the lifting computations are
not detailed here due to page limitation) may have two update/prediction terms
and also z*° factor on its Laurent polynomials.

H(z) (7)

P(z) =

2.2 Wavelet Transform and Wavelet Packet

Wavelet transform is a multi-resolution signal analysis. In the traditional wavelet
transforms, only the low-pass signal is used on the next transformation level to
generate a multi-resolution representation of the corresponding signal. In wavelet
packets, both low-pass and high-pass signals are analyzed, resulting equally
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Fig. 2. Two different transformations

spaced frequency bands. Fig. [2] depicts both schemes. Note that the illustra-
tion uses wavelet transforms based on filter-approach instead of lifting-scheme
in order to ease understanding the concept for both schemes. LP and HP corre-
spond to low-pass and high-pass filter pair and |2 corresponds to down-sampling
by two. It is obvious that DWT will require less computation time compared to
DWP, because at each level, the number of samples is decreased by two. Also,
the controller that controls the processor to perform DWTs and their inverses is
straightforward, while the controller to perform DWPs and their inverses is more
complicated due to the fact that the number of frequency bands that need to be
processed increases two fold at each transform. As an example, performing four
levels wavelet packet on a signal leads to 16 frequency bands whereas performing
four levels wavelet transform generates 5 frequency bands.

Not only the challenges on the controller, the major issue in DWP is that
the resulting HP signals are much smaller than the LP parts in normal circum-
stances. Thus performing multi-level DWP using integer arithmetics would make
these HP signals go to zero, which lead to lower achievable SNR values, if it is
not carefully performed.

3 Proposed Architecture

The lifting-based forward DWT/DWP splits the signal into even and odd parts
at the first stage. The split signals are processed by an alternating series of pre-
dictors and updaters (on some wavelet filters, an updater may come before a
predictor). On the final stage, the multiplication with the normalization factor
takes place in order to conserve the energy. The inverse DWT/DWP performs
exactly everything backwards. It starts with the multiplication with normaliza-
tion factor, continues with a series of updaters and predictors, and finishes with
the merging of the outputs.

As a predictor and an updater perform a similar computation, the hardware
architecture for both functions is exactly the same. Taking this into account, we
propose a novel wavelet processor which is based on M processing elements to
cope with M lifting steps. Due to the nature of the lifting scheme, wavelet filters
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that have longer lifting scheme representations can easily be broken down into
smaller lifting steps that the processor can compute (i.e. M lifting steps each).
Which means that the processor that implements M processing elements is not
limited to perform the transform up to M lifting steps only.

The core behind our proposed architecture is the processing element (PE),
which performs the prediction or the update. To maximize the performance,
the PE utilizes the parallelism by using a pipeline mechanism to guarantee the
outputs to be available in every clock cycle (actually every two clock cycles as
detailed later). As the lifting scheme breaks a wavelet filter into smaller predic-
tions and updates, the resulting predictor and updater can be limited to have a
maximum Laurent polynomial degree of one. Nevertheless, the predictor or the
updater of higher order wavelet filters may have the higher factors as well. With-
out loss of generality, we can formulate the predictor or the updater polynomial
as:

l(z) =c127P + 2271 9)
with ¢; and cg as the polynomial constants and |p — ¢| < N. This implies that
on each stage (either as a predictor or an updater), the PE would perform two

multiplications and two additions. As an example, the first predict and update
steps of Daub-4 can be written as:

o =)= @

8/ M 1 0 S/
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which perform one multiplication and one addition in order to solve s’ (as shown
at the top resulting term in Eq.[I0) and two multiplications and two additions
to solve d' (as shown at the bottom resulting term in Eq. [IT]).

3.1 Architecture of the Processing Element

Taking into account that multipliers are expensive in term of area and the PE
receives two samples (s and d) at once, we have decided to lower the input rate
by half. From the performance point of view, the processing rate of the PE will
be equal to the processor speed and no longer twice as fast. This also implies that
the bottleneck issues on the input and output ports with the memory will not
occur. From the hardware implementation point of view, the PE requires only one
multiplier and one adder. This optimization, as detailed later, is accomplished
by multiplexing the operands of the multiplier inputs (the multiplier and the
multiplicand) and by feeding the adder result back via the multiplexer.

Fig. Bldepicts the proposed PE. The PE has two selectors S1 and S2 to choose
the prediction or the update samples that correspond to the factors p and ¢ from
the Laurent polynomial. Two constants which represent the filter coefficients are
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Fig. 3. Block diagram of the processing element

defined and configured by the controller. By delaying the actual samples, selector
S3 controls the prediction or the update that requires future samples. Selector
S4 is a bypass selector. Because lifting steps of the higher order wavelet filters
may require distance prediction or update samples, the maximum depth of the
unit delay z~™, that determines the maximum delay level, can be freely chosen
during the design.

Fig. [ details the MAC (Multiply-and-Accumulate) unit which is implemented
inside the PE. Both multiplier unit and adder unit require only one clock cycle
to perform their function. C; and C5 correspond to the Laurent polynomial
constants, whereas M7 and My correspond to the outputs of the samples that
are selected by S1 and S2. The multiplexer for M; and M; as a matter of fact
does not exist and is drawn here only to illustrate the MAC process. A shifter
is utilized as a replacement of the more expensive divider.

The PE is divided into 3 blocks. The first block organizes the input samples
from both channels. The second block chooses the inputs of the multiplier and
performs the multiplication. As mentioned earlier, the PE utilizes only one mul-
tiplier which is time-shared in order to perform two multiplications. The first
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Fig. 4. Multiply-And-Accumulate unit

clock cycle performs the first multiplication (i.e. C; x M;) and the second cy-
cle performs the second multiplication (i.e. C3 X Mz). The third block performs
the summation between the reference sample and the prediction/update values.
Similar technique is applied here in order to utilize only one adder. As shown
in Fig. @ the first addition cycle performs D + 2~ %(C; x M) and the second
addition cycle adds-up the first one with 27%(Cy x My). Whilst the input data
are integer, the shifter performs the division on the multiplication result with
2% where R can be freely chosen. Two 1-level FIFOs (First In First Out) are
implemented to deal with the multiplier delay and a 2-level FIFO is implemented
to compensate the delay which is introduced by the adder.

3.2 Normalization

As the multiplication with the normalization factor can take place at the end of
the transform in case of forward DWT/DWP or at the beginning of the transform
in case of inverse DWT/DWP, two special processing elements to handle this
function are required. Although the normalization step is different compared
to the prediction or the update step in a manner that both inputs s and d
are multiplied with constants K and 1/K respectively, we know for sure that
two multiplications take place. To perform this normalization step, we extend
the functionality of the PEs that are located on the top and on the bottom of
the proposed wavelet processor instead of implementing a dedicated normalizer
unit. Three additional multiplexers are needed to add the normalization factor
unit into the PE. Fig. [l shows the PE which is used on the top and on the
bottom of the proposed architecture. By enabling S5 and setting S1 and S3 to
zero, two inputs of the multiplexer before the multiplier correspond to the actual
samples s and d (with the normalization factors K = C; and 1/K = C3). The
first multiplication product passes through the multiplexer and the 1-level FIFO
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Fig. 5. Block diagram of the processing element which is located on the top and on
the bottom of wavelet processor

resulting s’ = Ks (the left side) and the second multiplication product passes
through the multiplexer resulting d’ = d/K (the right side). Whereas the first
normalization (i.e. s = Ks) takes place first, instead of adding a 1-level FIFO
on the right output port, the 2-level FIFO is split into two 1-level FIFOs to make
both outputs synchronized and to minimize the latency.

3.3 Context Switch

To cope with various lifting-based forward and inverse DWTs/DWPs, we have
separated the configuration dependent parameters from the PE. Figs. 3] and
show how the inputs of the multiplexer selectors and the multiplier constants
are separately drawn on the left side of the figures to emphasize the separation.
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Fig. 6. Context Switch for the PE

In addition the PE is designed to be simple. Thus, no finite state machine is
required to control the PE. To support different classes of wavelet filters that
require different types of configurations, we have implemented a multi-context
configuration on each PE as depicted in Fig. [l Each PE is assigned with a
row index as a unique ID for the configuration. Multiplier constants use the
signal data paths to save the wiring cost whereas the multiplexers configuration
requires additional controller path. Context switch is implemented as a memory
module where the address is controlled by the context selector and the write
enable signal is controlled by the output comparator.

The active configuration can easily be selected by using this context-based
controller to cope with various wavelet filters. One benefit of having a multi-
context configuration is that the proposed wavelet processor can be configured
to perform the corresponding inverse DWTs/DWPs in a very simple manner.
Additionally, the issues regarding the boundary condition can be relaxed by
utilizing special wavelet filters on the signal boundaries which require less or no
delayed/future samples (e.g. Haar wavelet) instead of exploiting the periodicity
or the mirroring of the signal. Lastly, by using the context-based configuration,
the DWTs/DWPs that exercise longer wavelet filters can simply be broken into
smaller lifting steps. The configuration of each group of the lifting steps will be
stored in the context memory and will be used to compute the transform.

3.4 Memory Controller

Taking into account that the predictions and the updates occur alternately, the
outputs of a PE will be cross-linked with the input of the next PE. Due to the
nature of lifting steps, the prediction and the update are computed in-place. It
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Fig. 7. The Proposed Wavelet Processor

means that it is not necessary to save the result or the temporary result into a
different memory. One simple implementation of the proposed wavelet processor
would consist of one PE. By configuring each context with the corresponding lift-
ing step, the DWT/DWP and their inverses could be computed with this simple
implementation. Although it is possible to use only one PE, a typical wavelet
processor will have M chained PEs configuration to boost the performance and
to minimize memory access.

Wavelet transform is a multi-resolutional signal processing tool. To achieve
the required results, the signal needs to be transformed iteratively. In case of a
DWT, only the low-pass part of the signal is taken into account as an input for
the next transform. As a pair of low-pass and high-pass wavelet filter is used
to compute the transform, the size of the signal decreases by two after each
transformation level in this case. In contrary, a DWP uses both low-pass and
high-pass parts of the signal in order to achieve equally spaced frequency bands
after each transformation level. The total size of the signal on DWP remains the
same and the amount of the processed data will slightly increase. It is due to
the fact that low-pass and high-pass parts are treated independently during the
computation and for each part of the signal, a signal extension, which will be
detailed later on, is required to compute the transform on the boundary regions.

Fig.[[ depicts the block diagram of the processor along with the PEs and their
configuration controller. The PEs that are located on the top and on the bottom
of the wavelet processor have an extra capability to perform the normalization.

Main FSM

The main finite state machine controls the wavelet processor. When the trans-
form is initiated, the FSM reads the necessary configurations, such as the trans-
formation level, forward/inverse mode, transform/packet mode, used contexts,
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etc. from the config block. This configuration, as detailed later, is divided into
two categories. The first category is related to the functionalities of the processor
and the second one is related to the lifting configuration.

The main FSM prepares the source and the sink addresses where the data
will be read and stored, and also the length of the data needed to be processed.
We exploit the periodicity extension to cope with the boundaries issue in order
to compute the transform on those regions. This implies that source address
does not always start on the top of the page. Address masking techniques are
applied here to localize the page. The FSM takes care of the possibility of having
a longer wavelet transform that has to be split into several lifting steps on the
target PEs. The FSM allows multi-level forward /inverse DWT and DWP to take
place by means of iteration process.

Config

The config block contains the configuration of the wavelet transform. Two differ-
ent configuration categories are managed by this block. The functionality part
manages:

— Selecting the type of the transform that will be performed: DWT or DWP.

— Selecting the transform mode: forward transform or inverse transform.

— The amount of memory that will be involved during the transform. Note that
the processor can perform the transform on an arbitrary size of the sample.
For an example, the value 0 indicates that the transform will be performed
on the whole memory. The value 1 will make the transform processes the
half of the memory and so on.

— Number of levels the transform will compute. This is effective to perform
multi-level transform on a 1D signal. In contrary, for a 2D or higher dimen-
sion, the number of levels should always be set to 1.

The lifting part stores the configuration of the contexts used during the trans-
form. It holds an important key to support wavelet transforms that use longer
wavelet filters. If the number of lifting steps of the wavelet filters used for the
transforms are larger than the available PEs, these lifting steps have to be split
into several smaller steps that can be fit into the available PEs. The configu-
ration of each lifting itself is stored on the context configuration of the PEs.
This block stores only the corresponding context IDs that will be used. Thus,
by selecting the right ID one after another, the wavelet transform with longer
lifting steps can be performed. Basically, it tells us which context should be used
for the corresponding lifting step.

Beside storing the context IDs, it also holds the read and write offset addresses
to start the transform and also the latency value for each lifting. It is important
to note that in order to compute the wavelet transform, except for Haar wavelet
filter, past and future samples are required. This becomes an issue when the
transform on the signal boundary is performed. To cope with this boundary
issue, the periodicity extension is used to locate these samples. These offsets
hold the information of the corresponding starting sample for this periodicity
extension.
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Memory

The memory is organized as 2x2 banks. This configuration describes that the
processor has two main banks (which are called bank 0 and bank 1) and each
main bank consists of one primary bank and one shadow bank. With this tech-
nique, while the processor performs the transform on one bank (either bank 0 or
bank 1), the next data can be placed on the other bank. Thus, it improves the
overall performance by minimizing the delay caused by the data preparation.

The memory write and read accesses are exclusive, which means that writing
to the memory will write to the primary bank and reading from the memory
will read from its shadow. This state is switchable automatically, controlled by
the FSM. When the transform takes place, the FISM grants the memory access
of the selected bank to the source and sink blocks. Writing to or reading from
this bank is forbidden and it will generate an error (as an indication of a busy
signal). Nevertheless, the external interface can still read from and write to the
memory of the other non-selected bank. Thus, the previous resulting transform,
which is stored in this non-selected bank, can be read, and also the external
interface can prepare the new data for the next transform.

Source and Sink

These blocks generate and automatically increment the read and write addresses.
The source reads data from the memory and transfers it to the PEs. The sink
reads data from the PEs and writes it to the memory. A special case is consid-
ered when performing transformations that are longer than the available PEs.
During the in-between transformation, in case of forward transform, the sink will
write the data (which corresponds to the intermediate results) to the memory
in adjacent manner (resulting L-H-L-H-...). During the final transformation, the
sink writes the LP and the HP signals into two different pages (resulting L-L-...-
H-H-...). The similar handling is also performed by the source when performing
the inverse transform.

To access the correct page, two address masks are used. The first mask is
responsible for the data indexing, and the second mask is responsible for the
page indexing.

Latency Counter

This block delays the run signal from the main FSM to initiate the sink process.
The delay amount is different for every lifting steps and it is defined in the config
block.

Details of the Memory Access

Fig. [ illustrates the N-level and multiple lifting steps DWT. White and grey
represent the primary and the shadow banks and diagonal pattern represents the
in-between transformation. During the setup, the data is prepared and stored
in one bank (this bank is write-only and its shadow is read-only). When the
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Fig. 9. Forward DWP Process

transformation is initiated, this state is reversed, and the source and the sink
control the address lines. For each lifting steps, the source reads the written data,
and the sink writes the in-between transformation result to the shadow bank.
This state is reversed again every time one lifting step is finished, which makes
the shadow bank as the primary bank and vice versa. During the last lifting
step, the sink stores the LP and the HP results into two different pages. This
whole process is performed N times with each iteration decreases the data by
half. At each finishing level, a memory copy to transfer the previous HP result
to the shadow bank is performed when necessary, e.g. when the lifting steps are
odd.

For the DWPs, the HP signal is also transformed, as depicted in Fig.[dl Instead
of executing/finalizing the transformation on each signal (LP, and then HP) on
each level, the in-between transformations are performed on both signals. With
this technique, the banks are not switched during the in-between transformation
for both LP and HP signals. Thus, the F'SM can trigger the source to initiate the
next data transfer for the next band/page (e.g. HP) without waiting the sink to
finish from the previous transform. This solution decreases the data preparation
time that is caused by exploiting the periodicity extension and the PEs latency.
No copy transfer is performed on the DWPs/IDWPs.

4 Results and Performances

Our wavelet processor is written in VHDL and is based on the modular and
parametric approach to make the design adaptable. In this paper, we provide
the synthesis results of our wavelet processor that contains 8 PEs to process
forward/inverse DWTs/DWPs with 8-level unit delays to support higher order
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Table 1. Estimated area and frequency of proposed wavelet processor with 8 PEs and
2x2 memory banks

Est. Area % Area for  Est. Frequency

Data Width
(in mm?) Logic (in MHz)
16-bit 2.501 30.60 % 319.49
20-bit 3.120 31.38 % 298.51
24-bit 3.780 32.63 % 285.71
28-bit 4.376 32.57 % 262.47
32-bit 5.134 34.63 % 241.55

Table 2. Comparison with other Lifting-Based Architectures

Arch. Speed Area Filter =~ Transform Data Width Mem. Size
Andra g 2OMHZ 5o m2 (O3 bW 16-bit 128
(0.18-um) (9,7) IDWT
Dillen [r3) *10 MHZ (5,3) bW 16-bit 256
(FPGA) (9,7)  IDWT
2 150 MH DWT
Seo 0] 150 MHz (2 (53) W 12-bit 512
(0.35-pum) (9,7) IDWT
100 MH
Wang [23] “ 11 mm? Daub4  DWP 18-bit 8
(0.18-pum)
ik *
Ours 242 MHz 5.1 mm? Arbitary DWT,IDWT  32-bit 512
(0.18-pum) DWP,IDWP Configurable Configurable

wavelet filters and 16 available contexts to configure 16 different transforms.
The design is synthesized using 0.18-um technology. Because wavelet transforms
deal with large numbers of samples, 2x2x512 words memory is integrated into
the processor for this implementation. Note that the wavelet processor is also
designed to be flexible in respect with the number of the samples the processor
can handle. In other word, the processor can be synthesized with an arbitrary
size of the memory, as long as it follows an integer power of two rule. The size
of the memory corresponds to the maximum number of samples the wavelet
transforms can be performed by the processor.

The estimated area and frequency of various data width implementations are
reported in Table[Il For the 16-bit configuration, the proposed wavelet processor
consumes 2.5 mm? chip area and has a maximum operating speed of 319 MHz.
As a comparison, architecture from Andra with 16-bit data width in [2] can only
compute (5,3) and (9,7) filters and required 2.8 mm? with 200 MHz operating
frequency. The details of the comparisons with the other architectures are sum-
marized in Table 2l Note that our proposed architecture has flexible data width
and memory size.
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Table 3. Lifting coefficients of Daub-6, Symlet-6, and Coiflet-2 wavelet filters

Type Daub-6 Symlet-6 Coiflet-2
Updater — 2.425 2° -0.227 2° -2.530 2°

Predictor  0.079 z7!-0.352 2 -1.267 2= 0.216 2° -0.240 z~! 0.342 2°
Updater -2.895 z'  0.561 22 0.505 z' -4.255 2> 3.163 2z' 15.268 22

Predictor -0.020 z~?2 0.045 z73 0.233 272 0.006 z> -0.065 z 2
Updater -18.389 2®  6.624 z' -63.951 2* 13.591 2*
Predictor 0.144 275 -0.057 z~* 0.001 z~°> 0.002 z~*
Updater -5.512 2° -3.793 2°

Normalizer 0.432 2315  -0.599 -1.671 0.108 9.288

Table 4. SNR values of different data width implementations (in dB) for 4-level forward
and inverse DWT

Daub-6
Source 16-bit  20-bit  24-bit  28-bit  32-bit
Sinusoid 42.90 67.04 89.38 115.00 138.52
Sawtooth 40.93  65.19 88.34 113.31 137.03

Step 44.98 67.07 87.95 114.19 138.88
Random 40.17 64.92 88.62 113.06 136.87
Symlet-6

Sinusoid  37.04 6195 8840 111.85 134.88
Sawtooth 35.75  60.22 85.84 108.89 133.17

Step 3497 64.94 91.83 112.53 140.07
Random  36.52 61.18 85.93 109.37 133.51
Coiflet-2

Sinusoid  31.35  55.13 7856 101.70 124.05
Sawtooth 29.80 52.85 76.83 100.13 123.19
Step 31.86  56.75  79.89 101.45 123.60
Random 29.01 52.83 77.53 101.93 125.27

In order to realize the fixed-point multiplication between the samples and the
coeflicients, we utilized an integer multiplier and a shifter to reduce the hardware
cost. As the compensation, this implementation leads to errors caused by the
rounding of the wavelet coefficients and the cropping of the multiplication results.
To measure the level of correctness of our design, we perform DWTs/DWPs
and their corresponding inverse transforms on some predefined signals. Four
different 8-bit full-swing signals, which are used as references, are forward and
inverse transformed using Daub-4, Symlet-6, and Coiflet-2 wavelet filters with
no integer coefficients. The random signal has a uniform distribution.
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Table 5. SNR values of different data width implementations (in dB) for 4-level forward
and inverse DWP

Daub-6
Source 16-bit  20-bit  24-bit 28-bit  32-bit
Sinusoid 39.66  63.92 87.49 111.65 136.02
Sawtooth 37.45  62.05 85.26 109.80 134.00

Step 41.11 63.85 86.79 112.82 137.83
Random  37.19 61.75 84.11 109.34 133.41
Symlet-6

Sinusoid 35.41  60.03 85.22 108.95 131.86
Sawtooth 33.79  58.24 8298 106.96 130.10

Step 34.25 62.31 87.14 108.17 134.37
Random 33.35 5840 82.67 106.87 129.71
Coiflet-2

Sinusoid  29.26  53.07 76.74 100.13 123.01
Sawtooth 27.09 51.00 74.44 98.75 121.57
Step 29.49  53.75  76.65 98.84 122.46
Random 26.75 51.33 74.64 9849 120.88

The lifting step coefficients of these wavelet filters are summarized in Table Bl
These coefficients are shortened to save space. Because the coefficients have to
be represented as integers, depending on the data width, they will be magnified
with some factor, and the result will be rounded and used as lifting coefficients.
ModelSim is used to compare and verify the results. The SNR is computed using;:

> |signal]
N =2 l 12
SN Ran) 0 xlogio (Z |signal — result| (12)

where signal corresponds the input vector and result corresponds the output of
the forward and inverse transforms.

Because wavelet transform is a multi-resolution signal processing tool, we per-
form four-level DWTs and DWPs to give a better overview of the performance
of our wavelet processor. The SNR values of the different data width imple-
mentations for 4-level DWTs and DWPs are reported in Table @ and Table
respectively. Depending on the data widths, SNR values vary between 29 dB and
140 dB in case of DWTs and between 27 dB and 138 dB in case of DWPs, which
are sufficient for most applications. DWPs achieve slightly lower SNR values due
to the fact that the high-pass signals after each transformation level get smaller
and tend toward zero. Thus information losses are affected at these bands. The
16-bit implementation achieves lower SNR values due to the fact that the lifting
coefficients have a large dynamic range that is between 0.001 and 64. The same
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reason applies for Coiflet-2 wavelet filter. The improvement of the SNR, values
can be achieved by increasing the data width.

The proposed wavelet processor can accept input data stream and perform the
computation in every two clock cycles made possible by the pipeline structure
and the resource sharing. The total latency on each PE is 4 clock cycles. One
clock cycle is consumed by the input registers, 1+1 by the multiplier (two multi-
plications are performed), and 14-0 by the adder (two summations are performed
where one cycle is “stolen” from the multiplier). Additional sample latency (2
clock cycles per future sample) will add-up to the total latency on the PEs which
require this feature. The PE that is configured to perform the normalization step
has latency of 3 clock cycles.

For the wavelet processor with M PEs, the total time needed to compute
L-stage forward/inverse DWT is:

Towr = L(Ts + T;) +25(1 — 0.51) + S(1 — 0.5571) (13)

where S is the signal length, T is the setup delay and Ty = > | =M Tpg,, is the
circuit delay with Tpg, as the PE latency delay of the m-th PE. The second
term is the contribution of the actual transform whereas the last term is the
result of the memory copy process.

In case of a L-stage forward/inverse DWP, the total time is formulated as:

Tpwp = L(Ts +T4) + LS (14)

The second term is the contribution of the low-pass and high-pass parts which
have to be processed as well. No memory copy process takes place on performing
forward/inverse DWP.

5 Conclusions

The facts are that wavelets have a very wide spectrum and there exists different
classes of wavelet filters that can be used depending on the application. We have
proposed a novel architecture that is able to compute various wavelet transforms
and their inverses based on their lifting scheme representations. Because of di-
versities in application’s need, we have designed the wavelet processor that can
perform not only DWTs, but also DWPs.

The proposed wavelet processor is based on M chained PEs to compute the
prediction/update of the lifting steps, and it can be configured easily to sup-
port higher order lifting polynomials, as the result of the factorization of the
higher order wavelet filters. To cope with different wavelet filters, the devel-
oped wavelet processor includes a multi-context configuration so that users can
easily switch between transforms (including their inverses). The wavelet proces-
sor is full-customized to manage different application demands which require
different accuracy. Additionally, the architecture takes into account the energy
conservation property of the wavelet transform by providing the normalization
step that occurs at the end of the forward DWT/DWP or at the beginning
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of the inverse DWT/DWP. Due to its locality property, wavelet transform has
a straightforward implementation in hardware. Considering also that wavelet
transforms work with arbitrary number of samples, we deliver this freedom into
our wavelet processor. Using 0.18-um technology, the estimated area of the pro-
posed wavelet processor with 16-bit configuration and 2x2x512 words memory
is 2.5 mm? and the estimated operating speed is 319 MHz.
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