
A Lightweight and Portable Approach to Making
Concurrent Failures Reproducible

Qingzhou Luo1, Sai Zhang2, Jianjun Zhao1, and Min Hu1

1 School of Software, Shanghai Jiao Tong University
{seriousam,zhao-jj,minhu fox}@sjtu.edu.cn

2 Computer Science & Engineering Department, University of Washington
szhang@cs.washington.edu

Abstract. Concurrent programs often exhibit bugs due to unintended interfer-
ences among the concurrent threads. Such bugs are often hard to reproduce be-
cause they typically happen under very specific interleaving of the executing
threads. Basically, it is very hard to fix a bug (or software failure) in concur-
rent programs without being able to reproduce it. In this paper, we present an
approach, called ConCrash, that automatically and deterministically reproduces
concurrent failures by recording logical thread schedule and generating unit tests.
For a given bug (failure), ConCrash records the logical thread scheduling order
and preserves object states in memory at runtime. Then, ConCrash reproduces
the failure offline by simply using the saved information without the need for
JVM-level or OS-level support. To reduce the runtime performance overhead,
ConCrash employs a static data race detection technique to report potential
possible race conditions, and only instruments such places. We implement the
ConCrash approach in a prototype tool for Java and experimented on a num-
ber of multi-threaded Java benchmarks. As a result, we successfully reproduced
a number of real concurrent bugs (e.g., deadlocks, data races and atomicity vio-
lation) within an acceptable overhead.

1 Introduction

The increasing popularity of concurrent programming has brought the issue of concur-
rent defect analysis to the forefront. Concurrent programs often exhibit wrong behaviors
due to unintended interferences among the concurrent threads. Such concurrent failures
or bugs - such as data races and atomicity violations - are often difficult to fix without
being able to reproduce them. However, in a multi-threaded concurrent program, the
number of possible interleavings is huge, and it is not practical to try them all. Only a
few of the interleavings or even one specific interleaving actually produce the failure;
thus, the probability of reproducing a concurrent failure is extremely low. A traditional
method of reproducing concurrent failure is to repeatedly execute the program with the
hope that different test executions will project in different interleavings. Unfortunately
this approach is proved to be neither efficient nor reproducible in practice. Firstly, ex-
ecution result of a concurrent program depends on the underlying operating system or
the virtual machine for thread scheduling - it does not try to explicitly control the thread
schedules; therefore, executions often end up with the same interleaving many times,

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 323–337, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

324 Q. Luo et al.

which means getting an access to the buggy interleaving is always a time-consuming
task. Moreover, many concurrent applications (like servers) often run a long time and
serve for specific users. So it would be extremely hard to reproduce such environmental
dependent bugs in off-line testing.

The high cost of reproducing concurrent failures has motivated the development of
sophisticated and automated analysis techniques, such as [6–8, 10, 11, 14, 16, 18,
19]. Of particular interest for our work is the ReCrash approach proposed by Artzi
et al [5]. ReCrash monitors every execution of the target (sequential) program, stores
partial copies of method arguments, and converts a failing program execution into a
set of deterministic unit tests, each of which reproduces the problem that causes the
program to fail. The ReCrash approach is designed for sequential programs. However,
the non-determinism in a multi-threaded concurrent program might disallow the unit
tests generated by ReCrash to reproduce a concurrent failure.

The work described in this paper aims to reduce the amount of time a developer
spends on reproducing a concurrent failure. A key element in designing such an ap-
proach is the ability to provide a deterministic thread executing order of a non-determi-
nistic execution instance. In this paper, we propose ConCrash, an automated concurrent
failure reproducing technique for Java. ConCrash handles all threads and concurrent
constructs in Java, except for windowing events, I/O inputs and network events which
are topics of our future work.

The ConCrash approach adapts the concept of logical thread schedule as described
in [7]. It monitors each critical event to capture the thread execution order during one
execution of a multi-threaded program. When the concurrent program fails, ConCrash
saves both information about thread scheduling and current object states in memory and
automatically generates an instrumentation scheme and a set of JUnit tests. The instru-
mentation scheme records the thread schedule information during the failing execution
as pure text, and then enforces the exact same schedule when replaying the execution,
while the JUnit tests captures the failed method invocation sequences. The ConCrash
approach can be used on both client and developer sides. When a concurrent failure oc-
curs, the user could send an instrumentation scheme as well as generated JUnit tests to
developers. While developers could use a ConCrash-enabled environment to replay the
thread execution order, step through execution, or otherwise investigate the root cause
of the failure.

Unlike most of the existing replay techniques like [7], our ConCrash approach
does not depend on JVM modification or existing OS-level support for replay. Instead,
ConCrash instruments the compiled class files by modifying their bytecode. To reduce
the runtime performance overhead, ConCrash also employs a static data race detec-
tion technique [14] to find potential possible race conditions, and only instruments such
places. While starting to reproduce a failure, ConCrash eliminates the nondeterminacy
of the program caused by JVM scheduler by transforming the compiled nondetermin-
istic multi-threaded program into a deterministic sequential program without changing
the semantics.

We implement the ConCrash approach in a prototype tool for Java and experi-
mented on a number of multi-threaded Java benchmarks. We successfully reproduced a

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 325

number of real concurrent bugs (e.g., deadlocks, data races, atomicity violation) within
an acceptable overhead. The main contributions of this paper are:

– A lightweight and portable technique that efficiently captures and reproduces multi-
threaded concurrent failures, which can be integrated with various static analysis
tools.

– Implementation of a prototype tool for Java. For the sake of applicable in long-
running multi-threaded programs, we employ and extend a testing framework to
support automatic generation of multi-threaded JUnit test cases.

– An empirical evaluation that shows the effectiveness and efficiency of ConCrash
approach on Java benchmarks and real-world applications.

The rest of this paper is organized as follows. In Section 2, we give an overview of
the ConCrash approach using a simple motivating example. We describe the details
of the ConCrash approach in Section 3. In Section 4, we describe the implementation
issues of ConCrash approach for Java and the results of our experiments, respectively.
Related work is discussed in Section 5 followed by conclusion and future work.

2 Motivating Example

In this section, we use a real-world program to give an overview of our approach. Con-
sider the two-threaded program snippet taken from hedc benchmark [14] in Fig. 1.

Two threads executing the code of MetaSearchResearch.java and Task.java

have one shared variable thread . There could be an unsynchronized assignment of
null to field thread (line 55 in Task.java), which could cause the program to crash
with a NullPointerException (line 53 in MetaSearchResult.java) if the Task
completes just as another thread calls Task.cancel().

 public synchronized void cancel() {

 ...

52 if(thread_ != null) {

53

54 }

 ...

 }

49 public void run(){

50 try{runImpl()};

51 catch(Exception e){

52 Messages.warm(-1, "Task:run exception=%1", e");

53 e.printStachTrace();

54 }

55 thread_ = null;

56 }

if(thread_ != null) {

 thread_ = null;

 thread_.interrupt();

Normal Interleaving Buggy Interleaving

Thread-1in MetaSearchResult.java Thread-2 in Task.java

Fig. 1. A Motivating Example

In this case, it would be nearly impossible to reproduce the failure by repeatedly
executing the original program due to the huge volume of different thread execution
orders. Moreover, since in typical OS and JVM design, the thread scheduler is nearly
deterministic, executing the same program many times does not help, because the same

326 Q. Luo et al.

interleaving is usually created. Actually, in our experiment environment (Section 4), ex-
ecuting the original program for more than 300 times could reproduce only one failure.

Suppose that the motivating example is running in a ConCrash-enabled environ-
ment. ConCrash first uses an existing static data race detection technique [14] to pre-
process this program to find all possible race conditions (it is a one time cost). ConCrash
then instruments the program at the reported race conditions. In this example, line 53 in
MetaSearchResult.java and line 55 in Task.java are reported to be potential race
conditions and ConCrash instruments these two statements to monitor the thread exe-
cution logical order. For each method invoked, ConCrash also maintains a state copy
of the method receiver and arguments.

As soon as the (instrumented) program crashes, ConCrash will generate an instru-
mentation scheme and a set of JUnit tests. The user could send the scheme and tests
with the initial bug report to developers. Upon receiving such a scheme and tests, the
developer could use ConCrash (we provide an instrumentation tool in ConCrash de-
sign) to instrument the original program to resume the original thread schedule order.
After that, the developer could run tests under a debugger to easily reproduce the failure
and locate its cause.

For this motivating example, one of the generated JUnit test case is shown in Fig. 2.
In lines 2 - 6 of Fig. 2, ConCrash first reads the current object (thisObject) from
a trace file to resume the state. ConCrash then reads other thread objects from the
recorded file (lines 7 and 8), and synchronizes them to restart at a certain checkpoint
before the crash occurs (lines 9 and 10). Finally, ConCrash invokes the crashed method
(and loads augments if there is any) on the deterministic replay program version.

1. public voidtest_MetaSearchResult_cancel_3()throws Throwable {
2. //Read object from trace file
3. //adpated from ReCrash implementation
4. TraceReader.setMethodTraceItem(3);
5. MetaSearchResult thisObject =
6. (MetaSearchResult)TraceReader.readObject(0);

// Resume thread execution orders
7. ThreadEntity te = TraceReader.getStackTraceItem().threadEntity;
8. Monitor.restartThreads(te.checkPoints,3);
9. Monitor.waitForThreads();

// Method invocation
10. thisObject.cancel();
11. }

Fig. 2. A generated test case by ConCrash to reproduce the hedc failure

3 Approach

In this section we discuss our ConCrash approach in detail. The overview of our ap-
proach is shown in Fig. 3. Our approach consists of three stages: getting instrumentation
sites (Section 3.1), instrumenting original program to generate record & replay version
(Section 3.2), and generating JUnit test cases after a crash (Section 3.3).

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 327

Static Datarac e

Detec tion
Class Ins trum entation

JUnit tes ts

T hread Sc hedule

Rec ording

Ins trum entation

Points

JUnit T es ts

Generation

Multithreaded Java Program

Ins trum ented

Vers ion

T hread Exec ution Order

& objec t s tate

Exec ute Program

Developers : exec ute JUnit tes ts to

reproduc e c onc urrent failures

Program Crashes

Preproc ess ing

Capture & replay

Offline analys is

Fig. 3. An overview of the ConCrash approach

3.1 Stage One: Getting Instrumentation Sites

It is obviously not practical to instrument every statement in a program, because that
would incur a huge slow down rate. Based on a recent study [12], most concurrent bugs
can be categorized as data race, atomicity violation and dead lock. While data race
bugs always have certain execution orders of raced statements, dead lock and atomic-
ity violation1 bugs also have specific orders of lock acquire/release operations. After
recording such orders we would be able to replay those defects. We next present differ-
ent strategies for handling these different types of concurrent bugs.

3.1.1 Statements Involved in Data Races
A data race condition is defined as two accesses to a shared variable in different threads
without holding a common lock, at least one of which is a write. A data race condi-
tion often causes non-predictable behavior of a program and is usually considered as a
defect. We are concerned about the execution order of the two accesses in a data race
pair and employ a static race detection tool called Chord [14] to detect possible data
race pairs. Chord reads the source code of a program and bytecode, performs four stage
analysis and outputs the results in files. Though it reports some false positives, the ex-
periments show that Chord is applicable for static race detection for most programs. We
take the result of Chord as a part of our instrumentation sites.

�Example. In Fig. 1 Chord reports all those three shadowed lines as potential data
race pairs. Then we instrument the program before the shadowed lines in the next
stage. �

3.1.2 Lock Acquire and Release Operations
Atomicity violation bugs [10] are caused by concurrent non-atomic execution of a code
region which was intended to run atomically. Admittedly a large part of atomicity vi-
olation are caused by data races, however, being data race free would not guarantee
atomicity violation free. When the remote and local accesses in a atomicity violation
are all well synchronized, it will not count for a data race. To address such problems,

1 Here we refer to the part of atomicity violations that do not count for data races.

328 Q. Luo et al.

we also record the global order of lock acquire/release operations. With this informa-
tion we should be able to reproduce atomicity violation bugs which are not reported by
data race detection tools.

A critical event [7] is usually defined as a shared variable access or a synchronization
event. Here we adapt this concept to the union set of the above two instrumentation
sites. In our record and replay analysis, we only consider the temporal execution order
of those points.

 Thread 1

void deposit(int x){

 int temp = val ;

 temp = temp + x;

 val = temp;

}

 Thread 2

void withdraw(int x){

 int temp = val ;

 temp = temp - x;

 val = temp;

}

int temp = val ; int temp = val ;

val = temp; val = temp;

(i) Data race example (ii) Atomicity violation example

(iii) Deadlock example

 Thread 1

void deposit(int x){

 synchronized(o){

 int temp = val ;

 }

 temp = temp + x;

 synchronized(o){

 val = temp;

 }

}

 Thread 2

void withdraw(int x){

 synchronized(o){

 int temp = val ;

 }

 temp = temp - x;

 synchronized(o){

 val = temp;

 }

}

synchronized(o){

 int temp = val ;

 }

synchronized(o){

 int temp = val ;

 }

synchronized(o){

 val = temp;

 }

synchronized(o){

 val = temp;

 }

 Thread 1

void deposit(int x){

 synchronized(o){

 temp = temp + x;

 synchronized(p){

 val = temp;

 }

 }

}

 Thread 2

void withdraw(int x){

 synchronized(p){

 temp = temp - x;

 synchronized(o){

 val = temp;

 }

 }

}

synchronized(o){ synchronized(p){

synchronized(p){ synchronized(o){

Buggy Interleaving

Fig. 4. Three different types of concurrency bugs and our instrumentation sites

�Example. Fig. 4 is a frequently used example in concurrency testing. In the first data
race example, our instrumentation points consist of the four shadowed statements in-
volved in the race. With execution order information among these statements we would
be able to reproduce this data race bug. In the other two examples, the order of ac-
quire/release lock operation is recorded, which consists of all the synchronized oper-
ations in shadowed lines. With the exact order of acquiring or releasing a lock the other
two bugs could be also reproduced in following stages. �

3.1.3 Test Case Generation Points
Like ReCrash [5], we instrument a part of all the methods in the program at their entry
and exit points. The purpose of this instrumentation is to get a copy of receiver object
and method invocation arguments, which are used to generate test cases after a program
crash. Each Test Case Generation Point information (TCGP in short) is pushed into a
stack at the entry point of a method. It is then popped at the exit point after successful
execution of the method. See Fig. 5 for an example. A large part among all methods,
like non-public methods and simple getter/setter methods are excluded because they are
considered less likely to expose a bug, and also because of the concern about runtime
performance.

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 329

We extend this technique to apply in multi-threaded program, that is, in each test
case generation point we also make a copy of the TCGP stack of all other live threads.
In the generated test cases this information is used to recreate all threads to simulate the
crash scenario.

Tester.java

public void run(){

<---- Push TCGP 1

...

MetaSearchRequest m = new

MetaSearchRequest(null, msi_, parameters);

...

<---- Pop TCGP 1

}

m.go();
MetaSearchRequest.java

public void go() throws Exception {

<---- Push TCGP 2

...

...

<---- Pop TCGP 2

}
MetaSearchImpl.java

public long search(...) throws IOException {

<---- Push TCGP 3

...

 ...

<---- Pop TCGP 3

}

MetaSearchResult.java

public synchronized void cancel(){

<---- Push TCGP 4

...

if(thread_ != null)

 ...

<---- Pop TCGP 4

}

size_ = msi_.search(params_, wrt_, this);

((Task) e.next()).cancel();

In this case, we will automatically
generate four test cases when the
program crashes at the last highlight
point

 thread_.interrupt(); //Potential crash point

Fig. 5. An example of test case generation points

3.2 Stage Two: Instrumenting the Original Program to Generate Record and
Replay Version

After getting all instrumentation sites from the previous stage, we instrument the byte-
code of a program at those sites to capture the logical thread schedule order for deter-
ministic record and replay.

3.2.1 Logical Thread Schedule
Capturing the actual physical thread schedule information is neither feasible nor useful
in our approach. Rather than doing so, we record the ’Lamport clock’ of the thread as
a logical thread schedule. As shown in [7], a logical thread schedule is used to record
the begin and the end time stamps of a few of consecutive critical events in one thread,
as the form <FirstCriticalEvent, LastCriticalEvent>. The interval in every tuple is the
logical running time of the thread before a thread switch occurs.

3.2.2 Thread Execution Order Record and Replay
The Java record/replay algorithm in [7] could produce sufficient trace information to de-
terministically replay a multi-threaded program execution. Based on this algorithm [7],
rather than extending a specific JVM, we instrument on bytecode level. From the view
point of bytecode level, the different types of critical event can be divided into
putfield, getfield instructions and monitorenter, monitorexit instructions.
Our instrumentation is based on these individual bytecode instructions. Details of this
technique can be found in following algorithms.

330 Q. Luo et al.

Input: number of interval, global clock, local clock
RecordOnStmt():1
Enter monitor2
Get thread entity for current thread3
gc copy = global clock4
if thread entity.local clock < global clock then5

Update FirstCriticalEvent and LastCriticalEvent array for current thread number of interval =6
number of interval + 1

end7
Execute critical event8
global clock = global clock + 19
thread entity.local clock = gc copy10

Exit monitor11

Algorithm 1. Recording execution order of critical events

Input: number of interval, global clock, local clock
ReplayOnStmt():1
Enter monitor2
Get thread entity for current thread3
gc copy = global clock4
while global clock < FirstCriticalEvent[number of interval] do5

Wait for the execution of other threads6
end7
Execute critical event8
global clock = global clock + 19
if global clock >= LastCriticalEvent[number of interval] then10

number of interval = number of interval + 111
end12
thread entity.local clock = gc copy13
Notify all other threads14

Exit monitor15

Algorithm 2. Algorithm for replaying critical events

3.2.3 Discussions about Effects of Instrumentation
Instrumentation is intrusive, which means that it could potentially affect the behavior of
the original threads. However, the instructions we added only operate on their own data
structures, and therefore would not change the control flow of the original program. The
main impact is that it could possibly change the time slice allocated to a thread by the
scheduler. Thus, as our algorithm only captures the linear order of shared variable (data
race pairs) accesses and lock acquire/release operations of the original program, this
linear order is also a legal order of the execution of the original program. Proof with
details can be found in [9]. Time and space overhead of the instrumented program will
be discussed in Section 4.

3.3 Stage Three: Generating JUnit Test Cases after a Crash

Testing long running multi-threaded programs is always a difficult task because of its
inherent non-determinism and its expensive tracing overhead. ConCrash extends a unit
test case generation framework to support multi-threaded application, which utilizes
logical thread schedule information to deterministically trigger program crashes.

Specifically, we augment the unit tests generation technique in [5] to handle concur-
rent features. In ConCrash, the method call stack data is captured and used for tests

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 331

generation when a crash happens. Whenever a method is called, it pushes the receiver
object and parameters onto stack and then pop this information after normal exit of the
method. After a crash happens, ConCrash can simply generate test cases by passing the
same receiver object and method parameters, which are serialized to the disk before.

As ReCrash only monitors the execution of the main thread, if an exception is
thrown in the run() method of another thread it would not be recorded. Instead
ConCrash also supports concurrent features in Java by wrapping each run() method
in a try block to capture exceptions thrown by each individual thread.

�Example. As seen in Fig. 6, two JUnit test cases are automatically generated after
crash. Inside the method invocation Monitor.restartThreads(te.TCGP stack,

2) another thread is created to simulate the behavior of thread 1 based on the time
schedule. We use the argument TCGP stack to pass all the necessary information. For
example, in the search test case, thread 1 will be recreated and executed Task.run()
afterwards concurrently with thread 2, while in another test case SohoSynoptic.run-
Impl() will be invoked. All the classes loaded in the two test cases are the replay
version of the program, which forces them to execute with the same logical order when
a crash happened. �

MetaSearchImpl.search(h, r)

MetaSearchResult.cancel()

Task.run()

SohoSynoptic.runImpl()

Crash Point

Thread 1 Thread 2

void test_MetaSearchImpl_search(){

 ...

 Monitor.restartThreads(te.TCGP_stack, 2);

 Monitor.waitForThreads();

 thisObject.search(h, r);

 ...

}
Inside Thread Execution

Thread Switch

L
o
g
ic
a
l
T
im
e

T2_TCGP_1

T2_TCGP_2

T1_TCGP_1

T1_TCGP_2

void test_MetaSearchResult_cancel(){

 ...

 Monitor.restartThreads(te.TCGP_stack, 3);

 Monitor.waitForThreads();

 thisObject.cancel();

 ...

}

Automaticall
y

 generate afte
r c

rash

Distance to the Crash Point

Fig. 6. An example of multi-threaded JUnit test cases generation

The last issue we care about is how to recreate all corresponding threads in the gen-
erated test cases. Since JUnit does not support multi-threaded test cases up to now,
we use a WrapperThread to achieve the goal. By using Java Reflection APIs, the
WrapperThread has the ability to dynamically invoke the specified method when

332 Q. Luo et al.

needed. After loading information such as method name and arguments from trace files,
a WrapperThread is started at specific TCGP.

3.3.1 Discussions about the Effectiveness of Generated Test Cases
To our intuition, the closer the start point of a test case to the fault locality, the more
useful it is in the debugging process. As shown in Fig. 6 we use a term Distance to the
Crash Point to indicate the distance for the test case to reach the crash point. Due to
the selective instrumentation of ConCrash, a small set of test cases which are too far
away from the crash point could possibly fail in reproducing that crash. In the worst
case there is only one alive thread t at one TCGP, but after that a lot of new threads are
created. If t crashes sometime later, then the test case generated at that specific TCGP
could not be able to reproduce that crash, since it does not know which thread would
be created in future. Our approach, though not sound, is demonstrated to be practically
useful. In our experiment in Section 4, we show that the ’nearest’ test cases are strongly
guaranteed to reproduce crashes.

4 Implementation and Evaluation

We have implemented our approach for concurrent Java programs using the Chord static
datarace detection tool [14], ReCrash tool [5], XStream [3] framework, and Soot anal-
ysis toolset [2]. The current implementation of our approach supports Java version 1.6.
The preprocessing stage (includes identifying data race and lock/release operations) are
built on top of Soot and Chord. We also use Soot to instrument all the class files con-
taining instrumentation sites. By modifying reCrashJ [1] we implement ConCrash to
support multi-threaded features. Like reCrashJ, the ConCrash implementation uses
the stored shadow stack to generate a suite of JUnit tests. Each test in the suite invokes
all alive threads at each TCGP and loads the receiver and method arguments from the
serialized shadow stack.

To evaluate the effectiveness and efficiency of our proposed technique, we experi-
mented on a number of multi-threaded Java benchmarks. Table 1 summarizes the de-
tails about each benchmark. Most of the benchmarks and failures are representative
and frequently used in previous work [10] [6] [18] [14]. All the failures could not be
reproduced by ReCrash, for it does not support multi-threaded applications.

Table 1. Subject Programs

Programs #Loc #Classes #Methods #Threads Bug type Brief description
XtangoAnimator 2088 31 220 3 Deadlock Animation library

ftp 21897 118 1114 3 Data race Apache ftp server
raytracer 1308 21 72 3 Data race Ray tracing program

Hedc 29948 136 1552 6 Data race Web crawler
Shop 299 3 11 3 Atomicity Simulated shop

Pingpong 303 4 12 3 Data race Simulated ball game

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 333

4.1 Procedure

We focus on the crash reproducibility and performance overhead of ConCrash in the
evaluation. For each subject program, we first use Chord and Soot to get all instru-
mentation sites, then instrument the program and deploy it into a ConCrash-enabled
environment.

Most of the bugs in the subject programs happen in very rare situations: 100 times
of normal execution will not manifest those bugs. We seed a few sleep() operations
in the program in the recording phase to trigger specific bugs. As demonstrated in [9],
the thread schedule of seeded version is also a legal schedule of the original program,
which guarantees the buggy schedule we capture could also happen in production run.
When the program crashes within an exception, ConCrash outputs an instrumentation
scheme which captures the thread execution orders (when failure occurs), and a set of
JUnit tests. We then construct the replay version by using the instrumentation scheme,
and then run all generated JUnit tests on it.

To measure the recording overhead we run each benchmark for a certain task for 100
times and compare the execution time of the original program with the execution time
of the recorded version. The average time cost is taken between all the runs. At the same
time the size of trace files are also recorded.

4.2 Results

The results for the experiments of concurrent crash reproducibility and performance
overhead are shown in Tables 2 and 3, respectively. The experiments were done on a
3.00 GHz machine with 1GB memory and Sun JVM 1.6.0 in Windows XP system. In
Table 2, we list the number of instrumentation sites and the crash type for each buggy
program. To evaluate the effectiveness of ConCrash, we count the number of generated
JUnit test cases with regard to the reproducible ones and reproduce rate. In Table 3 we
compare the running time of the original program with instrumented ones. The time
was measured in realtime execution time, and network related benchmarks (like ftp and
hedc) were set in a local network to reduce the effects of web transmission. Slow down
rate and the size of the trace files are also considered.

Table 2. Crash reproducibility study result

Programs #Instrumentation sites Exception type # generated # reproducible
data race/lock release test cases test cases

XtangoAnimator N.A.1 49 CustomException 1 1
ftp 51 61 NullPointerException 4 2

raytracer 52 17 AssertionError 1 1
Hedc 19 394 NullPointerException 4 3
Shop 10 3 ArrayOutOfIndex 3 2

Pingpong 4 0 NullPointerException 2 2

1Chord does not terminate after 10 hours in XtangoAnimator

334 Q. Luo et al.

4.2.1 Failure Reproducibility
We can observe from Table 2 that ConCrash was able to reproduce all three kinds of
typical concurrent crashes (atomicity violation, deadlock, and data race) in the subject
programs investigated.

In most cases, the generated tests of ConCrash could reproduce concurrent failures.
As mentioned before, we do not record for every operation but rather for a small part
of them. The failed cases are always because of the long distance between the TCGP
to the crash point. However, our results showed that in our experiments all the failures
could be reproduced by the last two closest test cases.

Table 3. Performance overhead study

Programs Original(ms) Instrumented(ms) Slow down File size(kb)
data race/lock release/All

XtangoAnimator 367.1 N.A. 439 439 19.6% 1.52
ftp 3206 3946 4009 4565 42.4% 45.2

raytracer 47 75 51 78 66% 1.4
Hedc 1501.4 1676.5 1701.6 1731.3 15.3% 27.9
Shop 278.1 335.8 309.3 367.1 32% 3.1

Pingpong 315.6 367.2 N.A.1 367.2 16.3% 2.34

1There is no lock acquire/release operations in Pingpong

4.2.2 Performance Overhead
We compare the execution time of the original program and ConCrash-instrumented
version in Table 3. All the applications are set for a certain task, except for ftp we wrote
a test harness program to start a new user and download a specific file. The data is then
collected in 100 times’ normal runs for each program. We also provide a comparison
between different instrumentation strategies. Our results showed ConCrash has a run-
time overhead from 15% to 66%. We believe such overhead is acceptable for real-world
use, though there is still improvement space if more selective instrumentation strategies
are adapted. We also believe that the performance of ConCrash could be further im-
proved with the integration of better data race/atomicity violation detection tools.

The size of the trace files is relatively small - 45kb for the largest benchmark, includ-
ing both schedule files and JUnit tests. It could be easily sent via Internet to developers
when a crash happens.

4.3 Threats to Validity

Like any empirical evaluation, this study also has limitations which must be considered.
Although we have experimented with several well-known multi-threaded Java bench-
marks, in which the largest one is over 30KLOC, they are smaller than traditional Java
software systems. For this case, we can not claim that these experiment results can be
necessarily generalized to other programs. On the other hand, the systems and crashes
we chose to investigate might not be representative. Though we experimented on repro-
ducing several typical concurrent failures, such as data race, deadlock, and atomicity
violation, we still can not claim ConCrash could reproduce an arbitrary concurrent
crash.

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 335

Another threat is that we have not conducted any readability study about the gen-
erated test case on software developers (though the readability of the test case is sec-
ondary to reproducibility). For this reason, we might not be able to claim ConCrash

can be applied to real-world development process.
The final threat to internal validity maybe mostly lies with possible errors in our tool

implementation and the measure of experiment results. To reduce these kind of threats,
we have performed several careful checks.

4.4 Discussion

When designing the ConCrash approach, we choose bytecode level instrumentation
to make concurrent failure be deterministically reproduced. If we use OS-level sup-
port or JVM-level capture and replay, ConCrash would have to be deployed on a
specific environment, which will deteriorate the portability of our approach. In cur-
rent ConCrash implementation, no other program or configuration is needed, and the
pre-instrumentation also permits the high comparability of ConCrash-enabled
environment.

When using Chord to report potential data races, the coverage of Chord (or other
analysis techniques used for preprocessing) might affect the precision/effectiveness
of the ConCrash approach. Investigating the tradeoffs would be one of our future
directions.

Current implementation of ConCrash uses shallow (depth-1) copying strategy as
default mode like [5]. However, in some cases (e.g., the Hedc benchmark) an argument
is side-effected, between the method entry and the crash point, in such a way that will
prevent the crash from reproducing.

5 Related Work

In this section, we discuss some closely related work in the areas of multi-threaded
program analysis, testing, and debugging. We also compare several similar tools in
Table 4.

Much research has been done on testing and debugging multi-threaded programs.
Researchers have proposed analysis techniques to detect deadlocks [15], data races [14],
and atomicity violations [10]. The problem of generating different interleavings for the
purpose of revealing concurrent failures [15] and record/replay techniques [7, 13, 17,
20] have also been examined. Moreover, systematic and exhaustive techniques, like
model checking [11], have been developed recently. These techniques exhaustively ex-
plore all interleavings of a concurrent program by systematically switching threads at
synchronization points.

Choi et al. [7], presented the concept of logical thread schedule and proposed an
approach to deterministically replay a multi-threaded Java program. They are able to
reproduce race conditions and other non-deterministic failures. However, Their method
relies on the modification of the underlying JVM, while our method uses bytecode
level instrumentation to capture the thread execution orders. Moreover, our approach
generates a series of JUnit tests, which help developers to debug the program.

336 Q. Luo et al.

Recently, Park et al. [17] also proposed the idea of deterministic replay of concur-
rency bugs. They used the feedback of previous failed replay attempt of the program
to reproduce concurrency bugs. They also presented five sketching methods for record-
ing the execution of concurrent programs, while our approach employs a static analysis
tool as frontend to identify recording points. ConCrash tries to reproduce concurrency
failures with JUnit tests at those points, which is also different from their feedback
approach.

The most similar work to us is the ReCrash approach [5] proposed by Artzi et al..
ReCrash generates tests by utilizing partial snapshots of the program states captured on
each method execution in the case of a failure. The empirical study shows that ReCrash
is easy to implement, scalable to large program, and generate simple but helpful tests.
Our work on ConCrash aims to handle concurrent failures. We use the concept of
logical thread schedule to capture the execution order, making the behavior of multi-
threaded program deterministic when reproducing the concurrent failure.

Table 4. A comparison between closely related testing tools for concurrent programs

Items Instrumentation Running Deterministic replay in Unit test cases
level environment1 multi-threaded programs generation

ReCrash [5] byte code both No Yes2

DejaVu [7] JVM developer site Yes No
RaceFuzzer [19] byte code developer site No3 No

ConTest [9] source code developer site Yes No
ConCrash byte code both Yes Yes

1 Running environment consists of user site and developer site
2 ReCrash’s generated test cases could not be applied in multi-threaded programs
3 Depends on RaceFuzzer’s random scheduler

6 Conclusions and Future Work

In this paper, we presented a lightweight and portable approach, called ConCrash, to
making concurrent failures reproducible. ConCrash records the logical thread schedul-
ing order and preserves object states in memory at runtime. When a crash occurs, it
reproduces the failure offline by simply using the saved information without the need
for JVM-level or OS-level support. To reduce the runtime overhead, ConCrash uses an
effective existing data race detection technique to report all potential race conditions,
and only instruments such places plus lock acquire/release points. We implemented
the ConCrash approach in a prototype tool for Java. Our experiments on several well-
known multi-threaded Java benchmarks indicate that ConCrash is effective in repro-
ducing a number of typical concurrent bugs within an acceptable overhead.

We recommend the ConCrash approach be an integrated part of the existing
ReCrash technique. As our future work, we would like to examine alternative tech-
niques like dynamic program slicing [4] to improve the performance of ConCrash. We
also intend to investigate the cost/effectiveness tradeoffs when reproducing concurrent
failures at the application level.

A Lightweight and Portable Approach to Making Concurrent Failures Reproducible 337

Acknowledgements. We thank anonymous reviewers for useful comments. We also
thank Shan Lu and STAP group members for their valuable discussions. This work was
supported in part by National Natural Science Foundation of China (NSFC) (Grant No.
60970009).

References

1. reCrashJ implementation, http://groups.csail.mit.edu/pag/reCrash/
2. Soot Homepage, http://www.sable.mcgill.ca/soot/
3. XStream Project Homepage, http://xstream.codehaus.org/
4. Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: PLDI 1990, pp. 246–256 (1990)
5. Artzi, S., Kim, S., Ernst, M.D.: Recrash: Making software failures reproducible by preserv-

ing object states. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 542–565. Springer,
Heidelberg (2008)

6. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Efficient and
precise datarace detection for multithreaded object-oriented programs. In: PLDI 2002, pp.
258–269 (2002)

7. Choi, J.D., Srinivasan, H.: Deterministic replay of Java multithreaded applications. In: SPDT
1998, pp. 48–59 (1998)

8. Choi, J.D., Zeller, A.: Isolating failure-inducing thread schedules. SIGSOFT Softw. Eng.
Notes 27(4), 210–220 (2002)

9. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.: Multithreaded Java program test gen-
eration. IBM Systems Journal 41(1), 111–124 (2002)

10. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multithreaded pro-
grams. In: POPL 2004, pp. 256–267 (2004)

11. Freund, S.N.: Checking concise specifications for multithreaded software. Journal of Object
Technology 3, 81–101 (2004)

12. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. SIGARCH Comput. Archit. News 36(1), 329–339
(2008)

13. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Arumuga Nainar, P., Neamtiu, I.: Finding
and reproducing heisenbugs in concurrent programs. In: OSDI 2008, pp. 267–280 (2008)

14. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI 2006, pp.
308–319 (2006)

15. Naik, M., Park, C., Sen, K., Gay, D.: Effective static deadlock detection. In: ICSE 2009, pp.
386–396 (2009)

16. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. SIGPLAN Not. 38(10),
167–178 (2003)

17. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R.H., Lee, K., Lu, S.: PRES: probabilistic
replay with execution sketching on multiprocessors. In: SOSP 2009, pp. 177–192 (2009)

18. von Praun, C., Gross, T.R.: Object race detection. In: OOPSLA 2001, pp. 70–82 (2001)
19. Sen, K.: Race directed random testing of concurrent programs. In: PLDI 2008, pp. 11–21.

ACM, New York (2008)
20. Steven, J., Chandra, P., Fleck, B., Podgurski, A.: jRapture: A capture/replay tool for

observation-based testing. SIGSOFT Softw. Eng. Notes 25(5), 158–167 (2000)

http://groups.csail.mit.edu/pag/reCrash/
http://www.sable.mcgill.ca/soot/
http://xstream.codehaus.org/

	A Lightweight and Portable Approach to Making Concurrent Failures Reproducible
	Introduction
	Motivating Example
	Approach
	Stage One: Getting Instrumentation Sites
	Stage Two: Instrumenting the Original Program to Generate Record and Replay Version
	Stage Three: Generating JUnit Test Cases after a Crash

	Implementation and Evaluation
	Procedure
	Results
	Threats to Validity
	Discussion

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

