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Abstract. Flow Logic is an approach to the static analysis of pro-
grams that has been developed for functional, imperative and object-
oriented programming languages and for concurrent, distributed, mobile
and cryptographic process calculi. In this paper we extend it to deal with
modal logics and prove that it can give an exact characterisation of the
semantics of formulae in a modal logic. This shows that model check-
ing can be performed by means of state-of-the-art approaches to static
analysis and allow us to conclude that the problems of model checking
and static analysis are reducible to each other. In terms of computational
complexity we show that model checking by means of static analysis gives
the same complexity bounds as are known for traditional approaches to
model checking.

1 Introduction

Model checking [I0I2] is a successful approach to the validation of properties
expressed in modal logics with respect to models expressed as transition systems.
The transitions may originate from descriptions of hardware or more recently of
software systems. Much work focuses on transition systems that are finite and
have no structured data although extensions to infinite systems and structured
data (e.g. allowing cryptographic terms) exist.

Static analysis [O13] is in a similar way a successful approach to the valida-
tion of properties of programming languages. Originally used in the development
of compilers it has spread to uses in editors in software development environ-
ments, program validation, program understanding and is also being applied
to distributed formalisms such as process calculi. A number of “schools” exist,
including Data Flow Analysis, Type and Effect Systems, and Abstract Interpre-
tation to name but a few.

Flow Logic [I7] is a particular approach to static analysis that borrows meth-
ods and techniques from Abstract Interpretation, Data Flow Analysis and Con-
straint Based Analysis while presenting the analysis in a style more reminiscent
of Type Systems. One of the hallmarks of Flow Logic it that it makes a clear
distinction between (i) the specification of the analysis, (7) whether or not a
proposed analysis result is indeed correct with respect to the semantics, and
(#i) the computation of the best analysis result. The logical format used for
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presenting specifications focuses on ensuring the implementability of the analy-
ses — often this is possible in low polynomial (cubic) time. Over the years Flow
Logic has proved to be a robust approach able to deal with a wide variety of
programming paradigms (e.g. [I7]) and calculi of computation (e.g. [AT4ITS]).

The problem. The interplay between model checking and static analysis has in-
trigued many researchers for many years. Early comparisons focused on static
analyses over-approximating the solution set while model checking similarly
under-approximating the solution set (in case of non-termination). Successive
enhancements within model checking and static analysis add to the complexity
of understanding their interplay.

A number of papers have taken the view that static analysis is model checking
of formulae in suitable modal logics. Possibly the first paper is [22] that focused
on how to understand the construction of complex data flow equations through
their characterisation in a modal p-calculus. In [20] it is shown how abstract
interpretation can be used to cast further light on the construction and this is
extended in [21] where an Action Computation Tree Logic is used to express the
logical properties. Finally, [T1] describe a Java based software system utilising
some of these ideas.

The contribution. In this paper we add to the conceptual understanding by
showing that model checking really amounts to a static analysis of the modal
formulae. To be concrete we choose an Action Computation Tree Logic (ACTL
[12]) and develop a static analysis in the Flow Logic approach by means of
Alternation-free Least Fized Point Logic (ALFP [I5]) as used in the Succinct
Solver [16] — indeed this is the first paper to extend Flow Logic to deal with
modal logic.

At the conceptual level we believe that the developments of Steffen and
Schmidt on the one hand, and our present contribution on the other, jointly
show the close relationship between model checking and static analysis — to the
extent that they seem to be reducible to each other. Clearly we cannot formu-
late this as precisely as reducibility among computational problems for the good
reason that the notions of model checking and static analysis have not been
clearly formalised and there may even be lack of consensus on where the exact
boundaries are.

Overview. In Section 2 we give the necessary background information on la-
belled transition systems and Action Computation Tree Logic. Section 3 then
presents the essence of the Flow Logic approach to static analysis including
the Alternation-free Least Fixed Point Logic that often plays a key role in
the implementations of Flow Logics. Our main contribution is in Section 4
where we present a precise static analysis of Action Computational Tree Logic
within Flow Logic and prove its correctness — thereby giving further insights
on the relationship between model checking and static analysis. We conclude
in Section 5.
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2 Modal Logic

Labelled Transition Systems. A labelled transition system (LTS) has the
form (5, A, —) where S is a non-empty set of states, A is a non-empty set of
actions and —C S x A x S is the transition relation. We shall write s —% s’
whenever (s,a,s’) € —. A transition system is finite whenever both S and A
are finite. A transition system is finitely branching whenever the sets sp(s) =
{(a,s") | s = s’} are finite for all choices of s; clearly a finite transition system
is also finitely branching.

A path 7 is a mazimal sequence (s; —% s;41); such that s; —% s;4q for all
i > 0. This means that a path is either infinite or ends in a state that is stuck; the
latter means that there are no outgoing transitions for any action. Sometimes
we write the path in the form (s; — $;11)o<i<n to make it clear that i > 0
and that the path has length n € {0, -, 00}; it follows that if n # oo then s, is
stuck. If s¢ is a stuck state then there is exactly one path (s; —% s;41); starting
in sg, namely the empty path.

One can arrange to avoid stuck states by adding a new state Sguck and en-
sure that all stuck states, as well as Ssuck, have a transition to Ssyucx for some
possibly new action; in this case all paths will be infinite and this is the usual as-
sumption in model checking where transition systems are supposed to be Kripke
structures. However, this is not usually the case for transition systems generated
from programming languages or process calculi; consequently we have opted for
a treatment where a path may end in a stuck state.

Action Computation Tree Logic. We shall use a variant of the modal logic
Action Computation Tree Logic (ACTL) [12] to express properties of paths in
labelled transition systems. It is defined by:

¢ ==true | false [ bp | p1 Ao | p1 V 2 | 2 | 1 = b2
| EXp ¢|AXq ¢ | Elp1 o,Ug, ¢2] | Alpr 2,Un, ¢2]

The subscripts {2 C A are sets of actions used to restrict the transitions taken.
The base predicates bp (so far left unspecified) denote sets of states used to
restrict the target state of the transitions taken. The E modality quantifies
over the existence of paths, the A modality quantifies over all paths, X focuses
on the next step and U is an until modality; we have choserﬁ a version of U
that focuses on eventually taking an action in a certain set {25 to reach a state
satisfying a certain property ¢o. The interpretation of the modal operators is
given in Table [T when expressing the interpretation of a formula in the state
so and next choosing a path (s; —% s;41)0<i<n it is intended that the state sg
is indeed the first state in the path (s; —% s;41)o<i<n; We use this convention
throughout the paper.

! This means that we do not obtain CTL by merely setting all 2, {21, {22 to A. Other
choices of U are clearly possible without jeopardising our development. The present
choice is from [g].
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Table 1. Satisfaction relation for modal operators of ACTL: s |= ¢

S0 ': EXpn ¢ iff H(Si — i 87;+1)0§1‘<n m>0Aag € 2N s1 ': ¢
so EAXo ¢ i V(si =% Sit1)o<icn :n>0Aa0 € RAs1 E
so EE[p1 0, Uqn, ¢2] iff  I(si =% sip1)o<icn : Tk < n:
No<icr(@i € 21 N sip1 | 1) A(ak € 22 A skt | ¢2)]
so E Alpr 2, Uqn, ¢2] Mf V(si =% sit1)o<icn : Ik < n:
No<icr(@i € 21 A sip1 | 1) A(ak € 22 A skt | ¢2)]

The modalities AF, EF, AG and EG are derivable in this logiﬂ in the standard
way. The AG modality is of special interest to us; its derived interpretations is:

so EAGq ¢ iff V(s; =% siq1)o<i<n : /\ la; € 2= si1 = @)

0<i<n

Ezample 1. Consider a transition system with states S = {1, 2,3}, actions A =
{A, B,C, D} and transition relation — given by the diagram to the left:

B o tslsEo
@ »@ EX 4 goal {2,3}
A AX 4 goal {3}
C Eftrue 4U4 goal] {1,2,3}
Altrue 4U 4 goal] {3}
D(’@ AG 4 goal {3}

AGcy goal {1,2,3}

The table to the right shows the validity of some formulae when goal is the base
predicate that is only satisfied in the state 3. (]

Model Checking. Model checking is the problem of obtaining efficient ways of
computing the set mcg = {s | s = ¢} of states that satisfy a given modal formula.
In global model checking these algorithms usually proceed in a syntax directed
manner on the formula ¢ where it is assumed that the sets of satisfying states
have been computed for all sub-formulae. For the base clauses the construction
is immediate; for example, mcyue = S and mcgse = 0. For the clauses involving
propositional operators the construction is rather straightforward; for example,
MCy Ags = MCy, N MCy, and MCy =g, = MCy, U (S \ mcy, ). For the modal
operators the construction is somewhat more complex and we refer to standard
textbooks like [2] for an overview of existing methods and techniques.

The worst case time complexity of model checking an ACTL formula ¢ of size
|o] is O((|T| + |S]) |¢|) where the transition system (.5,.4, —) has a state space
of size |S| and a transition relation — of size |T'| and where we assume that the
number of base predicates and actions are constant. This result has been adapted
from the information given in [2] about the time complexity of model checking
CTL (which essentially is ACTL without consideration about the actions).

2 As above we do not get the CTL equivalents simply by setting {2 to A.
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3 Static Analysis

Flow Logic. The aim of static analysis is to estimate the computational be-
haviour of programs or systems. The idea is to capture the information of interest
by elements of complete lattices; the details of the complete lattices depend on
the actual property of interest. In the Flow Logic approach logical judgements are
used to specify when the analysis information correctly captures the information
of the program or system. The judgements are defined by a set of rules that, in
general, must be interpreted co-inductively; for syntax-directed definitions this
coincides with the traditional inductive interpretations.

The correctness of the analysis is often established as a subject reduction
result — much as one will do for a type system. To ensure that the analysis is
implementable it is customary to establish a Moore family, or model intersection
property. This is one of the important points where Flow Logic distinguishes
itself from traditional type systems as it ensures that we can determine a best
analysis result for all programs — at the same time the result provides a strong
link between Flow Logic and Abstract Interpretation.

Ezxample 2. To illustrate the approach we shall review a small example based on
the A-calculus; we refer to [I7] for more details. So let the expressions e € Exp
be given by

ex=x | Ar.e | eres

where x € Var denotes a variable. The notion of free variables fv(e) are defined as
usual and we shall write v € Val for the set of expressions given by v ::= x | Az.e.

We shall assume that the semantics is given by a labelled transition system
where S = Exp is the set of states, A = Val x Val is the set of actions (recording
the function being applied and its argument) and the transition relation — is
given by the following axioms and rules

B
B

er —7 e} es — €

(Az.e)v —A7ev) e[y /] 3

/ /
€1 €2 —" €1 €2 €1 €2 — €1 €9

where e[v/z] is the expression obtained by replacing all free occurrences of x in
e by v. Note that the actions are used to record the redex of the evaluation step.

A typical analysis for the A-calculus is a control flow analysis. The aim is to ap-
proximate the potential values for each sub-expression and to do so it is necessary
also to approximate the potential values of the variables. In order to obtain an
analysis that is as precise as possible we shall assume that the variables have
been a-renamed apart and furthermore we shall assign unique labels ¢ € Lab
to each sub-expression of the expression of interest; thus expressions (and val-
ues) now take the form e’. The labels only serve as pointers into the syntax;
they simply allow us to pinpoint the various sub-expressions so that we can
speak about their values and thus have no semantic significance. So in particular
we have ,
((}\w.eﬁl)h vlg)@ _)(()\x.eé e vt2) (e[v/x})f
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Table 2. Flow Logic for the A-calculus: C, R F ¢°

C,RFz' iff R(z)CCl)
C,RE (Aze”) iff (C,REE") A (Axe”)eC(r)
C,RE (e el2)t iff (C,REE) A (C,RE€R) A
V(\z.ef?) € C(£1) : (C(f2) € R(x) AC(Lo) C C(£))

The two complete lattices of interest in our analysis are:

— C : Lab — P(Val): the expression labelled ¢ may evaluate to a value in C(¥),
— R :Var — P(Val): the variable  may evaluate to a value in R(x).

The analysis is then defined by judgements of the form
C,Rt ¢

as shown in Table[2l The first clause expresses that any value of x is also a pos-
sible value of the expression z¢ and hence any information contained in R about
2 must also be contained in C(¢). The second clause insists that the body of the
A-expression must be analysable and additionally that the A-expression itself is
a possible value of the expression ()\x.eel)z. The clause for function application
first insists that the operator as well as the operand must be analysable. Ad-
ditionally it says that if the operator (i.e. elil) evaluates to a A-expression with
formal parameter = and body ego then any value that the actual parameter (i.e.
the operand eg"‘) might evaluate to is also a possible value of x and any value
that the body ego might evaluate to is also a possible value of the overall function
application (ef e5?)t.

Semantic correctness of this simple analysis amounts to ensuring that the
judgement C, R F e’ correctly captures the evaluation of the A-expression e. We
can express this as a subject reduction result:

Proposition. If C, R - ¢ and e/ —P ¢’* then C, R F ¢“.
We can also express the adequacy of the analysis by stating that C correctly
captures the function applications taking place:

Proposition. If C,R I e and e’ (@03 ¢/ then vy € C(41) and vy € C(l2).
Linking back to ACTL we can use the above propositions to show that

AG{(vil ,1;;2)} (’Ul S C(fl) Nvo € C(Ez))

is a true formula that describes the overall adequacy of the analysis. It is obser-
vations like this one that has lead some researchers to suggest that static analysis
is an instance of model checking [22I20027].

In addition to proving semantic correctness of the analysis we shall want it to
satisfy a Moore family, or a model intersection property. Recall, that a Moore
family is a subset of a complete lattice that is closed under greatest lower bounds.
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Proposition. {(C,R) | C,R I ¢’} is a Moore family for all e.
This result ensures that all expressions can be analysed and have a least, or best,
analysis result — this links into the framework of Abstract Interpretation. O

Alternation-free Least Fixed Point Logic. The Moore family result guar-
antees the existence of best analysis results but in itself it does not provide
any mechanism for constructing the analysis result. Here Alternation-free Least
Fized Point Logic (ALFP [I5]) has proved very useful for obtaining efficient
implementations. It is defined by:

v u=clal flur,...,vk)

pre = R(v1,...,v5) | 7R(v1,...,v5) | pre; Aprey | preq V preg
| Va:pre|dx: pre

e == R(vi,...,v) | true | cly Acle | pre = cl | Va : cl

The clauses are interpreted over a non-empty universe {; indeed, a constant c
is an element of U, a function f has arity U* — U, a variable = ranges over U,
and a relation R is a subset of U*.

The interpretation of the logic is given in terms of satisfaction relations

(0,0) sat pre and (0,0) sat cl

where p is an interpretation of relations and o is an interpretation of variables
which we extend to operate on values by setting o(v) = v. The interpretation is
standard. We shall say that a clause is closed if it contains no free variables. For
closed clauses the interpretation o of the variables is of no importance. Fixing a
specific interpretation oy we thus have that (g, o) sat ¢l agrees with (g, 0¢) sat cl
whenever ¢l is closed.

The presence of negation in preconditions require some care in order to en-
sure the existence of least models. An occurrence of a relation R in a clause is
a sub-formula of the form R(vy,---,vg). It is a negative use if it has the form
= R(vy,- -+, vg); this necessarily occurs in a precondition, i.e. to the left of an
implication. It is a positive use if it is not a negative use but occurs in a pre-
condition, i.e. to the left of an implication. All other occurrences are definitions
and often occur to the right of an implication.

Ezample 3. Using the equality predicate EQ the clause
Vs:Va:Vs :T(s,a,s') N-EQ(s,s") = R(s,a,s)

defines the relation R to be the subset of the labelled transition system repre-
sented by T that contains no self-loops. The occurrence of T' is a positive use,
the occurrence of E@) a negative use and the occurrence of R is a definition. 0O

A clause cl is stratified if there is a number r, an assignment of numbers called
ranks rankg € {0,---,7} to each relation R, and a way to write ¢l in the form
No<i<, cli such that the following holds for all clauses:
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Table 3. Flow Logic in ALFP for the A-calculus: C, R I ¢°

C,RF ' iff VYu:R.(v)= Ci(v)
C,R+ (A\z.e’) if (C,RFe)ACi(Az.e")
C,RF+ (e el2) iff (C, Rl—efl) A(C, Rl—egz)
[()\xe 0): [Vo C’gl(Al’eO)/\C’gz( ) = R (v)]A
[Vo' 1 Cpy (v) = Co(v)]]

— if ¢l; contains a definition of R therﬁ rankg > 1;
— if ¢l; contains a positive use of R then rankp < i; and
— if cl; contains a negative use of R then rankp < i.

Formulae without any occurrences of negation are clearly stratified as one may
simply choose r = 0. The clause of Example Bl is stratified: simply let £Q and
T have rank 0 and let R have rank 1.

Subject to the choice of ranks made above we can define a lexicographic
ordering, T, on the the interpretations of relations, g, as follows: g1 T g9 if there
exists a rank i € {0,---,r} such that (1) o1 (R) = p2(R) whenever rankg < i, (2)
01(R) C 02(R) whenever rankg = 7, and (3) either i = r or p1(R) C g2(R) for
some R with rankp = 7. This turns the set of interpretations of relations into a
complete lattice. From [15] we then have:

Theorem 1. The set {o| (0,00) sat cl} is a Moore Family, i.e. is closed under
greatest lower bounds, whenever cl is closed and stratified; the greatest lower
bound M{o | (0,00) sat cl} is the least model of cl.

More generally, given og the set {o | (0,00) sat clAog C o} is a Moore Family
and M{o | (0,00) sat cl A gg C o} is the least model.

Intuitively, ALFP has been defined to be the largest subset of predicate logic that
allows us to prove the existence of least models; in particular, clauses contain no
disjunction or existential quantification.

Example 4. Following the overall methodology of Flow Logic we shall now refor-
mulate the analysis of Example Plin ALFP. The idea is to introduce a predicate
R, for each of the variables z and corresponding to R(z) and similarly a pred-
icate Cy for each of the labels ¢ of expressions and corresponding to C(¢). The
analysis is then rephrased to use judgements of the form

C,R\ ¢
and the definition of Table 2] is transformed to be within ALFP as shown in
Table Bl In this case we do not need the full power of ALFP; indeed we are
within the Datalog fragment [5I[]. O

3 This generalises the condition rank; = i considered in [I5].
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The Succinct Solver. The least model guaranteed by Theorem [I] can be con-
structed efficiently as summarised in the following result from [I5].

Theorem 2. Under the assumptions of Theorem [ the least model given by
M{o| (0,00) sat cl A oo C o} is computable in time O(|oo| + [U|¥|cl|) whenever
loo| is the size of oo and |U| is the size of the (necessarily finite) universe U and
finally K is the maximal nesting depth of quantifiers within cl.

The Succinct Solver [I5I16] computes the least model guaranteed by Theorem [I]
and has a worst case time complexity as given by Theorem 2l For many clauses
the worst case time complexity does not manifest itself and the Succinct Solver
operates in such a way that it may then exhibit a running time substantially
lower than the worst case time complexity. Indeed, [15] gives a formula estimating
the less than worst case time complexity on a given clause.

In essence the Succinct Solver deals with stratification by computing the re-
lations in increasing order on their rank and therefore the negations present no
obstacles. It combines the top-down solving approach of Le Charlier and van
Hentenryck [6] with the propagation of differences [7], an optimisation tech-
nique for distributive frameworks which is also known in the area of deductive
databases [3] or as reduction of strength transformations for program optimi-
sation [19]. Programmed using functional programming its efficient operation is
due to the disciplined use of continuations and memoisation as well as arbitrarily
branching prefix trees as a universal data-structure for storing relations and for
organising sets of waiting consumers. Whenever a new tuple is inserted into a
relation this makes it easy to access the continuation for traversing the parts of
the clause that might be influenced by the tuple.

Example 5. The analysis specified in Table[3l can be solved in time O(N?) where
N is the size of the A-expression analysed; to see this note that the maximal
nesting depth of quantifiers is 2 and that the clause and universe have (within a
constant factor) the same size as the A-expression. ]

4 Flow Logic for Modal Logic

Returning to ACTL we shall now use the Flow Logic approach to define for each
formula ¢ a relation Ry characterising those states where the formula ¢ holds.
Much as in the above analysis of the A-calculus we shall use judgements of the
form R = ¢ to define the relations R, of interest. Since the same sub-formula
may occur several times in ¢ we shall identify each sub-formula with a unique
label /; in examples and explanations where this problem does not arise we shall
dispense with the labels.
We assume that

— for each basic predicate bp we have a corresponding relation P, on states,

— for each subset 2 of A we have a relation {2 on actions, and

— the transition relation — is presented by a ternary relation 7T'.
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Table 4. ACTL in ALFP: R+ ¢* for defining Rye (part 1)

R true® iff [Vs: Ryuee(s)]
R false® iff true
REbp" iff [Vs: Pop(s) = Rye(s)]
R (¢ A9?)" Mf RE¢y ARF G2 AVs: R e (5) AR 1(5) = Rty yta),(5)]
1 2 1 2
RE (¢ vo2) if RFOIARFGZANsS:R o (s)VR 6(8) =R, o er,(5)]
, , o [o28 (1" Vos?)
RE(=¢")" if RE ¢ A[Vs:(mRyu(s) = R yere(s)]
Rb (¢ = ¢2) if RHGUARFGZANs: R o (s)VR 6,(s) =R, o1 0,(5)]
1 (2 (01" =057)

Table 5. ACTL in ALFP: R+ ¢* for defining R, (part 2)

R (EXqo¢") if RF oY A
[Vs:[Fa:3s": T(s,a,5") A2(a) AR, (s")]
= Rex, o0y (5)]
R (AXqo¢")! if RFE¢Y A
[Vs: [Va:Vs': =T(s,a,s") vV (2(a) A Ry (s")IA
Fa:3s" : T(s,a,8")] = Riax,, otrye(5)]
R (EBlpy oUq, ¢77))" ff RE ¢ ARFE 62 A
Vs:[Fa:3s" : T(s,a,s") A 22(a) A R e (s)]
2
= Rl g0, st2pe (A
Vs:[Fa:3s" : T(s,a,s") A 21(a) A R o (s")A
1

/
R gt g ug, s8] = B

RE (A9 o U, ¢22) iff RE¢i' ARF 5 A
s a:ds :T(s,a,s)|A
V. Ja : 35’ !
Va : Vs : =T(s,a,s’) V [22(a) A R e, (s"v
2
[£21(a) A R o (') AR
1
= R(A[

o)

(El¢y" 2,Uqn, 452

!
(AL U, a2y (S]]

681 g U, ol (8

The interpretations of these predicates are fixed and the intention is to define
the judgements R F ¢ such that s = ¢ holds whenever R4(s) holds in the
least model satisfying R t ¢. The definition is given in Tables [ and [l and is
explained below.

The relation Ryye corresponding to the ACTL formula true should hold for all
states and we express this by the ALFP clause Vs : Ryye(s). The relation Rese
corresponding to false does not hold on any state so the ALFP clause does not
insist on Rp,jse holding on any states; hence we simply use the ALFP clause true
to reflect this meaning that in the least model there are no states where Rfalse
holds. For basic predicates bp we have to make use of the predefined predicate
Py, and impose the constraint that if P, holds on some state s then so does the
relation Rpp.
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The four clauses for the propositional operators A, V, = and = follow the same
pattern so let us just explain one of them, namely conjunction ¢, A ¢2. Here the
conjuncts R = ¢; and R I= ¢ ensure that the relations Ry corresponding to
sub-expressions of ¢1 and ¢- correctly record which states are acceptable. The
third conjunct Vs : Ry, (s) A Rg,(s) = Rgynre,(s) then caters for the relation
Ry, né,- Note that in the case of negation and implication we have negative uses
of relations; we shall return to the stratification issues related to this later.

Turning to the modal operators of Table [{l let us first consider EX(, ¢. The
first conjunct ensures that the sub-formula ¢ is handled correctly. The second
conjunct captures the semantics of the EX construct: for all states s there must
be an action a and a state s’ such that there is a transition in the corresponding
transition system (i.e. T'(s,a,s’)), that a is in 2 (i.e. £2(a)) and furthermore ¢
holds in §', i.e. that Ry(s") holds. If these conditions are satisfied then it also
must be the case that Rgx,, ¢ holds on s.

The clause for AX; ¢ is slightly more complicated since we must cater for
the possibility of stuck states in the transition system. The clause in Table
reflects that two conditions must be satisfied in order for the formula to hold
on a given state s. First it must be the case that any transition going out of s
must make use of an action from 2 and must lead to a state satisfying ¢. The
other conjunct ensures that s is not a stuck state. Only if both conditions are
fulfilled the ALFP clause imposes the requirement that Rax,, ¢ holds on s. Note
that also in this case we have a negative use of a relation. Furthermore we are
stepping outside the Datalog [5II] fragment of ALFP in that we use universal
quantification in a precondition of an implication.

The clause for E[¢1 o,Un, ¢2] captures two possibilities. There might be a
transition from s using an action from (25 and resulting in a state satisfying R,
and if so then Ry, , U, ¢,) Should also hold on s. Alternatively there might be
a transition out of s using an action from (2; and in this case it has to lead to a
state satisfying not only Ry, but also Rg[g, , U, ¢,] — and only if this is the case
we impose the condition that Rg(s, , U, ¢,) also holds on s. It is here worth
pointing out that the ALFP clause defining the relation of interest is recursive
in the sense that it contains both uses and definitions of the relation.

Finally let us consider the clause for A[¢; o, U, ¢2]. Here the first component
of the premise of the implication insists that the state s of interest is not a stuck
state. The second component then requires that a transition out of s either
makes use of an (25 action and then the next state satisfies Ry, or it makes use
of an (21 action and then the next state satisfies Ry, as well as Ra (g, o, U, ¢.]-
If these premises are all satisfied then the clause expresses that Ra g, o U, ¢s]
should hold on s. This is by far the most complex of the clauses as it makes use
of universal quantification in preconditions, has negative uses of relations and
defines the relation of interest in a recursive manner as discussed above.

In order to complete the presentation of the Flow Logic of Tables [ and Bl we
should like to establish that the ALFP clause constructed for an ACTL formula
is indeed closed and stratified. We shall do so below and this will allow us to
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make use of Theorem [I] to show that least models exists — and that the Succinct
Solver can be used to compute them.

Example 6. Consider the ACTL formula AF 4 goal expressing that the tran-
sition system of interest eventually will reach a goal state. It is equivalent to
Altrue 4 U 4 goal] (omitting annotations) and using the definition in Tables@and
(Bl we obtain the following ALFP clause defining the predicate Raftrue 4U4 goal]:

[VS : Rtrue(s)] A
[Vs : Pyoal (5) = Rgoal ()] A
[Vs:[[Fa:3s": T(s,a,s)]A
[Va : Vs : =2T'(s,a,5") V Rgoal (5") V RAtrue 4U 4 goal] (8') = RAtrue 4U 4 goal] (5)]]]

Here we exploit that A holds on all actions and that R holds on all states. [J

Remark. It is instructive to note that we cannot simply define R - AGg ¢
(omitting annotations) by the conjunction of R F ¢ and

Vs : [Va:Vs': =T(s,a,5) V (Ragq ¢(s') A (=92(a) V Ry (5))] = Rago o(s)]

since the above computes the least fixed point rather than the intended greatest
fixed point — which is important for transition systems with loops. Rather we
need to compute the staged relations R F —E[true 4U —¢| and due to the use
of negation this requires stratification.

Example 7. To illustrate this observation, consider the transition system of Ex-
ample [ and the formula AG ¢y goal (omitting annotations). The above defini-
tion gives rise to the recursive equation

R={s|Vs' :Va:s—*s = (R(s') A (2(a) = s = goal))}

The least solution is R = () whereas the correct solution is RAG( oy goal =
{1,2,3}.

Post-order labelling. Tt is easy to see that the clauses R ¢ defined by Tables
A and [ are indeed closed for any ACTL formula ¢*. To show that the clauses
are stratified we shall fix the labelling scheme that so far has been unspecified.

To this end we assume that all sub-formula of an ACTL formula are annotated
with their number in a post-order traversal of the formula. To be specific we shall
say that a formula ¢ is (4, j)-annotated for positive integers ¢ and j if the lowest
annotation occurring within ¢ is ¢ and the highest is j — since we consider a
post-order traversal the annotation of the formula ¢ itself will necessarily be j.
As an example the (5,7)-annotated version of the formula Altrue 24U 4 goal| is
Altrue® 4 U4 goal®]”.

Proposition 1. For every ACTL formula ¢ there exists an (1, ¢)-annotated for-
mula @' for some (. Furthermore, the ALFP clause R+ ¢ generated by Tables
and[@ from an (1,£)-annotated ACTL formula ¢° is closed and stratified.
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To see the latter assign the relations Py, £2 and T' the rank 0. We may then
prove by induction on the annotated sub-formulae ¢ of ¢¢ that ¢7 is closed
and (i, j)-annotated for some 7. Furthermore, the ALFP clause R I ¢/ will only
contain definitions of relations of rank in {i,---,j}, it will only contain uses of
relations of rank {0} U {7,---,j} and all negative uses will involve relations of
rank {0} U{i,---,j— 1} and thus it is a stratified formula. We shall say that an
ALFP clause is (i, j)-stratified when this is the case.

Correctness and precision. We are now able to establish our main theo-
rem expressing the correctness of the static analysis of the modal logic with
respect to the interpretation of the modal logic; this is along the same lines as
the correctness result exhibited for the analysis of the A-calculus in Example
Additionally, the theorem expresses that the analysis is precise; this is not
usually the case for static analyses but does indeed hold for the so-called collect-
ing semantics analyses that often are the starting point for developing coarser
analyses by Abstract Interpretation.

For the remainder of this section consider some transition system (5,4, —)
and a ranking as described above; we shall restrict ourselves to a finitely branch-
ing transition system. Furthermore assume that &/ = S, that go(§2) = {2 for
all 2 C A, that go(T) = {(s,a,8") | s =% &'}, and that go(Py) = {s |
bp holds on s}. Then we have the following main result that is proved by struc-
tural induction on the formulae:

Theorem 3. Consider an (i, j)-annotated formula ¢ in ACTL and the least
model 0 of Rt ¢ such that o 3 pg. We then have:

— Correctness of o: if s = ¢ then o(Rys)(s).
— Precision of o: if o(Ry:)(s) then s = ¢7.

It follows from Proposition [[l and Theorem [J that an implementation of the
static analysis of ACTL by means of the Succinct Solver constitutes a model
checker for ACTL.

Complezity. We may estimate the worst case time complexity of model checking
as performed using our static analysis of modal logic. For this assume that S
has size |S| and the transition relation — has size |T'|. Next consider an ACTL
formula ¢ of size |¢[; it is immediate that the ALFP clause R I ¢ has size O(|¢]|)
and nesting depth 3. According to Theorem 2l the worst case time complexity is
O(IT| + >, [Pop| + 241+ |S|3|4|) where bp ranges over all base predicates.
To compare with more traditional approaches to model checking we shall as-
sume that both the number of base predicates and the number of action labels
(as opposed to actions) is bounded by some constant. In this case we obtain the
worst case time complexity O(|T'| + |S|?|¢|) because in this case the calculations
of nesting depth can safely ignore quantifications over actions. Indeed using a
more refined reasoning than that of Theorem 2 we obtain O((|T'| + |S|) |¢|) be-
cause it is clear that the “double quantifications” over states in Table [ really
correspond to traversing all possible transitions rather than all pairs of states.
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Thus our alternative model checking algorithm has the same complexity as clas-
sical model checking algorithms [2]. And indeed, in our experience the Suc-
cinct Solver operates in such a manner that it will attain this worst case time
complexity.

5 Conclusion

The interplay between static analysis and model checking has intrigued re-
searchers for many years — leading to a growing feeling that the methods are
connected and can be used to strengthen each other.

At the conceptual level a number of papers have argued that various forms
of static analysis are instances of model checking [22[20021]. Our contribution
completes the circle by showing the close relationship between static analysis and
model checking — to the extent that one may conjecture that they are reducible
to each others.

At the practical level this gives increased faith in exploring the methods and
techniques developed within each of the approaches to strengthen the other. This
is at the core of Research Theme 1 in MT-LAB (see below) where it is hypoth-
esised that “static analysis and model checking fundamentally solve the same
problem but using a different repertoire of techniques that must be combined in
order to produce more powerful analysis techniques.” In future work we hope to
identify concrete methods and techniques that can be transferred between the
two approaches to their mutual benefit.
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