
Pattern Classification Using a Penalized

Likelihood Method

Ahmed Al-Ani1 and Amir F. Atiya2

1 Faculty of Engineering and Information Technology, Univesity of Technology,
Sydney, Australia

ahmed@eng.uts.edu.au
2 Department of Computer Engineering, Cairo University, Giza, Egypt

amir@alumni.caltech.edu

Abstract. Penalized likelihood is a well-known theoretically justified
approach that has recently attracted attention by the machine learning
society. The objective function of the Penalized likelihood consists of
the log likelihood of the data minus some term penalizing non-smooth
solutions. Subsequently, maximizing this objective function would lead
to some sort of trade-off between the faithfulness and the smoothness of
the fit. There has been a lot of research to utilize penalized likelihood in
regression, however, it is still to be thoroughly investigated in the pattern
classification domain. We propose to use a penalty term based on the K-
nearest neighbors and an iterative approach to estimate the posterior
probabilities. In addition, instead of fixing the value of K for all pattern,
we developed a variable K approach, where the number of neighbors can
vary from one sample to another. The chosen value of K for a given
testing sample is influenced by the K values of its surrounding training
samples as well as the most successful K value of all training samples.
Comparison with a number of well-known classification methods proved
the potential of the proposed method.

1 Introduction

The basic concept behind penalized likelihood is that a good model should pos-
sesses two indispensable properties: the goodness of fit and the smoothness of
the fit [1], [2]. However, as these two are primarily conflicting goals, a trade-off
that suits the given application is pursued. The penalized likelihood approach
seeks to achieve that trade-off by defining an overall objective function consisting
of the log-likelihood of the data minus a roughness measure, and subsequently
maximizing this objective function. The likelihood function is a measure of the
faithfulness of the fit, while the roughness function is a penalty term that penal-
izes non-smooth solutions.

An example of the roughness function is the integral of the square of the second
derivative of the function, leading to the following objective function (see [3]):

T = log likelihood − λ

∫
f ′′2(x)dx (1)

F. Schwenker and N. El Gayar (Eds.): ANNPR 2010, LNAI 5998, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Al-Ani and A.F. Atiya

One example of a penalized likelihood regression is the well-known regression
spline model [4]. Most of the penalized regression work focused on finding a
complete functional formulation and the optimization is performed mostly in
the Hilbert space [5].

For the classification problem the underlying function would be the class pos-
terior probabilities. These are the functions which we attempt to estimate and
for which we impose smoothness. Among the works considering penalized like-
lihood classification is the work of O’Sullivan et al [6], which was subsequently
analyzed and extended in many other studies [7], [8], [5], [9], [10]. The basic idea
of these approaches is to assume that the class posterior probability (considering
a two-class case with classes C1 and C2) is modeled as a logit function applied to
some (unrestricted) function. This is a mean to enforce the [0, 1] bound on the
posterior probability. In some of these works thin-plate spline is used as smooth-
ness penalty, and in some others general smoothness penalties are used with
the help of the theory of reproducing kernel hilbert spaces. The problem could
be solved through a parametric representation, whose parameters are obtained
through Newton-Raphson iteration. A related approach is to consider the logis-
tic regression problem (which is essentially a two-class classification problem)
in the framework of penalized likelihood regression (see [11] and see also the
generalization to the multinomial logistic regression case in [12]), or the gener-
alized additive model [13] (which also tackles in some way the penalized logistic
regression problem).

A different methodology based on a Bayesian paradigm is the Gaussian process
classification (GPC) approach [19]. While it does not have a penalized likelihood
element in it, it enforces smoothness by defining a Bayesian prior that assigns a
higher probability to smooth solutions. Again, imposing a logit function lead to
intractable integrals that can only be approximated. Another related approach
[15] uses the K-nearest neighbor class memberships in some way to describe the
priors. It is a Bayesian approach, with the key parameters being attached some
priors and these are then integrated out. Again, the integral is intractable and
MCMC is proposed as a way to evaluate it.

In this paper we propose a new penalized likelihood classification method for
the two-class case. Rather than insisting on evaluating the posterior probability
as a functional form (which makes it generally quite difficult), we evaluate it only
for the points we need, that is for the training and the testing points. We use as a
measure of roughness the sum of square difference between the posterior of a point
and that of its K nearest neighbors. We therefore managed to avoid the use of the
logit function, which in all above works was an obstacle to obtaining straightfor-
ward analytic solutions. We propose an iterative algorithm that converges to the
maximum of the penalized likelihood function in few iterations. While we make
use of some kind of pattern distance matrix like in the case of Gaussian process
classification, the philosophy and the approach is quite different.

We tested the proposed method on a number of UCI benchmark datasets. As
it turns out, it produces a classification performance beating many of the well-
known methods (such as SVM and several other methods) and comparable to

Pattern Classification Using a Penalized Likelihood Method 3

GPC (it is generally believed that SVM and GPC are among the best two classi-
fication approaches [16]). On the other hand the computation time was much less
than that of GPC. Another advantage of the method is that it is entirely based
on distances between the training patterns (like the K nearest neighbor classifier
and the GPC). So it can handle also non-numeric inputs, for example text inputs
whereby some distance function can be defined. The proposed method is also very
simple, consisting of only a simple iteration, and requiring little development time
to implement it and no sophisticated optimization routines.

The paper is organized as follows. The proposed method is presented in the
next section. The following section details the classification algorithm. In Section
5 we present the simulations results, followed by the conclusions section.

2 The Proposed Method

Let xm ∈ RL denote the feature vectors, with x1, . . . , xM denoting the training
patterns, and xM+1, . . . , xM+N denoting the test patterns. In this work we con-
sider only the two-class case. The class membership ygm for class label g and
training pattern xm is defined as follows: it equals 1 if xm ∈ Cg and equals 0
otherwise, where g ∈ {1, 2}.

Let Pgm ≡ P (Cg|xm) denote the posterior probability for class Cg, and∑2
g=1 Pgm = 1. The purpose of the proposed method is to estimate the pos-

terior probabilities Pgm, both for the training set and the test set. Knowing the
posterior probabilities will automatically determine the classification of the pat-
terns. As we will shortly see, the posterior probabilities are obtained by defining
the penalized likelihood function and subsequently maximizing it, leading to an
iterative algorithm.

The likelihood of the data is given by

L =
M∏

m=1

2∏
g=1

P ygm
gm (2)

Denote by K(xm) as the set of Km-nearest neighbors of point xm (their indexes),
and Km the size of K(xm), which can vary from one pattern to another. We
define a roughness function based on the square differences of the posteriors of
neighboring data points. Specifically, it is given by

R =
M∑

m=1

1
Km

∑
m′∈K(xm)

(Phm − Phm′)2 (3)

where h is the class that xm belongs to (either 1 or 2), hence, yhm = 1. Note that
Eq. 2 can be written as L =

∏M
m=1 Phm. We define our overall objective function

as a combination of the log-likelihood function and the roughness function:

J = log(L) − λR (4)

=
M∑

m=1

log(Phm) − λ

M∑
m=1

1
Km

∑
m′∈K(xm)

(Phm − Phm′)2 (5)

4 A. Al-Ani and A.F. Atiya

The first term in the penalized log-likelihood J focuses on the goodness of fit
aspect. It gauges how well that the considered Phm’s fit the observed data (i.e.
the given class memberships). The second term serves to penalize the roughness
of the underlying posterior function. A posterior surface where its values for
neighboring points are close (i.e. having low R) will generally be smooth, and
conversely a high R is indicative of a rough or wiggly surface. The goal is to
find the posterior probabilities that maximize the penalized log-likelihood J .
We will therefore achieve a compromise between faithfully respecting the class
memberships of the training data and the smoothness property of the posterior
surface, with λ being the parameter that controls the degree of smoothness.

3 The Proposed Algorithm

The goal is to solve the following maximization problem:

Maximize J (given by (5)) w.r.t. the variables: Pgm, s.t. 0 ≤ Pgm ≤ 1, m =
1, . . . , M, g = {1, 2}.
It is easy to see that J is a convex function w.r.t. the Pgm’s. Hence the prob-
lem has a unique maximum. The algorithm proposed below is based on cy-
cling through all variables, each time optimizing w.r.t. only one of the variables
(through a line search). In each step, the optimum w.r.t. one variable can be
obtained analytically, as show below.

∂J

∂Phm
=

1
Phm

− 2λ

Km

⎡
⎣ ∑

m′∈K(xm)

(Phm − Phm′) +
∑

m′∈S(xm)

(Phm − Phm′)

⎤
⎦ (6)

=
1

Phm
− 2λ(Km + Sm)

Km
Phm +

2λ

Km

⎡
⎣ ∑

m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′

⎤
⎦ (7)

where S(xm) is the set of patterns for which xm is one of the neighbors, Sm is
the length of S(xm). To find the value of Phm that maximizes J , we need to
make the right hand side of Eq. 7 equals 0, which would lead to

1 −
(

2λ(Km + Sm)
Km

)
P 2

hm +

⎛
⎝ 2λ

Km

⎡
⎣ ∑

m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′

⎤
⎦
⎞
⎠ Phm = 0 (8)

P 2
hm −

⎛
⎝ 1

Km + Sm

⎡
⎣ ∑

m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′

⎤
⎦
⎞
⎠Phm − Km

2λ(Km + Sm)
= 0 (9)

Eq. 9 is a quadratic equation that can easily be solved. The algorithm of the
proposed method is given below.

Pattern Classification Using a Penalized Likelihood Method 5

1. Start with any initial choice e.g. Pgm = 0.5, m = 1, . . . , M, g =∈ {1, 2}.
2. While the change in the posteriors between the current and previous iteration

is greater than a certain threshold (Thresh), execute step 3.
3. For each training pattern, m = 1 to M :

(a) Set:

Phm ≡ 1
2
P̄hm +

1
2

√
(P̄hm)2 +

2Km

λ(Km + Sm)
(10)

where

P̄hm =
1

Km + Sm

[∑
m′∈K(xm)

Phm′ +
∑

m′∈S(xm)

Phm′
]

(11)

where Km is the number of nearest neighbors, S(xm) is the set of data
points for which xm is one of the nearest neighbors, and Sm is the size
of set S(xm). Thus P̄hm is the mean of the values of Phm′ for some sort
of neighborhood of points around xm.

(b) Truncate if Phm goes out of the constraint box, set:

Phm = 1 if Phm > 1, or Phm = 0 if Phm < 0 (12)

(c) Let f �= h, f ∈ {1, 2}, set:

Pfm = 1 − Phm (13)

(d) Let the set of possible K-nearest neighbor values KK = {k1, k2, . . . , kn},
calculate the error associated with using kj-nearest neighbors, j = 1 : n,
and set Km to the value that minimizes the error, Emj , as follows

Emj = 1 − mean(PhKKj(xm))
Km = argmin

j
(Emj) (14)

where KKj(xm) is the set of kj-nearest neighbors of xm. One possible
choice is to use KK = {3, 5, 7, . . . , 25}.

4. For each test pattern, m = M + 1 to M + N :
(a) Find the value of Km:

Km =
{

arg minj (mean(EQmj)) if min (mean(EQmj)) < TE

arg minj (mean(EMj)) otherwise (15)

where Qm represents the set of training patterns that surrounds xm

(local neighborhood), while M represents the set of all training patterns.
TE is a threshold, which can be the mean of EMj .

(b) Calculate the posterior probabilities Pgm, g ∈ {1, 2}:

Pgm = mean(PgK(xm)) (16)

6 A. Al-Ani and A.F. Atiya

This algorithm performs an iterated estimation of the posteriors through Eq.
10, which is basically the closed-form outcome of the one-variable search that
is performed by cycling through all variables. Eq. 14 shows how the value of
Km can vary from one pattern to another. This can lead to a higher value of J
when compared to using a fixed K for all patterns. The iterations should carry
on until the change in the posteriors from one cycle till the next is small. Once
the algorithm converges, we use the obtained final values of the Pgm’s as the
estimated posteriors of training data points, which will be used to estimate the
posteriors of the test data points. The rationale behind Eq. 15 is to first check
the error of the local neighborhood. If the error is small, then the neighborhood
would influence the choice of Km. Otherwise, use the value of K that, on average,
is most reliable over all training samples. Recalling that Pgm ≡ P (Cg|xm), then
the final classification of a test data point is estimated as class C1 if P1m > P2m,
otherwise it is class C2.

4 Simulation Results

A number of benchmark datasets were used to test the performance of the pro-
posed method. We have compared the performance of the proposed method to
that of the following well-known classification methods:

– Bayes classifier ([17], p. 168) with the class-conditional densities estimated
according to the Parzen window density estimator (PARZEN) [18]. A key
parameter for the Parzen estimator is the width of kernels h. We used the
value derived in [18] (Silverman’s rule):

h = σ̂

[
4

(2L + 1)I

] 1
L+4

(17)

where σ̂2 ≡ ∑L
i=1Sii/L denotes the mean of the diagonal of the sample

covariance matrix S, L is the dimension of the space, and I is the number
of data points (we used Gaussian kernels).

– Gaussian process classification using the expectation propagation approxi-
mation [19]. We used the non-optimized (GPC) and optimized (GPCo) ver-
sions. The latter attempts to approximate the integrals in the Gaussian
process classification formula. We used the software available in [14].

– Support vector machines (SVM) (Scholkopf and Smola [20]). We used a radial
basis function SVM implemented using the OSUsvm toolbox1. The values of
C and γ for the latter are set using a K-fold validation procedure (we used
five-fold validation and allowed C and γ to range between [0.5, 1.5]).

– K-nearest neighbor classifier. The value of K was set using a five-fold valida-
tion process (only odd numbers that range between 3 and 25 were considered).

– Evidential K-nearest neighbor (KNNds). This algorithm is based on the
Dempster-Shafer theory of evidence taking into account the distance and class
label information of the neighbors for generating soft decision vectors [21]2.

1 Obtained from http://downloads.sourceforge.net/svm/osu-svm-3.0.zip
2 The KNNds software is available at http://www.hds.utc.fr/ tdenoeux/software.htm

Pattern Classification Using a Penalized Likelihood Method 7

We tested all these competing methods on real-world pattern classification
problems, mostly from the UCI repository [22]. We also tested those algorithms
on the well-known two-spiral classification problem. This dataset consists of
points on two inter-wined spirals that cannot be linearly separated, as shown in
Fig. 1. Table 1 summarizes the characteristics of the datasets used in this paper.

Patterns that consist of missing values were removed from the datasets. In
certain cases, attributes that consist of many missing values were excluded to
minimize the number of removed patterns. Categorical attributes were changed
to attributes with integer values to enable the chosen algorithms to handle them.
For all considered problems the input attributes are first scaled so that they
lie in a suitable range. We used 80% of the data as a training set, and the
remaining 20% as a test set. We performed 20 runs for each method, each run
with a different random train/test partition. Then we average the classification
accuracies on the test sets of the 20 runs.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Feature 1

F
ea

tu
re

 2

Class1
Class2

Fig. 1. Two-spiral dataset

Table 1. Datasets used to evaluate the performance of classifiers

Dataset # Attributes # Patterns Class distribution

Two Spiral 2 194 0.50/0.50
Ger. Credit 24 1000 0.70/0.30
Cylinder bands 30 350 0.62/0.38
Blood transfusion 4 748 0.24/0.76
cancer 9 683 0.65/0.35
Haberman’s survival 3 306 0.73/0.27
heart 22 267 0.79/0.21
heart SPECT 13 270 0.55/0.45
hill-valley 100 606 0.51/0.49
ionosphere 33 351 0.64/0.36
mammographic 5 814 0.48/0.52
monk 6 432 0.50/0.50
Parkinson 22 195 0.75/0.25
pima 8 768 0.35/0.65
sonar 60 208 0.53/0.47
Tic-tac 9 958 0.65/0.35
wdbc 30 569 0.63/0.37

8 A. Al-Ani and A.F. Atiya

In order to compare the performance of the various algorithms mentioned
above, we used the following measures:

– Mean classification accuracy (Acc). This measure gives a general indi-
cation about the performance of each classifier.

– Estimated standard deviation of the accuracy. It is calculated by
dividing the standard deviation of Acc by the square root of the number of
runs.

– Significance test. A two-tailed paired t-test is performed with significance
level of α = 0.05. This indicates if there is a significant difference in the
performance of two classifiers.

– Geometric mean error ratio. For the two classifiers that have errors
a1, a2 . . . , an and b1, b2 . . . , bn respectively (n represents the number of runs),
the geometric error ratio is:

exp
∑n

i=1 log(ai/bi)
n

= n

√√√√ n∏
i=1

ai/bi (18)

This measure reflects the relative performance of one classifier with respect
to another. If the outcome is less than 1, then it is an indication that the
first classifier outperforms the second classifier in terms of error reduction.

– Win-Tie-Loss. This is an important measure, where the three values are
the number of datasets for which classifier a obtained better, equal, or worse
performance outcomes than classifier b.

– Sign test. The p-values of a two-tailed sign test based on the win-tie-loss
record. if p is significantly low, then one can conclude that it is unlikely that
the outcome was obtained by chance, i.e., the difference between the two
classifiers is significant. On the other hand, a higher p value indicates that
the two classifiers are not significantly different.

For detailed description of these measures the reader is referred to [23], [24].
The PLC algorithm described in section 3 only needed few iterations to con-

verge for all of the 17 datasets when we set Thresh to 0.01. Table 2 shows the
average classification accuracy of the competing methods with the estimated
standard deviation. It also shows if (PLC) is significantly different from other
classifiers from a statistical viewpoint. For a given dataset, if PLC is significantly
better than a certain classifier, then a bullet is displayed next to that classifier’s
result. On the other hand, an open circle indicates that the classifier is signif-
icantly better than PLC. A quick glance at the table would show that there
are more bullets than open circles. PLC is found to be particularly better than
Parzen, GMM, KNNds and KNN. However, the results indicate that PLC is not
significantly better than the Gaussian process and SVM, particularly GPCo.
As mentioned earlier, these two classifiers are considered in the literature to be
among the best classification approaches.

In order to present a more detailed analysis of the classification results, Table 3
presents other comparison measures. The first row of the table represents the

Pattern Classification Using a Penalized Likelihood Method 9

Table 2. Classification accuracy and estimated standard deviation for the considered
classifiers

Parzen GPC GPCo SVM

2Spiral 33.16 ± 1.31• 47.63 ± 1.51• 50.39 ± 0.29• 47.63 ± 1.61 •
GerCr 68.75 ± 0.65• 76.78 ± 0.57◦ 77.50 ± 0.58◦ 75.90 ± 0.46◦
bands 68.57 ± 0.84 74.00 ± 1.41◦ 75.00 ± 1.29◦ 73.14 ± 1.22◦
Btrans 76.97 ± 0.39 76.73 ± 0.36 77.7 ± 0.41 75.97 ± 0.15•
canc 95.84 ± 0.36• 96.82 ± 0.23 96.57 ± 0.32 96.57 ± 0.23
haber 71.48 ± 0.59• 72.87 ± 0.70 73.28 ± 0.77 72.54 ± 0.50
heart 80.19 ± 1.31• 83.96 ± 0.86◦ 84.15 ± 1.00 83.68 ± 0.95
heartS 80.19 ± 0.87 83.24 ± 0.83◦ 83.70 ± 1.00◦ 83.06 ± 0.89◦
hill 53.51 ± 0.74• 50.45 ± 0.58• 51.78 ± 0.51• 49.96 ± 0.57•
ion 88.21 ± 0.8◦ 89.57 ± 0.65◦ 96.07 ± 0.52◦ 94.29 ± 0.55◦
mamm 79.20 ± 0.67 80.68 ± 0.58◦ 82.01 ± 0.56◦ 80.19 ± 0.62
monk 76.86 ± 0.95• 80.99 ± 1.00 94.65 ± 0.82◦ 91.10 ± 0.49◦
parkin 95.00 ± 0.71 83.72 ± 1.10• 93.08 ± 1.10 87.82 ± 1.08•
pima 73.21 ± 0.50 76.33 ± 0.61◦ 76.79 ± 0.61◦ 76.66 ± 0.57◦
sonar 87.32 ± 1.14 84.63 ± 1.30• 83.66 ± 1.41• 86.34 ± 1.33
tic-tac 87.49 ± 0.38 83.48 ± 0.70• 96.18 ± 0.36◦ 95.71 ± 0.29◦
wdbc 97.52 ± 0.31 97.65 ± 0.31 97.26 ± 0.28 97.92 ± 0.27◦

KNN KNNds PLC

2Spiral 75.13 ± 2.10• 75.13 ± 2.10• 79.61 ± 1.09
GerCr 72.48 ± 0.34• 72.15 ± 0.74• 73.88 ± 0.40
bands 68.36 ± 1.30 67.57 ± 0.99 68.93 ± 1.14
Btrans 77.90 ± 0.45 73.27 ± 0.72• 77.5 ± 0.58
canc 96.64 ± 0.31 96.61 ± 0.27 96.68 ± 0.29
haber 73.11 ± 0.68 70.33 ± 1.01• 72.87 ± 0.69
heart 81.79 ± 1.17 80.28 ± 1.43 82.36 ± 1.13
heartS 81.76 ± 1.03 77.78 ± 1.07• 81.48 ± 0.92
hill 54.38 ± 0.77• 55.95 ± 1.12• 59.09 ± 1.00
ion 84.71 ± 0.69• 89.86 ± 0.74◦ 86.36 ± 0.68
mamm 79.26 ± 0.70 77.10 ± 0.47• 79.66 ± 0.62
monk 83.72 ± 0.87 83.95 ± 0.80◦ 82.50 ± 0.87
parkin 92.56 ± 1.03 92.69 ± 1.04 93.85 ± 1.08
pima 73.64 ± 0.67 73.99 ± 0.47 74.09 ± 0.58
sonar 83.66 ± 1.05• 83.78 ± 1.01• 87.56 ± 1.20
tic-tac 88.04 ± 0.48◦ 82.64 ± 0.48• 86.86 ± 0.57
wdbc 96.81 ± 0.31 96.99 ± 0.30 97.17 ± 0.26

mean accuracy across all the datasets. According to this measure PLC is found
to be the second best classifier, after GPCo, outperforming all remaining clas-
sifiers, including SVM. The table also presents pair-wise comparisons between
the classifiers according to their geometric error ratio (ṙ), and the win-tie-loss
(s). Also shown is the p-value of the sign test for the win-tie-loss (p). According
to these measures, PLC outperformed Parzen, KNN, and KNNds. In fact the
geometric error ratio indicates that PLC is slightly better than GPC and not
too different from SVM. On the other hand, the win-tie-loss favors the Gaussian

10 A. Al-Ani and A.F. Atiya

Table 3. Comparison of averaged classification accuracy, geometric error, win-tie-loss,
and p-value of the sign test across all the used datasets

Parzen GPC GPCo SVM KNN KNNds PLC

Mean Acc. 77.26 78.80 81.75 80.50 80.23 79.42 81.20

Parzen
ṙ 1.016 1.333 1.212 1.052 1.020 1.112
s 5-0-12 4-0-13 4-0-13 5-0-12 9-0-8 4-0-13
p 0.1435 0.049 0.049 0.1435 1.000 0.049

GPC
ṙ 1.311 1.193 1.035 1.003 1.094
s 3-0-14 9-1-7 10-0-7 12-0-5 9-1-7
p 0.0127 0.8036 0.6291 0.1435 0.8036

GPCo
ṙ 0.910 0.789 0.765 0.834
s 14-0-3 12-1-4 13-0-4 12-0-5
p 0.0127 0.0768 0.049 0.1435

SVM
ṙ 0.868 0.841 0.917
s 11-0-6 13-0-4 10-0-7
p 0.3323 0.049 0.6291

KNN
ṙ 0.969 1.057
s 9-1-7 5-0-12
p 0.8036 0.1435

KNNds
ṙ 1.090
s 2-0-15
p 0.0023

Table 4. Execution Time for GPCo and PLC, measured in CPU time (sec). This time
includes training time and testing time.

2Spiral GerCred bands Btrans cancer haber heart heartS hill

GPCo 1.63 882.85 22.77 360.82 314.43 11.75 9.58 7.63 82.67
PLC 0.19 2.73 0.56 1.40 1.43 0.36 0.35 0.31 6.06

ion mamm monk parkin pima sonar tic-tac wdbc

GPCo 59.81 530.17 106.57 9.31 469.99 10.39 1229.33 238.80
PLC 1.09 3.73 1.25 0.38 3.67 0.62 5.55 2.80

process and support vector machine over PLC. However, as seen from the p-value
measure, only GPCo is significantly better than PLC.

The above results indicate that GPCo is the only classifier that is significantly
better from a statistical point of view. So, it would be important to compare
these two classifiers in terms of computational complexity. Table 4 shows the
computation time of both GPCo and PLC for all considered datasets. The table

Pattern Classification Using a Penalized Likelihood Method 11

indicates that PLC is considerably faster than GPCo, which represents a great
advantage for the proposed algorithm.

5 Conclusion

A new classification method based on penalized likelihood concept is presented
in this paper. The method is based on defining a roughness term based on the K-
nearest neighbors. We have developed an algorithm that converges to the global
optimum in only few iterations. We have also proposed to allow the value of K
to vary from one pattern to another, which proved to be useful in maximizing
the objective function. When compared with several well-known classification
methods, the proposed classifier achieved a performance competitive with the
top models, but with less computational time. As such, the proposed approach
can be ranked among the top binary classification algorithms.

References

1. Green, P.: Penalized likelihood. In: Encyclopedia of Statistical Sciences, Update
vol. 3 (1999)

2. Gu, C., Kim, Y.-J.: Penalized likelihood regression: general formulation and effi-
cient approximation. Canadian Journal of Statistics 29 (2002)

3. Green, P.J., Silverman, B.W.: Nonparametric Regression and Generalized Linear
Models: a Roughness Penalty Approach. Chapman and Hall, London (1994)

4. Berry, S.M., Carroll, R.J., Ruppert, D.: Bayesian smoothing and regression splines
for measurement error problems. J. Amer. Statist. Assoc. 97, 160–169 (2002)

5. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)
6. OSullivan, F., Yandell, B., Raynor, W.: Automatic smoothing of regression func-

tions in generalized linear models. J. Amer. Statist, Assoc. 81, 96–103 (1986)
7. Gu, C.: Cross-validating non-gaussian data. J. Comput. Graph. Statist. 1, 169–179

(1992)
8. Lu, F., Hill, G.C., Wahba, G., Desiati, P.: Signal probability estimation with penal-

ized likelihood method on weighted data, Technical Report, No. 1106. Department
of Statistics, University of Wisconsin (2005)

9. Wahba, G.: Soft and hard classification by reproducing kernel hilbert space meth-
ods. Proc. Nat. Acad. Sciences 99, 16524–16530 (2002)

10. Wahba, G., Gu, C., Wang, Y., Chappell, R.: Soft classification, a.k.a. risk estima-
tion, via penalized log likelihood and smoothing spline analysis of variance, Tech-
nical Report, No. 899. Department of Statistics, University of Wisconsin (1993)

11. Loader, C.: Local Regression and Likelihood. Springer, Heidelberg (1999)
12. Cawley, G., Talbot, N.L., Girolami, M.: Sparse multinomial logistic regression via

bayesian l1 regularisation. In: Proceedings NIPS, pp. 209–216 (2007)
13. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, Boca

Raton (1990)
14. Rasmussen, C.E. (2007),

http://www.GaussianProcess.org/gpml/code/index.html

15. Holmes, C.C., Adams, N.M.: A probabilistic nearest neighbour method for statis-
tical pattern recognition. Journal Royal Statistical Society B 64, 295–306 (2002)

12 A. Al-Ani and A.F. Atiya

16. Jensen, R., Erdogmus, D., Principe, J.C., Eltoft, T.: The laplacian classifier. IEEE
Trans. Signal Processing 55, 3262–3271 (2007)

17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Inter-
science, Hoboken (2000)

18. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
and Hall, Boca Raton (1986)

19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, Cambridge
(2005)

20. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

21. Zouhal, L., Denoeux, T.: An evidence-theoretic k-nn rule with parameter optimiza-
tion. IEEE Trans. Syst. Man Cyber. 28, 263–271 (1998)

22. Asuncion, D.J.: UCI Machine Learning Repository (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

23. Zhang, C.-X., Zhang, J.-S.: Rotboost: a technique for combining roataion forest
and adaboost. Pattern Recognition Letters 29, 1524–1536 (2008)

24. Webb, G.: Multiboosting: a technique for combining boosting and wagging. Ma-
chine Learning 40, 159–196 (2000)

	Pattern Classification Using a Penalized Likelihood Method
	Introduction
	The Proposed Method
	The Proposed Algorithm
	Simulation Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

