
A Reconfigurable Network-on-Chip Architecture

for Optimal Multi-Processor SoC
Communication

Vincenzo Rana1, David Atienza2,3, Marco Domenico Santambrogio1,
Donatella Sciuto1, and Giovanni De Micheli4

1 Dipartimento di Elettronica e Informazione (DEI) - Politecnico di Milano,
Via Ponzio 34/5, 20133 - Milano, Italy

{rana, santambr, sciuto}@elet.polimi.it
2 Embedded Systems Laboratory (ESL) - Ecole Polytechnique Fédérale de Lausanne

(EPFL), ESL-IEL-STI-EPFL, Station 11, 1015-Lausanne, Switzerland
david.atienza@epfl.ch

3 Depto. de Arquitectura de Computadores y Automática (DACYA) - Universidad
Complutense de Madrid (UCM), Avda. Complutense S/N, 28040-Madrid, Spain
4 Integrated Systems Laboratory (LSI) - EPFL, LSI-ISIM-IC-EPFL, Station 14,

1015-Lausanne, Switzerland
giovanni.demicheli@epfl.ch

Abstract. Network-on-Chip (NoC) has emerged as a very promising
paradigm for designing scalable communication architecture for Systems-
on-Chips (SoCs). However, NoCs designed to fulfill the bandwidth re-
quirements between the cores of an SoC for a certain set of running
applications may be highly sub-optimal for another set of applications.
In this context, methods that can lead to versatility enhancements of
initial NoC designs to changing working conditions, imposed by variable
sets of executed real-life applications at each moment in time, are very
important for designing competitive NoCs in industrial SoCs.

In this work, we present a run-time reconfigurable NoC frame-
work based on the partial dynamic reconfiguration capabilities of
Field-Programmable Gate Arrays (FPGAs). This new NoC framework
can dynamically create/delete express lines between SoC components
(implementing dynamically circuit-switching channels) and perform
run-time NoC topology and routing-table reconfigurations to handle
interconnection congestion, with a very limited performance overhead.
Moreover, we show in our experimental results that the addition of
these dynamic reconfiguration capabilities into basic NoCs using our
framework only implies a very limited area overhead (around 10% on
average) with respect to the initial NoC designs; thus, it can bring great
benefits when compared to traditional non-reconfigurable NoC design
approaches for worst-case bandwidth requirements in SoCs with many
possible sets of running applications.

Keywords: Networks on Chips, Systems on Chips, Topology Reconfig-
uration, Express Lines, Dynamic Reconfiguration, FPGA.

C. Piguet, R. Reis, and D. Soudris (Eds.): VLSI-SoC 2008, IFIP AICT 313, pp. 232–250, 2010.
c© IFIP International Federation for Information Processing 2010

A Reconfigurable Network-on-Chip Architecture 233

1 Introduction and Problem Description

Latest applications ported to embedded systems (e.g., scalable video rendering,
communication protocols) demand a large computation power, while must re-
spect other critical embedded design constraints, such as, short time-to-market,
low energy consumption or reduced implementation size.

Thus, embedded systems are complex Systems-on-Chip (SoCs) that consist of
a large number of components, such as, processing elements, storage devices and
even reconfigurable devices, such as Field-Programmable Gate Arrays (FPGAs),
to enhance the flexibility of final SoCs to be used in different environments [5, 15].
Nevertheless, one of the most critical areas of MPSoC design is the definition
of the suitable interconnect subsystem for all these SoC components, due to
architectural and physical scalability concerns [3]. In fact, traditional shared bus
interconnects are relatively easy to design, but do not scale well for latest and
forthcoming SoC consumer platforms.

In order to cope with the large communication demands of such SoCs, the
use of modular and scalable Networks-on-Chips (NoCs) has been proposed [3].
Then, designing custom-tailored NoC interconnects that satisfy the performance
and design constraints of the SoC for all the different combinations of possible
executed applications is a key goal to achieve optimal commercial products [2,
13]. However, as general-purpose processor cores are used to run software tasks
of different applications in SoCs, the communication between the cores cannot
be precharacterized and fully optimized, since the application processes can be
mapped differently to the cores, typically with the support of the compiler. Thus,
to provide predictable performance of the NoC, the bandwidth capacity of the
different links must be sufficient to support the peak rate of traffic on the links
of the possible different mappings of the tasks onto the final SoC. Otherwise,
the network might experience traffic congestion and the latency for the traffic
streams and, hence, the interconnect performance will become unacceptable,
which needs to be avoided to provide appropriate consumer devices. As a result,
NoCs designs that guarantee worst-case bandwidth conditions of SoC operation
with multiple concurrent application often leads to over-sized topologies and
links on regular operation of the SoC. In this context, the development of new
methods and frameworks that increase the run-time versatility of initial static
NoC designs to adapt to different working conditions, originated by the diversity
of sets of applications at each moment, is an important research area in the NoC
domain.

In this paper we introduce a novel run-time reconfigurable NoC framework,
which exploits the partial dynamic reconfiguration capabilities of FPGAs to
adapt at run-time the implemented NoC interconnect to the specific working
requirements of the final SoC at each moment in time. In particular, the pro-
posed NoC framework is able to reduce the latency of interconnecting the in-
cluded SoC components by dynamically establishing or deleting a number of
dedicated point-to-point connections between them (or express lines in the NoC
literature [3]), which is particularly suited for video and audio streaming. Thus,
circuit-switching communication can be dynamically configured in the SoC. In

234 V. Rana et al.

addition, our framework enables a fast dynamic reconfiguration of routing tables
(few cycles) and overall NoC topologies (few milliseconds), which provides new
promising means to overcome congestion and consequently provide more reli-
able and high-performance NoC designs. Furthermore, our experimental results
show that the addition of the dynamic reconfiguration capabilities in basic NoCs
using our framework only involves limited area overheads (around 10% on av-
erage) with respect to initial NoC designs without reconfiguration capabilities.
Hence, the proposed reconfigurable NoC framework is viable to be considered in
commercial designs of SoCs.

It is possible to fully exploit the reconfigurable NoC proposed in this work
in order to establish dedicated (among 2 or more switches of the network) and
long (circuit-switching) communication channels among the cores of the recon-
figurable system. This can be really useful, for instance, in the case of audio and
video streaming that have to be dynamically carried out at run-time, without
the possibility to obtain detailed information at design time. In this case, in fact,
the proposed approach enables to dynamically reconfigure the communication
infrastructure accordingly to the need that arise at run-time, in order to meet
both latency and throughput requirements. This is possible since the reduction
of the number of hops between two switches directly decreases the latency be-
tween them and the introduction of a new express line in the topology directly
increases the overall throughput of the NoC.

The rest of the paper is organized as follows. In Section 2 we overview previ-
ous work in the field on reconfigurable NoCs. Then, in Section 3 we introduce
our reconfigurable NoC architecture, spanning from the included basic NoC ar-
chitecture to the additional components to enable the NoC Next, in Section 4 we
discuss the major reconfiguration capabilities and methods to implement them in
the proposed adaptive NoC framework. Later, in Section 5 we present the area,
performance and latency evaluation of the reconfiguration capabilities of our
framework in a real implementation on a large commercial FPGA implementing
a multi-processor SoC. Finally, in Section 6 we draw the main conclusions of this
work.

2 State of the Art

In recent years, several works focused their attention into the definition of a
reconfigurable communication infrastructure for reconfigurable Systems-on-chip.
For instance, in [11] the authors present a methodology for developing dynamic
network reconfiguration processes, but they define a reconfiguration just as the
change from one routing function to another while the network is up and running.
For this reason they present a theoretical work based on the limiting assumption
(not valid in the approach presented in this paper) that the network topology
can be considered fixed (like in [7]).

The work presented in [6] describes an integrated modeling, simulation and
implementation tool for reconfigurable NoCs. The work is based on the optimiza-
tion of a single given application and no details are given about the reconfigurable

A Reconfigurable Network-on-Chip Architecture 235

architecture of the NoC and about reconfiguration mechanisms. In addition to
this, flow control is not supported and the proposed NoCs are quite expensive
in terms of area usage (2733 slices, around 30% of the total slices of a Xilinx
Virtex II Pro XC2VP20 device), for a 2x2 torus running at 85 MHz, while the
proposed approach, with a lower area usage, allows the creation of a 3x3 mesh
running at 170 MHz.

In [1], a dynamically reconfigurable NoC architecture is presented. This NoC
can be dynamically configured with respect to routing, switching and data packet
size, but all the required resources have to be allocated at design time, since
at run-time it is only possible to dynamically change a limited number of pa-
rameters. A similar approach can be found in [10], where the proposed NoC
can be configured at run-time, but only with respect to memories content, re-
sources addressing and control parameters, while topology, buffers size and port
connections have to be determined at design time.

In [9], a scalable dynamic NoC for dynamically reconfigurable FPGAs
(CuNoC) is presented. The main idea behind CuNoC approach is to fill the
whole reconfigurable devices with very small communication units called CUs,
that can establish a communication channel between two different cores. The
main drawback of this approach is, in addition to the huge power consumption,
the high latency for each communication. In fact, the number of hops required
for a communication is very high on average, as each packet has to pass through
a high number of CUs (each one having a latency of 2 clock cycles), since it is
not possible neither to define a custom topology nor to configure express lines
between CUs. Furthermore, if an obstacle is present between two cores that need
to communicate, it is necessary to go around it, which increases the number of
hops of each packet.

In [14] the authors present CoNoChi, that is an adaptable NoC for dynami-
cally reconfigurable hardware design. The reconfigurable device is divided in a
matrix, and each cell of this matrix can hold either a computational module or a
communication element (a switch or point-to-point interconnect). Since it is not
possible to pass through a computational module, each communication channel
has to go around all the computational elements placed on the reconfigurable
device; thus, express lines cannot be configured at run-time. In addition to this,
the area requirement for a single switch is very high, as it varies from 463 to 493
slices (around 5% of a XC2VP20 device). Then, the working frequency is quite
low (it ranges from 66 to 73 MHz) and the actual latency of each switch is 5
clock cycles, which can be a significant penalty for interconnection mechanisms
nowadays.

3 The Proposed Reconfigurable Architecture

3.1 Reconfiguration Support

In order to configure an FPGA with the desired functionality, we need to use
one or more bitstreams. A bitstream is a binary file in which configuration in-
formation for a particular Xilinx device is stored, that is where all the data to

236 V. Rana et al.

Fig. 1. Configuration memory setup

be copied on to the configuration SRAM cells, the configuration memory, are
stored, along with the proper commands for controlling the chip functionalities.
Therefore Virtex devices, such as Virtex II Pro and Virtex 4, are configured by
loading application specific data into their configuration memory, as shown in
Figure 1. On the Virtex FPGAs the configuration memory is segmented into
frames. Virtex devices are partially reconfigurable and a frame is the smallest
unit of reconfiguration. According to the device, this element can span the en-
tire length of the FPGA, such as in the Virtex II Pro context, or just part of
it, as in Virtex 4 devices. The number of frames and the bits per frame are
specific for each device family. The number of frames is proportional to CLB
width. Bitstreams can be either partial or full. A full bitstream configures the
whole configuration memory and is used for static design or at the beginning of
the execution of a dynamic reconfiguration system, to define the initial state of
SRAM cells. Partial bitstreams configure only a portion of the device and are
one of the end products of any partial reconfiguration flow.

FPGAs provide different means for configuration, under the form of different
interfaces to the configuration logic on the chip. There are several modes and
interfaces to configure a specific FPGA family, among them the the IEEE 1149.1
Joint Test Action Group (JTAG) download cable (the one used in this work), the
SelectMAP interface, for daisy-chaining the configuration process of multiple FP-
GAs, configuration loading from PROMs or compact flash cards, microcontroller-
based configuration, an Internal Configuration Access Port (ICAP) and so on,
depending on the specific family. The ICAP provides an interface which can be

A Reconfigurable Network-on-Chip Architecture 237

used by internal logic to reconfigure and read back the configuration memory.
In every FPGA a configuration logic is built on the chip, with the purpose of
implementing the different interfaces for exchanging configuration data and to
interpret the bitstream to configure the device. A set of configuration registers
defines the state of this configuration logic at a given moment in time. Con-
figuration registers are the memory where the bitstream file has direct access.
Actual configuration data is first written by the bitstream into these registers
and then copied by the configuration logic on the configuration SRAMs.

3.2 Architecture Description

As previously hinted, the communication infrastructure of the proposed architec-
ture is based on the NoC paradigm. Furthermore, in order to exploit a 2-layered
approach, in which the computational layer is completely decoupled from the
communication layer, the proposed reconfigurable architecture mainly consists
of two different parts: a static part and a reconfigurable part.

The static part consists of all the computational elements and the network
interfaces. On the one hand, computational elements can be further divided into
two categories. The first one consists of masters, that are the active components
of the system, such as microprocessors (either a soft-core, as a MicroBlaze, or
a hard-core as a PowerPC), that can initialize new transactions on the network
(deployed in the communication layer); these components are connected to the
communication infrastructure through NI initiators (see Figure 2). The second
one consists of slaves, such as memories, that represent the components that act
in a passive mode, by receiving and answering transaction coming from active
elements; these components are connected to the communication infrastructure
through NI targets (see Figure 2).

The static part consists of all the computational elements and the network
interfaces. Computational elements can be further divided into masters (that are
the active components of the system, such as microprocessors, that can initialize
new transactions on the network and that are connected to the communication
infrastructure through NI initiators, as shown in Figure 2) and slaves (such as
memories, that represent the components that act in a passive mode, by receiving
and answering transaction coming from active elements, and that are connected
to the communication infrastructure through NI targets, as shown in Figure 2).

The reconfigurable part is composed by all the reconfigurable elements, used
to adapt at run-time the structure of the system implemented on the FPGA. These
elements can be either computational components or elements used to update the
communication infrastructure. Network interfaces toward the communication in-
frastructure can implement bridges between On-chip Peripheral Bus (OPB), Pro-
cessor Local Bus (PLB) or Open Core Protocol (OCP) and the network protocol,
as shown in Figure 2. The only part of network interfaces (both initiator and tar-
get network interfaces) that has to be modified at run-time are routing tables,
that are used to dynamically change the routing of packets on the network. Thus,
all the network interfaces have been placed into the static part of the system and
routing tables have been deployed on BRAM blocks. In this way it is possible to

238 V. Rana et al.

Static Reconfigurable

MB

PPC

Slave

NI
Initiator

NI
Target

NI
Initiator

Static

MB

Slave

NI
Initiator

NI
Target

OPB

OPB

PLB

OPB

PLB

NoC Slave
NI

Target
PLB

NoC protocol
OPB / PLB bus
Busmacro

Fig. 2. Interfaces between static and reconfigurable parts

dynamically modify routing tables by changing the content of BRAM blocks at
run-time, as described in Section 4.1.

This architectural solution enables connecting the static parts to the reconfig-
urable ones by using network interfaces that are considerably thinner of the ones
used within the static part of the system. Regarding this static part, the used
interconnect can be either OPB and PLB buses, or on an ad-hoc point-to-point
communication infrastructure, as shown in Figure 2.

4 Reconfiguration Features

Each reconfigurable part of the system can be dynamically reconfigured at run-
time to modify either a part or the whole underlying communication infras-
tructure. This reconfiguration can be done by the reconfiguration controller (see
Figure 3), which is a master component present on the static part, trough partial
reconfiguration operations.

The reconfiguration controller is connected both to the external dynamic
memory (DDR) interface and to the ICAP interface through the OPB bus. The
DDR memory is used to store partial bitstreams that can be used to reconfigure
at run-time the reconfigurable device. In order to perform a reconfiguration pro-
cess, the reconfiguration controller has to read the desired bitstream from the
memory and to pass it to the ICAP interface, connected to the ICAP component,
that will take care of the physical reconfiguration process. The reconfiguration
controller is aware of both the current configuration of the reconfigurable NoC
(routing tables, topology and express lines) and the current communication re-
quirements, such as the cores that have to communicate and the required band-
width and latency. In this way, the controller is able to adapt the underlying
communication infrastructure in order to satisfy communication requirements,
even when they vary at run-time.

As previously hinted, the proposed reconfigurable NoC can be dynamically
adapted to the current operating scenario by modifying network interfaces

A Reconfigurable Network-on-Chip Architecture 239

Static

MB

PPC

Slave

Initiator

Target

Initiator

OPB

OPB

PLB

BRAM
block

BRAM
block

BRAM
block

Read

Read

Read

Reconfiguration
controller ICAP interfaceOPB

Memory (DDR) interface

Fig. 3. A static part with a reconfiguration controller

routing tables at run-time, as described in Section 4.1. Furthermore, a dynamic
change into the proposed reconfigurable NoC can also involve either the con-
nection among switches (by inserting or removing express lines) or the whole
topology, as described in Section 4.2.

4.1 Path Reconfiguration

Storing routing tables in BRAM blocks allows to dynamically change them at
run-time in two different ways. The first solution is to write the new routing table
with a simple write operation on the selected BRAM block. This write operation
can be performed by the reconfiguration controller, that has to manage both the
physical reconfiguration and the modification of BRAMs content, since routing
tables have to be always consistent with respect to the current topology of the
network. Using the reconfiguration controller for writing on BRAM blocks makes
it necessary to directly connect it to each BRAM block, increasing the complexity
and the area usage of the reconfigurable system.

A second solution consists of performing a partial dynamic reconfiguration of
BRAM blocks, as described in [12]. This reconfiguration has to be performed by
the reconfiguration controller, but in this case there is no need to directly connect
it to each BRAM block, since these elements are updated by the controller using
the configuration memory; thus, no area overhead is introduced. Performing
this kind of reconfiguration enables dynamically changing BRAM blocks content
(routing tables), in order to change the functionality of the network interfaces
at run-time, while leaving unaltered all the logic implementing the functionality
of the system; this allows a complete decoupling between routing tables and the
logic that implements both the static and the reconfigurable components. The

240 V. Rana et al.

main drawback of this solution is the increment of the time overhead of the
network reconfigurations, as stated in Section 5.

4.2 Express Lines and Topology Reconfiguration

In order to exploit express lines reconfiguration, it is necessary to define a recon-
figurable architecture that consists of several reconfigurable parts, in which it is
possible to deploy the switches of the NoC. This can be done by means of the
Early Access Partial Reconfiguration design flow [8] defined by Xilinx. This flow
allows to implement a reconfigurable architecture containing an arbitrary set of
reconfigurable regions (which shape is a rectangle spanning the whole height of
the reconfigurable device, for FPGA of Virtex, Virtex II and Virtex II Pro fam-
ilies, or an arbitrary rectangle for FPGA of Virtex IV and Virtex V families).
Both the static architecture and each reconfigurable module, which need to be
placed in a single reconfigurable region, can be configured on the target device
by using a specific bitstream, namely, a complete bitstream for the static part
and a partial bitstreams for the reconfigurable modules. All the bitstreams gen-
erated by this flow are the ones used by the previously described reconfiguration
controller to change the current configuration of the system; in other words, the
reconfiguration controller is able to select a partial bitstream to be configured
on the device in order to change the underlying communication infrastructure.
In particular, if an express line has to be placed between to switches that belong
to the same reconfigurable region, the reconfiguration controller has to configure
a new version of the reconfigurable region in which the two switches are directly
connected (through a new connection). A similar procedure can be applied to
completely change the topology of the NoC. In this case, a deeper modification
of the selected reconfigurable part is needed, in order to make it possible to
change the number and the kind of the switches of the same reconfigurable part
(and thus of the whole NoC).

The number of express lines that can be established between two reconfig-
urable regions has to be decided at design-time, since each bus-macro (which
enables to establish a single reliable communication channel among different
regions) has to be placed during the place and route phase of the architecture.
Furthermore, the maximum number of express lines, which is always in the order
of tens for FPGA of Virtex II, Virtex II Pro, Virtex IV and Virtex V families, is
limited by the amount of available resources along the edge among reconfigurable
and static regions; hence, it strictly depends both on the target reconfigurable
device and on the shape of each reconfigurable or static region.

5 Experimental Results

This section presents a set of experimental results that validate the performance
of the proposed reconfigurable architecture. These results have been achieved
by implementing the proposed reconfigurable architectures on a Xilinx Virtex II
Pro (XC2VP20) device. However, the same approach can be easily adapted to
another device, even in a different family, such as Virtex IV and Virtex V.

A Reconfigurable Network-on-Chip Architecture 241

5.1 Routing Tables Reconfiguration Analysis

Regarding routing tables reconfiguration, it can be performed in a few clock
cycles if it is performed with a simple write operation. In particular, if routing
tables reconfiguration is performed directly by the reconfiguration controller, the
latency of the reconfiguration is only 2 clock cycles (0.02 µs at 100 MHz). On the
other hand, by performing a partial dynamic configuration of BRAMs, even if
both the area and the complexity overheads are not increased, the latency of the
reconfiguration is considerably higher (2.24 ms at 100 MHz). Table 1 summarizes
all the experimental results related to dynamic routing table reconfiguration.

Table 1. Routing tables reconfiguration experimental results

Reconfiguration Timing overhead Timing overhead Area Complexity
model (Clock cycles) (ms) @ 100 MHz overhead increment

Write operation
(reconfiguration controller) 2 0.00002 yes yes

Partial dynamic
reconfiguration of a
single BRAM block 224242 2.24 no no

5.2 Express Lines and Topology Reconfiguration Analysis

Even if express lines reconfiguration and topology reconfiguration can be
used in order to achieve different modifications of the underlying network, from
the timing overhead point of view, they are characterized by the same values, be-
cause the time required to reconfigure a reconfigurable region is exactly the same
in both cases. Since the reconfiguration on Xilinx Virtex II Pro devices can only
be performed with a 1D approach, the reconfiguration latency is directly related
to the width of the reconfigurable region that has to be reconfigured. For instance
the reconfiguration latency for a 4 slices width region, which can be filled with up
to two switches, is around 21 ms, while a 20 slices width region, which can include
up to ten switches, requires around 104 ms, as shown in Table 2,

In particular, regarding express lines reconfiguration, it can be exploited
both to reduce the traffic on a part of the NoC and to decrease the latency
between two switches. In order to better explain how it is possible to dynami-
cally configure express lines on the proposed reconfigurable architecture, let us
consider a simple 3x3 mesh network, similar to the one presented in Figure 4
(A). Without any express line, if the MicroBlaze 0 (MB 0) has to communicate
with Slave 4, 3 hops (a path to a destination on a network can be considered as
a series of hops, through switches) are necessary in order to go from Switch 0
(to which MB 0 is connected through an initiator network interface) to Switch 5
(to which Slave 4 is connected through a target network interface). To this end,
each packet has to pass, for instance, through Switch 1 and Switch 2, in order
to reach its final destination. In a similar way, the communication between PPC
0 and Slave 3 requires at least 2 hops (between Switch 6 and Switch 8), since
each packet has also to pass through Switch 7.

242 V. Rana et al.

Table 2. Express lines and topology reconfiguration results

Width of the Reconfiguration Bitstream
reconfigurable slot (slices) latency (ms) size (Kb)

4 21 32

6 30 46

8 41 62

10 52 78

12 63 94

14 75 112

16 80 120

18 93 140

20 104 156

In the proposed reconfigurable architecture, it is possible to configure a direct
connection between the port 3 of Switch 0 and the port 4 of Switch 5, and
another one between the port 4 of Switch 6 and the port 3 of Switch 8. In
this way, in addition to considerably reduce the congestion of Switches 1, 2 and
7, each communication between MB 0 and Slave 4 or PPC 0 and Slave 3 can
be achieved with a single hop (from Switch 0 to Switch 4 and from Switch 6
and Switch 8), thus notably reducing the latency between these elements. The
number of express lines that have to cross static parts has to be defined at design
time (since the involved static parts have to be aware of them), while the number
of express lines that lies within a single reconfigurable region only depends on
the available resources of the selected region.

Since communication among the elements of the system can change at run-
time in a non-predictable way, it is possible that the system reaches a status
(for instance when the applications running on MB 0 and on PPC 0 change) in
which MB 0 has to communicate with Slave 3 and PPC 0 has to communicate
with Slave 4. With the configuration of Figure 4 (A), each master can reach the
desired slave, by using both express lines, with 2 hops (from Switch 0 to Switch 8
and from Switch 6 to Switch 5). However, a problem that can arise is that these
two paths share the link between the port 1 of Switch 5 and the port 2 of Switch
8, thus leading to a contention of the same resource. A possible solution is the
partial dynamic reconfiguration of the reconfigurable region number 2 (Reconfig-
urable 2 in Figure 4), in order to achieve the configuration of the system shown
in Figure 5, which can be achieved by adapting the routing tables according to
the new configuration of the system, as described in Section 4.1). In this way,
not only the congestion of the link between Switch 5 and Switch 8 is completely
resolved, but also the latency of the two communication paths decreases to a
single hop, i.e., providing a circuit-based switching connection. Table 3 presents
a comparison among the latency introduced by the NoC of Figure 4, the NoC of
Figure 5 and a NoC in which express lines are not taken into account.

An important consideration is that, while the partial reconfiguration of the
reconfigurable region 2 is performed, the communication among other parts of
the system does not need to be interrupted, as long as it does not affect the

A Reconfigurable Network-on-Chip Architecture 243

Switch
0

Switch
1

Switch
2

Switch
3

Switch
4

Switch
5

Switch
6

Switch
7

Switch
8

Initiator

Target

Initiator

Initiator

Target

Target

Target Initiator

Initiator
Target

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

2

0

1

2

10

2

10

3

3

3

MB 0

Slave
0

PPC
0

Slave
1

Slave
2

MB 2

Slave
3

MB 3

Slave
4

MB 1

4

4

Static 0 Reconfigurable 0 Static 1 Reconfigurable 1 Static 2 Reconfigurable 2 Static 3

Fig. 4. Complete reconfigurable system schema, with an express line between Switch
0 and Switch 5 and another one between Switch 6 and Switch 8

Switch
0

Switch
1

Switch
2

Switch
3

Switch
4

Switch
5

Switch
6

Switch
7

Switch
8

Initiator

Target

Initiator

Initiator

Target

Target

Target Initiator

Initiator
Target

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

3

20

1

2

0

1

2

10

2

10

3

3

3

MB 0

Slave
0

PPC
0

Slave
1

Slave
2

MB 2

Slave
3

MB 3

Slave
4

MB 1

4

4

Static 0 Reconfigurable 0 Static 1 Reconfigurable 1 Static 2 Reconfigurable 2 Static 3

Fig. 5. Complete reconfigurable system schema, with an express line between Switch
0 and Switch 8 and another one between Switch 6 and Switch 5

region that is reconfigured. For instance, if MB 1 has to communicate with Slave
0 or Slave 1, this communication can take place even during the reconfiguration
of the reconfigurable region 2.

The physical implementation of the previously presented architecture is shown
in Figure 6, where A indicates the static part, while B, C and D represent the

244 V. Rana et al.

Table 3. Latency introduced by the NoC

Source Target Figure 4 Figure 5 Mesh without express lines
(number of hops) (number of hops) (number of hops)

MB 0 Slave 0 2 2 2

MB 0 Slave 1 2 2 2

MB 0 Slave 2 3 3 3

MB 0 Slave 3 3 2 5

MB 0 Slave 4 2 3 4

PPC 0 Slave 0 2 2 2

PPC 0 Slave 1 4 4 4

PPC 0 Slave 2 1 1 1

PPC 0 Slave 3 2 3 3

PPC 0 Slave 4 3 2 4

Fig. 6. Physical implementation of the reconfigurable 3x3 mesh

three reconfigurable regions (which width is, respectively, 16, 20, and 14 slices -
the 18%, 22% and 16% of a XC2VP20 device). All the reconfigurable regions have
been filled with three switches each one, in order to implement the previously
presented 3x3 mesh.

Table 4 shows the experimental results regarding area usage and reconfigura-
tion latency of the proposed architecture on a XC2VP20 device. The bus-macro
overhead consists of 288 slices, while the complete 3x3 mesh requires 2237 slices.

A Reconfigurable Network-on-Chip Architecture 245

Table 4. Area usage and reconfiguration latency results

Area usage Area Reconfiguration
(slices) usage (%) latency (ms)

Reconfigurable
region B 800 8.6 80

Reconfigurable
region C 637 6.9 104

Reconfigurable
region D 800 8.6 75

Complete
3x3 mesh 2237 24.1 259

Bus-macro
overhead 288 3.1

Switch
0

Switch
3

Switch
6

3

20

1

3

20

1

2

10

3

4

Reconfigurable 0

Switch
0

Switch
6

3

20

1

2

10

3

Reconfigurable 0

4

Switch
0

Switch
6

3

20

1

2

10

3

Reconfigurable 0

4

B) C)A)

Fig. 7. Alteration of the original mesh topology through the reconfiguration of the
original reconfigurable slot 0 (Reconfigurable 0) (A) with two different versions of the
subnetwork (B and C)

Thus, the overhead introduced by the proposed approach represents the 10% (on
average) of the initial NoC.

Furthermore, it is possible to configure at least two express lines in the im-
plemented architecture, and since each express line of the presented design has
a latency lower than 4 ns, it is possible to exploit each direct connection within
a single clock cycle at 100 MHz (while the latency required by the connection
passing through Switch 1, Switch 2 and Switch 5 is greater then 40 ns, i.e., 4
clock cycles).

On the other hand, a topology reconfiguration can be exploited on the
same architecture in order to adopt a specific NoC for each application that

246 V. Rana et al.

A B C

Static NoC

Application

Static CI

NoC 1 NoC 2Proposed CI NoC 3

Time1 2 3 4 5 6 7

X Y

Fig. 8. Temporal evolution of a generic system

Fig. 9. Topology of the static NoC

has to be run on the system. In order to completely change the topology of
the Network-On-Chip, a deeper modification of the selected reconfigurable part
is needed, since both the number and the kind of the switches of the same
reconfigurable part can be changed. As an example, let us consider that MB
0 has to communicate with both Slave 0 and Slave 2 with the lowest latency
possible. In order to satisfy this strict requirement, it is necessary to change the
original topology of the network, by altering the mesh (in particular, the original
reconfigurable slot number 0 shown in Figure 7 A) as shown in Figure 7 B. In
the reconfigurable module shown in Figure 7 B, in fact, MB 0, Slave 0 and Slave
2 are all connected to Switch 0, in order to make it possible for MB 0 to reach
Slave 0 and Slave 2 without any hop.

Another case in which a reconfiguration of the topology can lead to meet com-
munication requirements is, for instance, when both MB 0 has to communicate

A Reconfigurable Network-on-Chip Architecture 247

Table 5. Specific NoCs experimental results

NoC Number Average latency Average power
of switches (clock cycles) consumption (mW)

Static NoC 6 5.96 278.021

NoC 1 4 3.9 211.789

NoC 2 4 4 204.308

NoC 3 4 4.07 216.519

Fig. 10. Topology of the NoC 2

with Slave 2 and MB 1 has to communicate with Slave 0 with the lowest latency
possible. In this case, the reconfigurable module shown in Figure 7 C can be
configured in the reconfigurable slot number 0 (Reconfigurable 0), in order to
connect both MB 0 and Slave 2 to Switch 0, and MB1 and Slave 0 to Switch
6. Thanks to this reconfiguration of the topology it is possible to establish both
the required communication channels without any overhead in terms of hops
between switches, since all the components that has to communicate between
them have been connected to the same switch.

We have validated the proposed approach with three different versions of
real-life SoC benchmarks, namely, a video processing application of 32 cores

248 V. Rana et al.

Table 6. Area overhead, timing performance and features comparison among state of
the art solutions and the proposed approach

Approach CuNoC CoNoChi Proposed
([9]) ([14]) work

Switch size (slices) from 72 to 491 from 363 to 493 from 86 to 267

Communication All the
infrastructure available 2727 for
size (slices) resources NA a 3x3 mesh

Frequency (MHz) from 272 to 336 from 66 to 111 170

Single switch
latency (clock cycles) 2 5 1

Single switch
latency (ns) from 6 to 7.4 from 45 to 76 5.9

Flow control NA NA Supported

Path
reconfiguration Not supported NA Supported

Express lines
reconfiguration Not supported Not supported Supported

Topology
reconfiguration Not supported Supported Supported

(A), a Video Object Plane Decoder of 34 cores (B) and an image processing
application of 23 cores (C). We refer the readers to [4] for the communication
characteristics of these benchmarks. As shown in Figure 8, if these different
applications have to deployed on the same system, it is possible to employ either a
static network or three specific NoCs, each one designed ad-hoc for the particular
application. The second choice can be adopted if the time interval that occurs
between two consecutive applications is greater than the time overhead required
by the reconfiguration process; thus, it is possible to transparently change the
underlying NoC.

In order to test the application of our dynamically reconfigurable framework
in this context, we have developed a static NoC and three specific ones for
each of the three aforementioned SoC benchmarks application. As shown in
Figure 9, the static NoC consists of 6 switches (1 switch of 8x8, 2 switches of
9x9, 2 switches 10x10 and 1 switch of 11x11), whileboth NoC 1 (for application
A) and NoC 3 (for application C) consists of 4 switches (3 switches of 10x10
and 1 switch of 11x11) and NoC 2 (for application B) consists of 4 switches
(1 switch of 10x9, 2 switches of 10x10 and 1 switch of 10x11), as shown in
Figure 10. The static NoC option, as shown in Table 5, is characterized by a
higher area usage, a higher average power consumption (evaluated as proposed
in [2]) and a higher average latency, with respect to the three ad-hoc NoCs
specifically designed for each application. Using the specific NoCs, it can be
reported reductions of 34% in latency and 24% in power consumption. Finally,
the overall latency for the reconfiguration of the NoC to be used at run-time is
very limited, making it applicable in real-life scenarios where applications are
switched dynamically by users.

A Reconfigurable Network-on-Chip Architecture 249

As previously hinted, the reconfiguration latency of a reconfigurable region
strictly depends on its size. For instance, the reconfiguration latency for a 4
slices width region (that can be filled with up to two switches) is around 21 ms,
while a 20 slices width region (that can be filled with up to ten switches) requires
around 104 ms.

Finally, Table 6 presents a comparison among state-of-the-art solutions and
our approach, which shows the clear benefits of our approach regarding area
overhead reduction, timing performance improvements and enhancements of the
reconfiguration features.

6 Conclusions

NoCs have been proposed as a very promising scalable communication paradigm
SoCs. However, methods that provide versatility enhancements of initial NoC
designs to changing working conditions, imposed by variable sets of executed
applications at run-time, are key to design competitive NoCs in industrial SoCs.
In this work we have presented a novel NoC reconfigurable framework that can
reconfigure the NoC topology at run-time, as well as enabling path reconfig-
uration and express lines creation/removal, while introducing an overhead on
average of 10% of an initial static NoC design. Moreover, our experimental re-
sults have shown that in the proposed framework, on average, a reconfigurable
switch only occupies 41% of the slices needed by a CoNoChi switch, the state-of-
the-art reconfigurable NoC approach, whereas our reconfigurable NoC can run at
almost double the frequency (170 MHz vs. 88.5 MHz) of CoNoChi. Finally, our
approach introduces less than one tenth of the latency introduced by a CoNochi
switch (respectively, 5.9 ms and 60.5 ms). Thus, it is a promising framework to
be applied to commercial NoC-based SoC solutions.

Acknowledgments

This work was partially supported by the HiPEAC network of excellence
(www.hipeac.net), the Swiss NSF Research Grant 20021-109450/1 and Spanish
Government Research Grants TIN2005-5619, TIN2008-00508 and CSD00C-07-
20811.

References

1. Ahmad, B., Erdogan, A.T., Khawam, S.: Architecture of a dynamically reconfig-
urable noc for adaptive reconfigurable mpsoc. In: First NASA/ESA Conference on
Adaptive Hardware and Systems, AHS 2006, June 15-18, pp. 405–411 (2006)

2. Angiolini, F., Meloni, P., Carta, S., Benini, L., Raffo, L.: Contrasting a NoC and
a traditional interconnect fabric with layout awareness. In: Proceedings of Design,
Automation and Test in Europe Conference (DATE 2006), Munich, Germany, pp.
124–129 (2006)

250 V. Rana et al.

3. Benini, L., De Micheli, G. (eds.): Networks on chips: Technology and Tools. Morgan
Kaufmann Publishers, San Francisco (2006)

4. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L.,
De Micheli, G.: Noc synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans. Parallel Distrib. Syst. 16(2), 113–129 (2005)

5. Brebner, G., Levi, D.: Networking on chip with platform fpgas. In: Proceedings
of the 2003 International Conference on Field-Programmable Technology (FPT),
December 2003, pp. 13–20 (2003)

6. Ching, D., Schaumont, P., Verbauwhede, I.: Integrated modeling and generation of
a reconfigurable network-on-chip. In: Proceedings of 18th International Conference
on Parallel and Distributed Processing Symposium, April 26-30, p. 139 (2004)

7. Hansson, A., Goossens, K.: Trade-offs in the configuration of a network on chip
for multiple use-cases. In: First International Symposium on Networks-on-Chip,
NOCS 2007, May 7-9, pp. 233–242 (2007)

8. Xilinx Inc. Early Access Partial Reconfiguration Guide. Xilinx Inc. (2006)
9. Jovanovic, S., Tanougast, C., Weber, S., Bobda, C.: Cunoc: A scalable dynamic noc

for dynamically reconfigurable fpgas. In: International Conference on Field Pro-
grammable Logic and Applications, FPL 2007, August 27-29, pp. 753–756 (2007)

10. Kumar, A., Hansson, A., Huisken, J., Corporaal, H.: An fpga design flow for recon-
figurable network-based multi-processor systems on chip. In: Design, Automation
and Test in Europe Conference and Exhibition, DATE 2007, April 16-20, pp. 1–6
(2007)

11. Lysne, O., Pinkston, T.M., Duato, J.: A methodology for developing dynamic
network reconfiguration processes. In: ICPP, p. 77 (2003)

12. Montone, A., Rana, V., Santambrogio, M.D., Sciuto, D.: Harpe: a harvard-based
processing element tailored for partial dynamic reconfigurable architectures. In:
22nd IEEE International Parallel and Distributed Processing Symposium - 15th
Reconfigurable Architectures Workshop (April 2008)

13. Murali, S., Coenen, M., Radulescu, A., Goossens, K., De Micheli, G.: Mapping
and configuration methods for multi-use-case networks on chips. In: Proceedings
of the 2006 conference on Asia South Pacific design automation (ASP-DAC), pp.
146–151. ACM Press, New York (2006)

14. Pionteck, T., Koch, R., Albrecht, C.: Applying partial reconfiguration to networks-
on-chips. In: International Conference on Field Programmable Logic and Applica-
tions, FPL 2006, August 28-30, pp. 1–6 (2006)

15. Vicentelli, A., Martin, G.: A vision for embedded systems: Platform-based design
and software. IEEE Design and Test - Special Issue of Computers 18(6), 23–33
(2001)

	A Reconfigurable Network-on-Chip Architecture for Optimal Multi-Processor SoC Communication
	Introduction and Problem Description
	State of the Art
	The Proposed Reconfigurable Architecture
	Reconfiguration Support
	Architecture Description

	Reconfiguration Features
	Path Reconfiguration
	Express Lines and Topology Reconfiguration

	Experimental Results
	Routing Tables Reconfiguration Analysis
	Express Lines and Topology Reconfiguration Analysis

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

