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Abstract. Final coalgebras for a functor serve as semantic domains for state
based systems of various types. For example, formal languages, streams, non-
well-founded sets and behaviors of CCS processes form final coalgebras. We
present a uniform account of the semantics of recursive definitions in final coal-
gebras by combining two ideas: (1) final coalgebras are also initial completely it-
erative algebras (cia); (2) additional algebraic operations on final coalgebras may
be presented in terms of a distributive law λ. We first show that a distributive law
leads to new extended cia structures on the final coalgebra. Then we formalize
recursive function definitions involving operations given by λ as recursive pro-
gram schemes for λ, and we prove that unique solutions exist in the extended cias.
We illustrate our results by the four concrete final coalgebras mentioned above,
e. g., a finite stream circuit defines a unique stream function and we show how to
define new process combinators from given ones by sos rules involving recursion.

Keywords: recursion, semantics, completely iterative algebra, coalgebra, dis-
tributive law.

1 Introduction

Recursive definitions are a useful tool to specify infinite system behavior. For example,
Milner [21] proved that in his calculus CCS, one may specify a process uniquely by
the equation P = a.(P |c) + b. More generally, such recursive equations have unique
solutions whenever each recursion variable is in the scope of some action prefix. An-
other example is the shuffle product on streams of real numbers uniquely defined by
r.σ⊗ s.τ = rs.(r.σ⊗ τ +σ⊗ s.τ). And as a third example consider non-well-founded
sets [2, 10], a framework originating as a semantic basis for circular definitions. Here
we can solve recursive function definitions such as g(x) = {g(P(x))× x, x} uniquely.
It is the aim of this paper to develop abstract tools and results that explain why there
exist unique solutions to all the aforementioned equations.

The key observation is that streams, non-well-founded sets and process behaviors
constitute final coalgebras for certain functors on appropriate categories. Furthermore,
the structure c : C → HC of a final coalgebra is an isomorphism [14], and the H-
algebra (C, c−1) is the initial completely iterative algebra (cia) for H [18]; cias are
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algebras in which recursive (function) definitions involving the operations given by
c−1 can be solved uniquely. However, cia structures for H are not sufficient to yield
the existence and uniqueness of solutions in our motivating examples; these involve
additional algebraic operations not captured by H . For example, |, + in CCS, the stream
addition +, and powerset and cartesian product P ,× in the example from non-well-
founded set theory.

Additional algebraic operations are often presented by distributive laws in various
guises. In process algebra one defines operations such as | or + by structural opera-
tional semantics (sos) [1]. Plotkin and Turi [22] showed how to capture sos rules as
a distributive law of the functor (or monad) M describing the desired algebraic oper-
ations over the “behavior” functor H . This distributive law then induces an algebraic
structure for M on the final H-coalgebra C. Other instances of distributive laws are be-
havioral differential equations in stream calculus, see [24], and definitions of operations
on non-well-founded sets.

Bartels systematically studies definition formats giving rise to distributive laws in
his thesis [9] (see also [8]) and shows how to solve parameter-free first order recursive
equations involving operations presented by a distributive law.

After recalling his results in Section 2 we extend them in Section 3 by combining
them with our previous work in [3, 18, 19]. We first prove (Theorems 3.2 and 3.3) that
the final H-coalgebra carries the structure of a cia for HM and for MHM . These
results show how to construct new structures of cias on C out of the initial one using
a distributive law. This improves Bartels’ result in the sense that first order recursive
definitions may employ constant parameters in the final coalgebra. This also explains
why recursively defined operations may be used in subsequent recursive definitions.

In Section 4 we obtain new ways to provide the semantics of recursive definitions
by applying the existing solution theorems with the new cia structures, and in Section 5
we turn our attention to functional recursive definitions like the above shuffle product
or the above function g on non-well-founded sets. We introduce for a distributive law
λ the notion of a recursive program scheme (λ-rps, for short). Our main result is that
any λ-rps has a unique solution in the final coalgebra C. Moreover, we show that these
solutions extend the cia structure of C, which means that they can be used in subsequent
recursive definitions. This compositionality of taking solutions of recursive equations
does not appear in any previous work in this generality. In fact, we believe that our
result is the first one that allows to obtain recursively defined operations directly as the
unique solutions of their specifications.

Finally, in Section 6 we demonstrate the value of our results by instantiating them
in four different concrete applications: (1) CCS-processes—we explain how Milner’s
solution theorem from [21] arises as a special case of Theorem 3.3, and we also show
how to define new process combinators recursively from given ones; (2) streams of real
numbers—here we prove that every finite stream circuit defines a unique stream func-
tion; (3) non-well-founded sets—we prove that operations on non-well-founded sets
are uniquely determined as solutions of λ-rps’s; (4) formal languages—here we show
how operations on formal languages like union, concatenation, complement, etc. arise
step-by-step using the compositionality of unique solutions of λ-rps’s.
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Related Work. The work in [22] was taken further by Lenisa, Power and Watanabe
in [15, 16]. Jacobs [13] shows how to apply Bartels’ result to obtain the (first order) so-
lution theorems from [3, 18]. Capretta et al. [11] work in a dual setting and generalize
the results of [8] beyond terminal coalgebras and they also obtain the (dual of) the solu-
tion theorem from [3, 18] by an application of their general results. Our Theorems 3.2
and 3.3 are similar to results in [11] but extend the ones of [8] in a different direction by
considering parameters in recursive definitions. So our results in the present paper go
beyond what can be accomplished with previous work. For example, while [16] gives
an abstract explanation of adding operations to a process calculus, it gives no account
of the kind of compositionality we have in our results.

2 Distributive Laws and Bialgebras

We shall assume some familiarity with basic notions from category theory such as func-
tors, (initial) algebras and (final) coalgebras, monads, see e. g. [17, 23, 5].

Suppose we are given an endofunctor H on some categoryA describing the behavior
type of a class of systems. In our work we shall be interested in additional algebraic
operations on the final coalgebra C for H . The type of these algebraic operations is
given by an endofunctor M on A. Specification of algebraic operations by sos rules
is abstractly captured by giving a distributive law of M over H , see e. g. [22, 8, 13].
Often M comes with the extra structure of a pointed endofunctor or a monad. Our goal
is to provide a setting in which recursive equations involving the algebraic operations
described by M can be uniquely solved.

Assumption 2.1. Throughout this section we assume that H : A → A is a functor,
and that c : C → HC is a final coalgebra. In addition, we assume that M is a pointed
endofunctor on A, i. e., M comes equipped with a natural transformation η : Id → M .

Definition 2.2. (1) An algebra for (M, η) is a pair (A, a) where A is an object of A
and a : MA → A is a morphism satisfying the unit law a · ηA = idA.

(2) A distributive law of M over H is a natural transformation λ : MH → HM such
that we have

Hη = (H
ηH

��MH
λ ��HM ) .

Remark 2.3. (1) In most concrete examples, M in Definition 2.2 is part of a monad
(M, η, μ). Then any distributive law for the monad M over H is obviously also a dis-
tributive law for the pointed endofunctor M over H : in fact, recall that a distributive law
of the monad M over H is a distributive law as in Definition 2.2(2) above additionally
satisfying one obvious law concerning compatibility of λ and μ.

(2) Suppose that M is a free monad ̂K on an endofunctor K : A → A given ob-
jectwise by free K-algebras ̂KX . Bartels [9] (Lemma 3.4.24) shows that distributive
laws λ : ̂KH → H ̂K (of the monad ̂K over H) correspond to natural transformations
� : KH → H ̂K . Indeed, given λ we get � = λ · κH , where κ : K → ̂K is the
universal natural transformation of the free monad. Conversely, let η and μ be the unit
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and multiplication of the free monad ̂K. Given �, we see that HμX · �
̂KX : KH ̂KX

→ H ̂K ̂KX → H ̂KX is an algebra for K . Thus, by the freeness of the algebra ̂KHX ,
there exists a unique K-algebra homomorphism λX : ̂KHX → H ̂KX extending
HηX , i. e., such that λX · ηHX = HηX . One readily shows that λ is a distributive law
of ̂K over H .

Construction 2.4. [8, 9] Let λ : MH → HM be a distributive law of the pointed
endofunctor M over H . By using coinduction (i. e., the universal property of the final
coalgebra) we define an M -algebra structure on C as the unique coalgebra homomor-
phism b from the coalgebra λC · Mc : MC → HMC to the final coalgebra, i. e.,
b : MC → C is such that

c · b = Hb · λC · Mc . (2.1)

Bartels [8] showed that (C, b) is indeed an algebra for M . Moreover, if M is a monad
and λ a distributive law of M over H , then (C, b) is an Eilenberg-Moore algebra for the
monad M .

Definition 2.5. For every distributive law λ we call b : MC → C from Construc-
tion 2.4 the λ-interpretation in C. In the case described in Remark 2.3(2), where λ is
induced by �, we shall also say that b is the �-interpretation in C.

Examples 2.6. We review a couple of examples of interest in this paper where A =
Set. We shall elaborate these examples in Section 6.

(1) Formal languages. Consider the endofunctor HX = XA × 2, where 2 = { 0, 1 }.
Coalgebras for H are precisely the (possibly infinite) deterministic automata over the
set A (as an alphabet). The final coalgebra c : C → HC consists of all formal languages
with c(L) = (λa.Da(L), i) with i = 1 iff the empty word ε is in L and where Da(L) =
{w | aw ∈ L }.

To specify e. g. the intersection of formal languages via a distributive law, let KX =
X ×X and let � : KH → HK be given by �X((f, i), (g, j)) = (〈f, g〉, i∧ j) where ∧
denotes the “and”-operation on { 0, 1 }. Take M = K + Id and λ = can · (� + idH) :
MH → HM , where can = [H inl, H inr] : HK + H → H(K + Id). Then the λ-
interpretation b : C ×C +C → C has its left-hand component given by intersection of
formal languages.

(2) Streams have been studied in a coalgebraic setting by Rutten [24]. Here we take
the functor HX = R × X whose final coalgebra (C, c) is carried by the set R

ω of all
streams over R and c = 〈hd, tl〉 : R

ω → R × R
ω is given by the usual head and tail

functions on streams.
Consider the functor KX = R×X +X ×X corresponding to the signature Σ with

a unary operation symbol r.(−) for every real number r and with a binary operation
symbol zip. Now zip is defined by the behavioral differential equation zip(r.x, s.y) =
(r, zip(s.y, x)). This can conveniently be expressed as a natural transformation � :
KH → H ̂K, where ̂K is the free monad on K (recall that ̂KX is the set of all Σ-
terms on the set X of variables). Indeed, define � for the two coproduct components of
KHX = R × HX + HX × HX by �X(r, (s, x)) = (r, s.x) and �X((r, x), (s, y)) =
(r, zip(s.y, x)), and note that the right-hand sides are pairs in R× ̂KX . The �-interpre-
tation b : ̂KC → C interprets Σ-terms built from the operation symbols as expected.
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(3) Processes. We shall be interested in Milner’s CCS [21]. Let κ be a regular cardinal
and Pκ be the functor assigning to the set X the set of all subsets Y with |Y | < κ. Here
we consider the functor HX = Pκ(A×X) where A is some fixed alphabet of actions.
Following Milner [21], we assume that for every a ∈ A we also have a complement
ā ∈ A (so that ¯̄a = a) and a special silent action τ ∈ A.

Recall that the final coalgebra for the finite power set functor Pfin was described
by Worrell [27]: it is carried by the set of all strongly extensional finitely branching
trees, where an unordered tree t is called strongly extensional if two subtrees rooted at
distinct children of some node of t are never bisimilar. Similarly, the final coalgebra
for the countable power set functor Pc is carried by the set of all strongly extensional
countably branching trees, see [25]. The technique by which this result is obtained in
loc. cit. generalizes to the functor Pκ(A × X) from above: its final coalgebra C turns
out to consist of all strongly extensional κ-branching trees with edges labelled in A;
strongly extensional has the analogous meaning as above: two subtrees rooted at distinct
children of some node are never bisimilar if both edges to the children carry the same
label. The elements of C can be considered as (denotations of) CCS-agents modulo
strong bisimilarity.

Notice that the inverse c−1 : Pκ(A × C) → C assigns to a set {(ai, Ei) | i < κ}
of pairs of actions and agents the agent

∑

i<κ ai.Ei. The usual process combinators
“a.−” (prefixing), “|” (composition), “

∑

i<κ” (sum), −[f ] (relabelling) and “−\L”
(restriction) are given by sos rules. Let E, E′, F , F ′ be agents and a ∈ A some action,
then these rules are:

E
a→E′

E|F a→E′|F
F

a→F ′

E|F a→E|F ′
E

a→E′ F
ā→F ′

E|F τ→E′|F ′ (a�=τ)

a.E
a→E

Ej
a→E′

j

(
∑

i<κ Ei)
a→E′

j

(j<κ)
E

a→E′

E[f ]
f(a)→ E′[f ]

E
a→E′

E\L
a→E′\L

(a,ā�∈L)

Now let K be the polynomial functor for the signature given by taking the combinators
as operation symbols. Then the above rules are easily seen to give a natural transforma-
tion � : KH → H ̂K, and the �-interpretation b : ̂KC → C in C evaluates all terms
built from the considered combinators in C. Further details are presented in Section 6.1.

Our first result (Theorem 3.2) improves a result from [8, 9] that we now recall. We
are interested in λ-bialgebras for a distributive law λ : MH → HM . We shall not
recall the formal definition here since it is not needed for this paper. We only note that
for the λ-interpretation b : MC → C the triple (C, b, c) is a λ-bialgebra; in fact, it is
the final one, see [9], Corollary 3.4.12).

Definition 2.7. A λ-equation is an HM -coalgebra; that is, a morphism of the form
e : X → HMX . A solution of e in the λ-bialgebra (C, b, c) is a morphism e† : X → C
such that the following equation holds: c · e† = Hb · HMe† · e.
Theorem 2.8. [8, 9] Let A be a cocomplete category, and let λ be a distributive law
of the pointed endofunctor M over H . Then every λ-equation has a unique solution
in (C, b, c).

Bartels proved a version of this theorem in the setting where the functor M is not
necessarily pointed. So this result is just a slight variation on Bartels’ Theorem 4.2.2.
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It is worthwhile to note that Bartels’ work also contains a similar result for the case
where M is a monad and where λ is a distributive law of M over H , see [9], Corol-
lary 4.3.6. In that case the assumption that A is cocomplete is not necessary. This last
result is the dual of a result obtained independently and at the same time by Uustalu,
Vene and Pardo (see [26], Theorem 1), and in [11] Capretta, Uustalu and Vene general-
ize this work further obtaining Theorem 2.8 as a special case.

3 Completely Iterative Algebras

In addition to our assumptions in 2.1 we assume from now on that our base category A
is cocomplete.

It is our aim in this section to extend Theorem 2.8 so as to obtain several new struc-
tures of completely iterative algebras (for functors other than H) on C. We briefly
recall the basic definitions and one example; more details and examples can be found
in [18, 7, 19].

Definition 3.1. [18] A flat equation morphism in an object A (of parameters) is a mor-
phism e : X → HX + A. An H-algebra a : HA → A is called completely iterative
(or a cia, for short) if every flat equation morphism in A has a unique solution, i. e., for
every e : X → HX + A there exists a unique morphism e† : X → A such that

e† = (X e ��HX + A
He†+A

��HA + A
[a,A]

��A).

Recall that the inverse of the structure c : C → HC of the final coalgebra is, equiv-
alently, an initial cia for H , see [18]. The following show that the distributive law λ
induces further structures of completely iterative algebras on C.

Theorem 3.2. Consider the algebra k = (HMC
Hb−−→ HC

c−1−−→ C), where b :
MC → C is the λ-interpretation in C. Then (C, k) is a cia for the composite func-
tor HM .

Theorem 3.3. (Sandwich Theorem) Consider the algebra k′ = MHMC
Mk−−→ MC

b−→
C, where b : MC → C is the λ-interpretation in C and k = c−1 ·Hb as in Theorem 3.2.
Then (C, k′) is a cia for the composite functor MHM .

These two results extend Theorem 2.8 in two important ways. Firstly, the structure of a
cia allows one to reuse solutions of given recursive specification by using constants in C
on the right-hand sides of recursive equations, i. e., in a cia we can solve open recursive
equations not just closed ones. This gives a clear explanation of why it is possible to use
recursively defined objects (streams, processes, etc.) in subsequent recursive definitions.
This kind of compositionality of the unique solutions is a useful and desired property
often employed in specifications.

Secondly, Theorem 3.3 permits the right-hand sides of recursive specifications to be
from a wider class. For example, Milner’s solution theorem for CCS (see [21], Chap-
ter 4, Proposition 14) allows recursion over process terms E in which the recursion
variables occur within the scope of some prefixing combinator a.−. This combinator
can occur anywhere within E, not necessarily at the head of that term. Hence, The-
orem 3.3 allows us to obtain Milner’s result as a special case, directly. This will be
explained in detail in Section 6.1.
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4 Solution Theorems for Free

Using the new cia structures obtained from Theorems 3.2 and 3.3, the existing body of
results on the semantics of recursion in cias [3, 18, 19] now gives us further theorems.

We begin with a terse review of some terminology from the area [3, 18, 19]. We as-
sume that, in addition to the final H-coalgebra C, for every object X the final coalgebra
T HX for H(−) + X exists, i. e., in the terminology of loc. cit., H is iteratable. Our
examples in 2.6 are all iteratable endofunctors of Set.

The inverse of the final coalgebra structure T HX → HT HX + X gives morphisms
ηH

X : X → T HX and τH
X : HT HX → T HX . It is proved in [18] that (T HX, τH

X ) is
a free cia on X with the universal arrow ηH

X . From this it easily follows that T H is the
object assignment of a monad and that ηH and τH are natural transformations. Denote
by κH the natural transformation τH · HηH : H → T H .

Let (A, a) be a cia for H . Then there is a unique homomorphism ã : T HA → A of
H-algebras such that ã ·ηH

A = idA. We call ã the evaluation morphism associated to A.
Notice that ã · κH

A = a.
In our previous work we have shown how to obtain unique solutions of more general

(first-order) recursive equations than the flat ones appearing in the definition of a cia:

Definition 4.1. [3, 18] An equation morphism is a morphism of the form e : X →
T H(X + A). It is called guarded if there exists a factorization f : X → HT H(X +
A) + A such that e = [τH

X+A, ηH
X+A · inr] · f .

A solution of an equation morphism e in a cia (A, a) is a morphism e† : X → A
such that the following equation holds: e† = ã · T H([e†, idA]) · e.

Theorem 4.2. [18] Let (A, a) be a cia for H . Then every guarded equation morphism
has a unique solution in A.

An even more general property of cias was proved in [19]; one can solve recursive
function definitions uniquely in a cia. We recall the respective result.

Definition 4.3. Let V be an endofunctor such that H + V is iteratable. A recursive
program scheme (rps, for short) is a natural transformation e : V → T H+V . It is
called guarded if there exists a natural transformation f : V → HT H+V such that
e = τH+V · (inlT H+V ) · f , where inl : H → H + V .

Now let (A, a) be a cia for H . An interpreted solution of e in A is a V -algebra
structure e‡A : V A → A giving rise to an Eilenberg-Moore algebra structure β :
T H+V A → A (i. e., β · κH+V

A = [a, e‡A]) such that we have e‡A = β · eA.

Theorem 4.4. [19] In a cia, every guarded rps has a unique interpreted solution.

We are now able to prove more:

Theorem 4.5. Let e : V → T H+V be a guarded rps, and let a : HA → A be a
cia. Then the interpreted solution e‡A : V A → A extends the cia structure on A; more
precisely, the algebra [a, e‡A] : (H + V )A → A is a cia for H + V .
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The last result implies that operations obtained as solutions of recursive program schemes
can be used in subsequent recursive function definitions, which will still have unique
solutions. For the special case of interpreted rps solutions in cias this strengthens the
results in [20].

Now assume that the composite HM is iteratable. By applying the above two Theo-
rems 4.2 and 4.4 to the cia k : HMC → C from Theorem 3.2 we get two more solu-
tions theorems for free, and two similar theorems hold for the cia k′ : MHMC → C
obtained from Theorem 3.3:

Corollary 4.6. Every guarded equation morphism e : X → T HM (X + C) has a
unique solution in the cia (C, k).

Corollary 4.7. Every guarded rps e : V → T HM+V has a unique interpreted solution
in the cia (C, k).

5 Recursive Function Definitions over the Behavior

All results we have seen so far do not allow us to obtain functions such as the shuffle
product on streams (see introduction) as a unique solution since its definition refers to
the behavior of the arguments of the function. In this section we introduce a special form
of recursive program schemes called λ-rps’s which accommodate such examples. We
prove that every λ-rps has a unique solution in the final coalgebra C, and this solution
extends the cia structure for HM on C given by Theorem 3.2—this is a composition-
ality result similar to the one given in Theorem 4.5 for ordinary rps.

We show that every λ-rps easily gives rise to a distributive law, and so the results in
this section are essentially an application of the work in [8] and our results in Section 3.
However, to prove the uniqueness of solutions we need that free algebras can always be
constructed as colimits of transfinite chains. Hence, the following

Assumption 5.1. We assume that our base category A is Set, and in this section we
only consider endofunctors on Set that are accessible, i. e., they preserve α-filtered co-
limits for some regular cardinal α. This implies that they are iteratable.

We further assume that the functor M = ̂K is the free monad on some endofunctor
K and that λ : ̂KH → H ̂K arises from some natural transformation � : KH → H ̂K
as explained in Remark 2.3(2).

Notation 5.2. (1) Recall that for an accessible endofunctor F : Set → Set the free
monad ̂F does indeed exist and is given objectwise by the free F -algebras on X , see [4].
We denote by ϕX : F ̂FX → ̂FX the structure of this algebra and by uX : X →
̂FX the universal morphism. We abuse notation and write ϕX and uX for different
functors F .
(2) For any F -algebra a : FA → A we denote the corresponding Eilenberg-Moore
algebra for ̂F by â : ̂FA → A. Observe that â is the unique F -algebra homomorphism
with â · uA = idA.
(3) Let b : ̂KC → C be the λ-interpretation in C. We denote by b0 the corresponding
K-algebra structure b0 = b · ϕC · KuC . Then clearly we have b = ̂b0.
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Definition 5.3. A recursive program scheme w. r. t. λ (shortly, λ-rps) is a natural trans-
formation e : V H → HK̂ + V .

An interpreted solution of e in C is a V -algebra structure s : V C → C such that

s · V c−1 = c−1 · H [̂b0, s] · eC : V HC → C.

Theorem 5.4. For every λ-rps there exists a unique interpreted solution s in C. In
addition, s extends the cia structure on C, i. e., the following is the structure of a cia for
HK̂ + V on C:

HK̂ + V (C)
H ̂[b0,s]

��HC
c−1

��C . (5.1)

Notice again that the fact that the unique solution s of a λ-rps extends the cia struc-
ture on C means that the operations on C defined in this way may be part of recursive
definitions according to the Corollaries 4.6, 4.7 (where M = K̂ + V ) and also Theo-
rem 5.4 (where K is now replaced by K + V ). We will make use of this feature in our
applications below.

Theorem 5.5. Let ei : ViH → HK̂ + Vi, i = 1, 2, be two λ-rps’s. Then the cia
structure on C extended by the unique solutions si : ViC → C of the ei is independent
of the order of extension.

More precisely, we may first take s1 : V1C → C to obtain an extended cia structure as
in (5.1), and then take the solution of s2 in the new cia, or vice versa. Either way, the

resulting extended cia structure is c−1 · H ̂[b0, s1, s2] : H( ̂K + V1 + V2)(C) → C.

6 Applications

6.1 Process Algebras

Recall Example 2.6(3) where HX = Pκ(A × X). We shall first explain more in detail
how the natural transformation � is obtained. Recall that K is the polynomial functor
corresponding to the types of the CCS combinators, i. e., KX is a coproduct of the
following components: A × X for agent expressions a.x,

∐

n<κ Xn for agent expres-
sions

∑n
i=1 xi, X × X for x1|x2,

∐

f X , where f ranges over functions on the action

set A \ {τ} with f(a) = f(ā), for renaming x[f ], and
∐

L⊆A\{ τ } X , for restriction

x\L. The natural transformation � : KH → H ̂K is given by the sos rules in 2.6(3)
in terms of the components of the coproduct KH , i. e., for each combinator separately.
The first component �X(a, S), for S ⊆ A × X , is (a,

∑

(ai,xi)∈S(ai.xi)), the sec-
ond one is for every n < κ and every family (Si)i<n with Si ⊆ A × X given by
�X((Si)i<κ) =

⋃

i<κ Si. The third one �X(S1, S2), where S1, S2 ∈ HX , is the union
of three sets: (i) all (a, x|(∑(ai,xi)∈S2

(ai.xi))), where (a, x) ranges through S1, (ii) all
(a, (

∑

(ai,xi)∈S1
(ai.xi))|x), where (a, x) ranges through S2, and (iii) all (τ, x|y) where

for some a ∈ A \ {τ} we have (a, x) ∈ S1 and (ā, y) ∈ S2. The remaining two com-
ponents are �X(S) = {(f(a), x[f ]) | (a, x) ∈ S} (here we mean f(τ) = τ , of course)
and �X(S) = {(a, x\L) | (a, x) ∈ S, a, ā 	∈ L}. The form of these definitions is very
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similar to the ones given by Aczel [2] in the setting of non-well-founded set theory. We
already mentioned the �-interpretation b : ̂KC → C giving the desired operations on
agents, and this gives the two new cia structures for H ̂K and ̂KH ̂K as in Theorems 3.2
and 3.3.

Remark 6.1. If we replaced the second component
∐

n<κ Xn of K by PκX we still
have a distributive law. Furthermore, in both cases the induced (binary) operation of
summation is automatically commutative, associative and idempotent: these three laws
that have to be proved in process theory come “for free” by encoding them in the dis-
tributive law using the union operation.

Now let us recall Milner’s solution theorem for CCS agents from [21]. Suppose that Ei,
i ∈ I , are agent expressions with the free variables xi, i ∈ I . Suppose further that each
variable xj in each Ei, i, j ∈ I is weakly guarded, i. e., it only occurs within the scope
of some prefix combinator a.−. Then there is a unique solution of the recursive system
xi = Ei of equations. More precisely, let ∼ denote strong bisimilarity, and let Ei[P /x]
denote simultaneous substitution of Pj for xj for every j. Then we have

Theorem 6.2. [21] There exist unique CCS agents Pi such that Pi ∼ Ei[P /x] holds
for each i ∈ I .

It is easy to see that this theorem is a consequence of our Theorem 3.3; to give a sys-
tem xi = Ei where each variable is weakly guarded is the same as to give a map
X → ̂KH ̂KX , where X = {xi | i ∈ I}. This map can be extended to a flat equa-
tion morphism X → ̂KH ̂KX + C, which has a unique solution in C. Actually, the
extra summand C allows us to use constant agents in recursive specifications. So, for
example, we can obtain the agent P as the unique solution of x = a.(x|c) + b in the
introduction and then use it in a system like x = b.(x + y), y = P which has a unique
solution by Theorem 3.3.

Finally, suppose we want to define the new combinators op1 and op2 by the rule

E
a→ F

op1(E) a→ F |op2(F + E) op2(E) a→ F + op1(F |E)
.

Then Theorem 5.4 tells us that this rule uniquely determines the two combinators. In-
deed, we translate the rule into a λ-rps: let V = Id+ Id (two unary combinators are de-
fined) and let e : V H → HK̂ + V be given by e(S) = {(a, x|op2(x+

∑

(a,x)∈S a.x)) |
(a, x) ∈ S} on the first component and e(S) = {(a, x + op1(x|

∑

(a,x)∈S a.x)) |
(a, x) ∈ S} on the second one. The unique solution of e gives us two new unary com-
binators on C extending its cia structure. This means that Theorem 6.2 remains true for
the extended calculus, without further work.

6.2 Streams

Recall from Example 2.6(2) that here we take HX = R × X and we have C = R
ω

with the structure given by 〈hd, tl〉 : C → R × C. Recursive function definitions in
this realm are often given in terms of stream circuits, and we show how this arises as a
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special case of our results. Stream circuits are usually defined as pictorial compositions
of the following basic stream circuits

r r-multiplier +��

��
adder

C ��
�� copier r register

The r-multiplier multiplies all elements in a stream by r ∈ R, the adder performs com-
ponentwise addition, the copier yields two copies of a stream, and the register prepends
r ∈ R to a stream σ to yield r.σ. The stream circuits are then built from the basic cir-
cuits by plugging wires together, and there may also be feedback (loops). For example
the following picture shows a simple stream circuit:

σ +
1

C f(σ)�� �� ��

��
��

(6.1)

Now let K be the signature functor associated to the signature Σ given by r-multi-
plication, the adder and the register operations (copying will be implicit via variable
sharing). In symbols, KX = R ×X + X ×X + R×X . These operations are defined
by so-called behavioral differential equations [24] with σ0 = hd(σ) and σ′ = tl(σ):

(rσ)0 = rσ0 (rσ)′ = rσ′

(σ + τ)0 = σ0 + τ0 (σ + τ)′ = σ′ + τ ′

(r.σ)0 = r (r.σ)′ = σ

These definitions are easily seen to give rise to a natural transformation � : KH →
H ̂K, for example the middle component (R × X)2 → R × ̂KX is given by
�X((r, x), (s, y)) = (r + s, x + y) where r + s ∈ R and x + y is a Σ-term. We then
get the �-interpretation in C and the corresponding extended cia structures by Theo-
rems 3.2 and 3.3. Recall that a stream circuit is called valid if every loop passes through
at least one register. It is well-known that every closed valid stream circuit defines a
unique stream at every output wire, see [24]. Our Theorem 5.4 now also implies that
open circuits define unique stream functions. To our knowledge, this is a new result in
coalgebraic stream calculus.

Theorem 6.3. Every finite valid stream circuit defines a unique stream function.

Moreover, the fact that the unique solution of a λ-rps extends the cia structure on C ex-
plains why stream circuits can be used as building blocks as if they were basic operations
in subsequent stream circuits. And Theorem 6.3 remains valid for the extended circuits.

The proof of 6.3 essentially gives a translation of an arbitrary valid stream circuit
into a λ-rps. Instead of giving the full proof here, we demonstrate this on the circuit
given in (6.1) above. First we introduce for the output a function symbol f and for the
register output the function symbol g. To determine their arity we count the number of
input wires which have a (directed) path to the register and the output, respectively. In
both cases the arity is one. Now we must give a definition of f(r.x) and g(r.x) for an
abstract input stream with head r ∈ R. These definitions are each given by a pair (s, t)
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where s ∈ R and t is a term in the one variable x over operations corresponding to the
basic circuits and f , g. We define

g(r.x) = (1, r.x + g(r.x)) f(r.x) = (r + 1, x + (r.x + g(r.x)) .

For g(r.x) we take the value 1 of the register as first component, and the right-hand
term is obtained as follows: we follow all paths from the register backwards until we
find an input or a register. Since the given circuit is valid, all such paths are finite and
there are only finitely many of them. So we get a finite tree or, equivalently, the desired
term. For f(r.x) we first follow all paths to inputs and registers backwards to get the
term t′ = xI + xR, where xI represents the input and xR the register. For the first
component of f(r.x) we evaluate t′ with the head r of the input and the initial value 1 of
the register, and for the second component we replace in t′ the input by x and the register
by the second component of its function g(r.x). The two equations above are easily seen

to yield a λ-rps e : V H → HK̂ + V , where V = Id + Id is the polynomial functor for
the signature with two unary symbols f and g. The unique solution of e gives two unary
operations (for f and g) on C, and the one for f is precisely the function computed by the
circuit (6.1). Since these new unary operations on C extend the cia structure, we can use
f (and also g) as “black-boxes” in subsequent recursive definitions or stream circuits.

6.3 Non-Well-Founded Sets

For background on non-well-founded sets, the antifoundation axiom (AFA), and
classes, please see the books [2, 10]. We work here on the category C of classes. Ob-
serve first that even though we are working in a different category than Set, the results
of Section 5 hold true for C. This is because the construction of free algebras for a
functor as colimits of transfinite chains works in C, see [6].

Consider P : C → C taking a class X to the class PX of subsets of X . AFA is
equivalent to the assertion that (V, c) is a final coalgebra, where V is the class of all
sets, and c : V → PV takes a set and considers it a set of sets. (That is, c(s) = s for all
s.) Let us note some natural transformations:

p : P → PP op : Id × Id → PP cp : P × P → P(Id × Id)
pX(x) = P(x) opX(x, y) = {{x}, {x, y}} cpX(x, y) = x × y

Also note that c−1 is the operation on V taking a family x ⊆ V of sets to the set
{ y | y ∈ x }.

We will now define three additional operations on V : the powerset operation b1 :
x �→ { y | y ⊆ x }, the Kuratowski pair b2 : (x, y) �→ {{ x }, { x, y}} and the cartesian
product b3 : (x, y) �→ x×y. So let K be the functor Id+(Id×Id)+(Id×Id)+P+P2;
its first three components represent (the type of) our three desired operations, the fourth
component P represents c−1 and the fifth one represents c−1 ·Pc−1—the latter two are
needed for the definition of the former three. We write the coproduct injections of K
as inj1, . . . , inj5. We define a natural transformation � : KP → PK componentwise,
using P inj4 · p : P → PK , P inj5 · opP : P × P → PK , P inj2 · cp : P × P →
PK , P inj4 : PP → PK and P inj5 : PPP → PK . Then � lifts to a distributive
law λ = can · (� + idP) of the free pointed endofunctor M = K + Id over P . Let
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b : MV → V be the λ-interpretation in V . Let us write b1, . . . , b5 for the components
of b corresponding to the left-hand component K of M , so bi = b · inl · (inji)V . To
obtain explicit formulas for these, we use equation (2.1) and the above definitions to
write:

c · b1 = Pb4 · pV · c
c · b2 = Pb5 · opPV · (c × c)
c · b3 = Pb2 · cpV · (c × c)

c · b4 = Pb4 · Pc
c · b5 = Pb5 · P2c

We check easily that b4 = c−1 and b5 = c−1 · Pc−1 satisfy the last two equations.
From these we see that b1 = c−1 · Pc−1 · pV · c, b2 = c−1 · Pb5 · opPV · (c × c), and
b3 = c−1 · Pb2 · cpV · (c× c). In words, b4 and b5 are the identity, and b1, b2 and b3 are
as desired.

By Theorem 3.2, we have a cia structure (V, c−1 · Pb) for the composite PM .

Remark 6.4. We could have obtained the various operations on V in a step by step
fashion starting with b4 and b5 and then defining b1, b2, b3 by successive applications
of Theorem 5.4. We decided against this, to keep the presentation short. But in the next
section on formal languages we follow this approach.

Continuing our discussion of non-well-founded sets, we may solve systems of equations
which go beyond what one finds in the standard literature on non-well-founded sets [2,
10]. For example, one may solve the system x = {P(y)}, y = {y × y, ∅}. Further, one
may uniquely solve recursive function definitions such as g(x) = {g(P(x)) × x, x}
from the introduction. Indeed, for W = Id this equation yields a λ-rps e : WP →
PK̂ + W whose unique solution given by Theorem 5.4 is a function gV : V → V
behaving as specified.

6.4 Formal Languages

Recall Example 2.6(1); here we have HX = XA × 2 on Set. A coalgebra x : X →
XA×2 for H is precisely a deterministic automaton with the (possibly infinite) state set
X . Here C = P(A∗), and the unique homomorphism h : (X, x) → (C, c) assigns to
each state the language it accepts. We shall now show how various operations on formal
languages can be defined in a compositional way using Theorem 5.4. It is well-known
that such operations can be defined as interpretations of one distributive law in C, see
e. g. [12]. However, the previous bialgebraic account does not explain why one may
define these operations in a step-by-step fashion by subsequent recursive definitions.
This is the added value of Theorem 5.4.

We start with the functor K0 = C∅ (that means, we start from scratch with no given
operations) and with �0 : C∅H → H ̂C∅ = H given by the empty maps. So the cor-
responding distributive law λ0 is the identity on H , and its interpretation is the iden-
tity on C. Thus, the cia structure for H ̂K0 on C given by Theorem 3.2 is simply the
initial cia (C, c−1) for H . At each subsequent step we are given a functor Ki with
�i : KiH → H ̂Ki with its interpretation bi : ̂KiC → C. We then give a λi-rps
ei : ViH → HK̂i + Vi and its unique solution si : ViC → C extends the cia structure
as follows: let Ki+1 = Ki+Vi and let �i+1 = [H ̂inl·�i, ei] : Ki+1H → HK̂i+1, where
̂inl : ̂Ki → K̂i+1 is the monad morphism induced by inl : Ki → Ki+1. By induction
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it is easy to see that the �i+1-interpretation is bi+1 = ̂[sj ]j=0,...,i : K̂i+1C → C. And

this gives an extended cia c−1 · Hbi+1 : HK̂i+1(C) → C by Theorem 3.2.
As a first step we define constants in C for ∅, {ε}, and {a} for each a ∈ A, and the

operation I = c−1 : CA × 2 → C as solutions of a λ0-rps. (Note that I((La)a∈A, j)
is the language L =

⋃

a∈A{a}La if j = 0 and L ∪ {ε} otherwise.) We express this
as a λ0-rps as follows: take the functor V0X = 1 + 1 + A + XA × 2 expressing
the above constants and the operation I . We define e0 : V0H → HK̂0 + V0 = ĤV0

componentwise. We write for every set X , ∅ for inj1(∗) ∈ V0X , ε for inj2(∗) ∈ V0X .
Then e0(∅) = ((∅)a∈A, 0), e0(ε) = ((∅)a∈A, 1), e0(a) = ((tb)b∈A, 0) with tb = ε for
b = a and tb = ∅ otherwise, and finally, e0((pa)a∈A, j) = ((Ipa)a∈A, j) where each
pa ∈ XA×2. It is now straightforward to check that the unique solution s0 of e0 yields
the desired operations on C extending the cia structure.

Next we add the operations of union, intersection and language complement to the
cia structure. Let K1 = K0 + V0 and let �1 as above with interpretation b1 = ŝ0. Let
V1X = X × X + X × X + X be the polynomial functor corresponding to two binary
symbols ∪ and ∩ and one unary one (−). We give the λ1-rps e1 : V1H → HK̂1 + V1

componentwise in the form of the three assignments (where a ranges over A):

((xa), j) ∪ ((ya), k) �→ ((xa ∪ ya), j ∨ k) ((xa), j) �→ ((xa,¬j)
((xa), j) ∩ ((ya), k) �→ ((xa ∩ ya), j ∧ k)

where ∨, ∧ and ¬ are the evident operations on 2 = {0, 1}. The corresponding unique
solution s1 : V1C → C is easily checked to provide the desired operations extending
the cia structure on C.

The next step adds concatenation to the cia structure on C. For this let V2X =
X × X and e2 is given by the assignment ((xa), j) · ((ya), k) �→ ((ta), j ∧ k) where
ta = (xa · I((ya), k)) ∪ ya if j = 1 and ta = xa · I((ya), k) otherwise. Its unique
solution s2 : C × C → C is the concatenation operation.

As the final step we add the Kleene star operation by taking V3X = X and e3

given by e3((xa), j) = ((xa · (I((xa), j)∗), 1). Notice that this definition makes use of
concatenation which was a solution at the previous stage and concatenation makes use
of union which was a solution at stage 1.

7 Conclusions

In many areas of theoretical computer science, one is interested in recursive defini-
tions of functions on final coalgebras C for various functors H . This paper provides
a more comprehensive foundation for recursive definitions than had been presented up
until now. The overall idea is to present operations in terms of a distributive law λ of a
pointed endofunctor M over H . We proved that λ induces new completely iterative al-
gebra structures for HM and MHM on C. As a result, we are able to define operations
with useful algebraic properties such as commutativity or associativity “for free”. We
also introduced the notion of a λ-rps and showed how to uniquely solve recursive func-
tion definitions in C which are given by a λ-rps. Our results explain why taking unique



326 S. Milius, L.S. Moss, and D. Schwencke

solutions of such equations is a compositional process. And we have seen that our re-
sults can be applied to provide the semantics of recursive specifications in a number of
different areas of theoretical computer science.
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