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Abstract. Matrix neural gas has been proposed as a mathematically
well-founded extension of neural gas networks to represent data in terms
of prototypes and local principal components in a smooth way. The addi-
tional information provided by local principal directions can directly be
combined with charting techniques such that a nonlinear embedding of a
data manifold into low dimensions results for which an explicit function as
well as an approximate inverse exists. In this paper, we show that these
ingredients can be used to embed dynamic textures in low dimensional
spaces such that, together with a traversing technique in the low dimen-
sional representation, efficient dynamic texture synthesis can be obtained.

1 Introduction

Neural gas (NG) and topology representing networks as proposed by Martinetz
constitute particularly robust methods to represent a given data set and its
topology in terms of a lattice of neurons [IT/I2]. In contrast to the popular
self-organizing map [7], no prior lattice structure is specified such that direct
visualization of data is not possible. On the contrary, the correct, probably ir-
regular topology of the underlying data manifold can be inferred which accounts
for the particular robustness of the approach.

Neural gas is often used for data preprocessing, e.g. data compression or clus-
tering. Recently, extensions of NG have been proposed which also adapt local
matrices during training such as to minimize the quantization error [I3JT]. This
corresponds to local coordinate systems which represent smooth local principal
directions of data. It has been demonstrated in [2], that these additional parame-
ters offer sufficient information to extract explicit local coordinate systems from
the data which can be further processed to obtain a global nonlinear projection
of the underlying manifold e.g. using manifold charting [3]. This way, an explicit
mapping together with its approximate inverse is obtained which can map high
dimensional data into low dimensional space. In [2], the possibility to use this
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mapping for low dimensional data visualization and representation has been ex-
plored in comparison to popular alternative visualization schemes as referenced
e.g. in [I0]. Unlike popular alternative visualization methods such as locally lin-
ear embedding, maximum variance unfolding, or stochastic neighbor embedding,
manifold charting in combination with matrix neural gas does not only embed
the given data points, but it provides an explicit low dimensional embedding
of the data manifold and an approximate inverse of the map. Hence additional
information is available which can be explicitly used in further applications.

In this contribution, we will demonstrate the suitability of manifold embed-
ding by matrix neural gas for an interesting problem from computer graphics,
the efficient synthesis of dynamic texture based on given examples. Dynamic
texture synthesis is the process of producing an animation of dynamic textures
which preserve the behavior of the system similar to its original appearance.
There exist two fundamentally different approaches for dynamic texture syn-
thesis: physics-based methods generate dynamic texture based on mathematical
models of the natural phenomena, see e.g. [I8/4]. Physics-based models provide
a flexible synthesis, since the dynamic texture can be controlled through a few
parameters in a mathematical equation system. The drawback of this approach
is that each model is appropriate only for a particular texture and cannot be
transferred to other domains. As an alternative, image-based models overcome
this limitation. They use a global model for different textures and synthesize
dynamic textures from a model based on the appearance of the whole texture in
a series of images. Different principled approaches can be distinguished such as
simple extensions of static texture synthesis to 3D [20], spatiotemporal models
based on the pixel level [16], or dynamical models on the image level, such as
proposed in [I5l6]. The latter approach is particularly promising since it can
capture common non-trivial dynamical development such as rotation. This way,
dynamic texture synthesis becomes a problem of system identification based on
a sequence of image data such that dynamic texture can be directly generated
along the trajectory of the system based on given initial conditions.

Typically, image sequences possess a very high dimensionality such that sys-
tem identification is not possible in the raw image space. Therefore, the ap-
proaches presented in [I5J6] first project the images onto low dimensional space
with a standard principal component analysis (PCA), performing system identi-
fication e.g. using classical linear auto-regressive models in the low dimensional
projection space, afterwards. Since PCA gives rise to an approximate inverse
by means of the pseudo-inverse of the transformation matrix, dynamic textures
can be generated this way. The resulting model is rather flexible, but it has the
drawback that a global linear embedding is used such that images are not ap-
propriately sampled and represented in particular at points in time with rapid
movements (e.g. flapping flag). Therefore, it has been proposed e.g. in [8[9] to use
recent nonlinear manifold learning techniques as proposed in machine learning
instead of a global linear embedding.

In this contribution, we demonstrate that recent matrix learning schemes for
neural gas together with a global coordination technique, manifold charting,
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give rise to a nonlinear manifold embedding which can successfully be used in
this context. This way, neural low-dimensional nonlinear manifold embedding
can serve as an essential step in the highly non-trivial application in computer
graphics to automated dynamic texture synthesis. Now, we first introduce matrix
neural gas which allows us to extract local linear manifold projections from a
given data set. These can be combined to a global nonlinear embedding with
approximate inverse using manifold charting. We describe the inclusion of this
method into the general pipeline for dynamic texture synthesis, afterwards, and
we demonstrate its applicability in a variety of examples.

2 Nonlinear Manifold Embedding Based on Matrix
Neural Gas

Matrix neural gas

Assume data {1, ..., %, } C RY aresampled from a manifold X € RY. The aim
of neural gas is to represent the given data in terms of prototypes {w1, ..., wi} C
RY faithfully such that the prototype w; adequately resembles its receptive field
R; = {z | i = argmin;{d(z, w;)}} where usually the Euclidean distance is used

d(z,w;) = (x —w;)" (z — w;). (1)

NG has been derived in [I1] as a stochastic gradient descent of the following cost
function

1 k
Bxa(w) ~ Y [ holli(e) - d(a,w) Plde) (2)
i=1

where P refers to the probability distribution of the data points x. k;(x) €
{0,...,k—1} constitutes a permutation of prototypes arranged according to the
distance, i.e.

ki(x) := {w; | d(z, w;) < d(z, w;)}|

If distances coincide, ties are broken deterministically. h,(t) = exp(—t/o) is an
exponential curve with neighborhood range ¢ > 0. For vanishing neighborhood
o — 0, the standard quantization error is obtained.

As an alternative to online optimization, a batch approach can be taken if data
are given in advance. For a discrete finite data set, the cost function (2) can be
optimized in a batch scheme repeatedly updating prototypes and rank assign-
ments until convergence [5]. Usually, during training, the neighborhood range o
is annealed to 0 such that the quantization error is recovered in final steps. In
intermediate steps, a neighborhood structure of the prototypes is determined by
the ranks according to the given training data. This choice accounts for a high
robustness of the algorithm with respect to local minima of the quantization
error, further, a smooth update of neighbored points is guaranteed this way [12].

Classical NG relies on the Euclidean metric which induces isotropic cluster
shapes. More general ellipsoidal shapes can be achieved by the generalized metric
form

da, (@) = (2 — w,)" Ai(@ — w) (3)
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instead of the squared Euclidean metric (1) where A4; € R¥*V is a symmet-
ric positive definite matrix with det A; = 1. These constraints are necessary to
guarantee that the resulting formula defines a metric which does not degenerate
to a trivial form (A; = 0 constituting an obvious trivial optimum of the cost
functions). A general matrix A; can account for correlations and appropriate
nonuniform scaling of the data dimensions. The parameters A; in [@B) can be
optimized during training together with the prototype parameters and assign-
ments. The corresponding cost function (2l which uses (@) instead of () can be
optimized in batch mode, yielding matrix NG (MNG):

init w; randomly
init A; as identity I
repeat until convergence
set k‘ij = k;z(ac])
set w; := Zj ho(kij)mj/zj ]’Lg(k‘ij)
set A; :=S; *(det S;)'/™ where
Si =30, ho(kij) (2! — w') (27 — w')

It has been shown in [I] that this update scheme converges to a local optimum
of the NG cost function under mild conditions.

Local linear projections

The matrix S; corresponds to the correlation of the data centered at prototype
w; and weighted according to its distance from the prototype. For vanishing
neighborhood ¢ — 0, the standard correlation matrix of the receptive field is
obtained. The resulting Mahalanobis distance corresponds to a scaling of the
principal axes of the data space by the inverse eigenvalues in the eigendirec-
tions. Thus, ellipsoidal cluster shapes arise which are aligned according to local
principal components of the data. Since neighborhood cooperation is applied to
both, prototype adaptation and matrix learning during batch training, a reg-
ularization of matrix learning is given and neighbored matrices have a similar
form.

Local matrices as learned by MNG provide local linear transformations of the
data in the following way: Assume the eigenvalue decomposition

A =0 D;

is given with a diagonal matrix D; of eigenvalues and eigenvectors collected in
£2;. Assume data should be mapped to dimensionality n where, usually, n <
N. Then we can reduce D; to only the d smallest eigenvalues (which are the
main eigenvalues of .5;, i.e. they belong to the main principal components of the
receptive field) getting the n x N matrix DI*d. The formula

A :R™ - Rz DY 28 (2 — w;) (4)

gives the local linear projection of the data points to the main principal compo-
nents of the receptive field induced by the ith chart of the data manifold. If n is
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chosen at most 3, every map A; provides a linear visualization of the manifold
which is faithful within the receptive field of prototype w’ because it corresponds
to the main eigenvalues of the local chart, as proposed in the contribution [2].

Note that, depending on the dimensionality N of the original data points, full
matrix learning in MNG is rather time consuming, requiring matrix inversion
of order O(N?) in every step. Since only the minor n eigenvalues of the ma-
trix {2; are relevant for the local projection, we can priorly reduce the matrix
such that the scaling of only the minor d principal components is individually
adapted while the scaling remains identical (and nonzero to avoid degeneration)
for all other directions. This can be achieved efficiently with any algorithm which
extracts the major n principal components of the generalized data correlation
matrix, e.g. a generalized Sanger rule as proposed in [13], reducing the matrix
determination to O(N). It has been demonstrated in [I3] that the reduction to
the largest n principal components can be explicitely included into the metric
computation step, such that an overall reduction of the complexity to O(N) re-
sults, assuming independence of the number of iterations for eigenvector learning
and neural gas of N.

Global coordination by manifold charting

The projections (@) provide valid local linear transformations of the data in
the neighborhood of the respective prototype. Different methods which allow to
combine these local projections to a global map have been proposed e.g. [T7/3].
We will rely on manifold charting as introduced in [3] which glues the linear
pieces together such that a good agreement can be observed at the overlaps.

Assume that linear projections Aj, ..., Ay are given by formula (@) which
define k local projections of the data points z1; = Ai(x;), ..., zk = Ag(x;)
of the data points @1, ..., x,. Assume that, in addition, a responsibility value
pij = pi(x;) is specified for every data point &; and chart A; which defines the
responsibility of this chart for the data point, whereby . p;; = 1 for every j.
Here, we can use Gaussian bells centered at the prototypes to arrive at these
responsibilities. More precisely, set N; = |R;| as the number of points in the
ith receptive field. Let S; be the correlation matrix of the ith receptive field
as computed in MNG and S'Z = S;/N; the associated matrix. Then we set the
responsibility of the ith receptive field for point x; as

N; 1
P (2mm2y /13
where the prior N;/p refers to the relative number of points in chart i. The
responsibilities p;; are obtained thereof by normalization p;; = pi;/ >, Dij-

The goal is to combine the local charts A; by means of local affine mappings
B; : R™ — R" to a global mapping such that the compositions lead to matching

points if more than one chart is responsible for a data point. The mappings B;
are determined in such a way that the following costs are minimized

1
Echarting = 9 . ZpgzpleBj(sz) - Bl(zli)H2 (6)

i,9,1

Pij = Pi(x5) = cexp(—0.5 - (@ —w;)" - S (z; — wy)) (5)
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which (as can be seen by a simple algebraic transformation) also give the differ-
ence of the globally mapped points and the local affine transformations of the
points. As shown in [3] a unique analytic solution of this problem can be found.
The final points are then obtained by the formula x; — >, pi;j Bi(2zi;).

Note that, depending on the distribution of the prototypes, the assignments
will be sparse since p;; will be almost zero for receptive fields ¢ which lead to a
high rank w.r.t ;. To speed up the computation, it is possible to cut off these
small assignments and work with sparse matrices. Based on these choices of p;;
provided by (@) and z;; provided by the affine transformations (@), MNG can
be combined with manifold charting to give a global nonlinear visualization of
data. Obviously, this visualization can be described by an explicit mapping of
RN — R™ by means of the formula

T — Zpi(w) - Bi(Ai(x)) (7)

where p;(x) is computed according to (), the local linear mappings A; are
given by (@), and the affine transformations B; to glue the charts together are
determined solving equation (@).

Inverse map

To arrive at an approximate inverse map, we take a simple point of view which
allows us to compute the inverse algebraically. Note that every local linear pro-
jection A; possesses an approximate inverse A; !induced by the pseudo-inverse
of D4 . (2;. Since A; maps to lower dimensions, this is, of course, no exact
inverse but its best approximation in a least squares sense. Further, obviously,
the affine transformations B; can be inverted exactly. Thus, for every z € R",
an approximate inverse of the image of () can be determined in the follow-
ing way: for a given x, we determine the inverse under chart i: Ai_1 oB; L(z2).
From these possibly preimages, we take the one with maximum responsibility
according to (B)).

3 Dynamic Texture Synthesis by System Traversal

In [8I9], dynamic texture synthesis is modelled as a system identification prob-
lem. First, images are nonlinearly mapped to a low-dimensional space. In low
dimensions, a method to track temporal developments based on initial conditions
is defined. Since every point in the embedding space can be inversely mapped to a
point in the original high dimensional space, a sequence of images corresponding
to a dynamic texture results. This way, a compressed representation of dynamic
textures can be obtained since it is sufficient to store the parameters of the
global nonlinear map and its inverse and only the low dimensional projections
of the given image sequence which, for n <« N, requires much less space than
the original texture sequence. Further, interpolation of texture images as well
as generation of texture based on new starting points becomes possible since a
model is available to track the dynamics in the low dimensional projection space.
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The contribution [J] relies on a mixture of probabilistic principal component
analysis (MPPCA) together with global coordination to obtain a global non-
linear embedding of the data manifold [T9/T7]. Here we propose to substitute
MPPCA by matrix NG since, as we will demonstrate in experiments, a greater
robustness and smoothness of the method can be achieved. Thus, we combine
global coordination based on matrix NG as described in the previous section
with the tracking dynamics in the low dimensional projection space as intro-
duced in [9]. For convenience, we shortly describe the traversal mechanism as
proposed in [9].

Assume a dynamic texture is given which, making the temporal depen-
dency explicit, is denoted as x(t), (¢t + 1), ... € RY. The corresponding low-
dimensional projections are denoted as z(t), z(t+1), ... € R™. Motion prediction
starts from a sequence of at least two points g(t — 1), g(¢) in R™ which are prob-
ably obtained as projections of images. Now the temporal successors of g(t) are
obtained in six steps based on the low dimensional vectors z(i) as follows (o7,
«, 09 are positive parameters):

1. Sampling neighbors: K nearest neighbors A/ of g(t) are sampled from the
data z(i) and exponentially weighted according to the distance from g(t)
with weight W} := exp(—||g(t) — 2(i)||?/o?).

2. Temporal smoothness: The similarity of the difference vectors dz (i) := z(i)—
z(i — 1) of the neighbors z(7) in N and the considered trajectory dg(t) :=
g(t) — g(t — 1) is computed based on the cosine distance and exponentially
weighted, yielding weight W72 := exp(a(dz(i)td(g(t))/(||dz()|| - |dz(t)) —
1)).

3. Noise perturbation: for every neighbor z(4) in A, noisy successors of g(t)
are sampled using the direction of the trajectory at z(i) and a Gaussian
noise vector v; with components ~ N(0,02) leading to possible positions
git+1)=gt)+ (z(i +1) — 2(2)) + v;.

4. Drift prevention: Each candidate is weighted according to its distance from

the trajectory leading to the weight p(g*”(t 4+ 1)) = W}rW2 >, o((g¥ (t +

1) — zx)/h) where ¢ is a window function with window width h.

Normalization: These weights are normalized such that 3, p(g” (t+1)) = 1.

6. Prediction: The successor is chosen from these points according to the prob-
ability p(g¥ (¢t + 1)).

(V31

This way, the overall direction of the trajectory gives rise to the respective suc-
cessor of a given starting position. Slight noise accounts for typical effects when
dealing with natural phenomena. An additional neighborhood integration makes
sure that the created trajectory does not diverge from the dynamics as deter-
mined by the given data set.

4 Experiments

An important example of dynamic texture is given by image sequences of nat-
ural phenomena as available in the DynTex database [14]. Each pixel gradually
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Table 1. Number of local models used to map the respective dynamic texture into low
dimensional space and number of frames included in the dynamic textures

Dataset no. local models no. frames

wave 3 200
escalator 4 251
smoke 5 251
fall 2 200
straw 4 251

changes its intensity or color level depending on the kind of image sequence.
Examples of natural phenomena used in this work are referred to as wave, es-
calator, smoke, straw, and fall. All images have an original size of 288 by 352
pixels with RGB color codes. Because of the high dimensionality, we resized the
images to 50% with respect to the original size resulting in 144 times 176 pix-
els. Then, each image corresponds to a 76,032 dimensional vector formed by the
RGB values of the pixels. Before applying matrix NG, data were projected to
100 dimensions using simple principal component analysis.

We compare the result of matrix NG and mixtures of probabilistic compo-
nent analysis as described in [19] together with global manifold charting and
trajectory traversal as described above. The dimensionality n has been chosen
as 40. The number £ of local components is chosen such that, on average, about
50 frames are represented by one local model. The lengths of the considered
dynamic textures and the number of local models is shown in Tab. [Il

We evaluate the method by the mean absolute distance of the generated im-
ages and the original images averaged over time, as shown in Tab. Bl Further, we
exemplarily show a visual comparison of the images as obtained by MNG and
MPPCA in comparison to the original image in Figs. [2- Bl The synthesis results
indicate that manifold embedding based on MNG is able to generate high-quality
video, while charting based on MPPCA generates lower visual quality of video
over time. The synthesized image sequences by MNG are smooth with respect
to temporal evolution due to the included neighborhood cooperation, and sharp
features are better preserved in the single images. MPPCA contains blurring in
single images and a larger trend towards discontinuities when generating image
sequences. This manifests in a larger error of the generated images. The develop-
ment of the absolute error over time per pixel is depicted in Fig. Il Obviously, for
MPPCA, the error is not uniformly distributed but it accumulates at points in
time such that errors are clearly observable for MPPCA. In comparison, the er-
ror of MNG is very smooth such that no abrupt changes in the visual appearance
can be observed.

Both methods, dynamic tecture generation based on MPPCA or MNG, rely on
prototypes which represent parts of the data space. Commonly, these prototypes
are computed as averages, such that both methods have the drawback that
they somehow smooth details in the images. Since high contrast features are of
particular relevance for the human observer, deviations from the original images
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Table 2. Average absolute reconstruction errors averaged over the number of frames
on the given image sequences and standard deviations

Dataset MPPCA MNG
wave 33.7319 + 2.7425 31.3815 £ 0.5540
escalator 30.8114 + 2.0043 24.5836 + 0.1290
smoke 14.2246 + 0.5515 12.5402 + 0.2278
fall ~ 48.4483 £ 0.8815 47.3001 =+ 0.0537
straw 37.3818 + 0.5610 36.7924 + 0.1960

920 T T T T

root square error / pixel
root square error / pixel

50 100 150 200 250 [ 50 100 150 200
time time

Fig. 1. Absolute error per pixel between the generated images and the true image
sequence over time for MPPCA and MNG for the wave texture (left) and fall texture
(right). Obviously, the error obtained by MPPCA is large for some time points in which
a low quality of the reconstructed texture can visually be observed.

Fig. 2. This figure shows reconstructed image sequence of waves. The first column
represents the original reference frames. The second and third columns demonstrate
the frames reconstructed by manifold charting based on MPPCA and matrix NG,
respectively.
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Fig. 3. This figure shows reconstructed image sequence of smoke. The first column rep-
resents original reference frames. The second and third columns demonstrate the frames
reconstructed by manifold charting based on MPPCA and matrix NG, respectively.

Fig. 4. This figure shows reconstructed image sequence of fall. The first column repre-
sents original reference frames. The second and third columns demonstrate the frames
reconstructed by manifold charting based on MPPCA and matrix NG, respectively.

can clearly be observed by humans, albeit the error is small, as can be seen
for the examples ‘fall’ and ‘straw’ which include high contrast or lots of details,
respectively. This drawback could be prevented by substituting the averaged
prototypes by features with more contrast or details, respectively, obtained e.g.
by appropriate postprocessing.
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Fig. 5. This figure shows reconstructed image sequence of straw. The first column rep-
resents original reference frames. The second and third columns demonstrate the frames
reconstructed by manifold charting based on MPPCA and matrix NG, respectively.

5 Discussion

We have introduced a method which allows the global nonlinear embedding of
complex manifolds into low dimensions based on matrix neural gas, leading to
an explicit embedding function as well as its approximate inverse. Thereby, an
essential part is given by matrix neural gas as presented in this paper, which
extracts prototypes and local principle directions from the data in a robust and
topology preserving way such that a set of smooth local linear maps is obtained.
These can be combined using charting techniques such that a global smooth em-
bedding arises. In comparison to alternatives such as mixtures of probabilistic
principal components, topology preservation has the beneficial effect that man-
ifold charting deals with smooth maps which can be glued together more easily,
and the reconstruction error by means of the approximate inverse shows good
agreement to the original manifold also at the borders of the local linear pieces.
We have demonstrated that this technique can successfully be used in a complex
task from computer graphics, namely the synthesis of dynamic textures based
on given image sequences.
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