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Abstract. In this paper, we present an automata-theoretic approach to Hardware/
Software (HW/SW) co-verification. We designed a co-specification framework
describing HW/SW systems; synthesized a hybrid Büchi Automaton Pushdown
System model for co-verification, namely Büchi Pushdown System (BPDS), from
the co-specification; and built a software tool for deciding reachability of BPDS
models. Using our approach, we succeeded in co-verifying the Windows driver
and the hardware model of the PIO-24 digital I/O card, finding a previously
undiscovered software bug. In addition, our experiments have shown that our
co-verification approach performs well in terms of time and memory usages.

1 Introduction

Computer systems are pervasive, ranging from embedded control to banking to edu-
cation. Users demand high-confidence in these systems, and high-confidence is tradi-
tionally achieved by extensive testing which is becoming increasingly cost-prohibitive.
As a result, formal verification such as model checking [1] is playing a greater role in
verifying the correctness of these systems. In practice, engineers typically attempt to
verify hardware and software independently. In order to verify complete systems, the
correctness of the Hardware/Software (HW/SW) interfaces must be established.

HW/SW co-verification, verifying hardware and software together, is essential to es-
tablishing the correctness of HW/SW interfaces. One major challenge in co-verification
is the integration of hardware and software representations within the same formal
model. Hardware and software verification utilize different models. For verification of
software implementations, one of the most popular models has been pushdown systems
whose semantics closely resemble the semantics of software programs which are often
infinite systems. Hardware designs are finite-state and often modeled as some kind of
finite-state state machines. However, for co-verification it is not desired to model both
hardware and software as pushdown systems or finite state machines (see related work).

In this paper, we present an automata-theoretic approach to HW/SW co-verification.
The foundation of this approach is a hybrid Büchi Automaton Pushdown System as
a unifying model for HW/SW co-verification, namely the Büchi Pushdown System
(BPDS). It synchronizes a single Pushdown System (PDS) that has an unbounded stack
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and a Büchi Automaton (BA). The co-verification flow as supported by this approach is
shown in Figure 1. The main components of this flow include:

Fig. 1. Co-verification flow

– Co-specification. Co-specification is essential in order to present system designs at
proper levels of details. We developed a co-specification framework that describes
the hardware model, the software model, and the HW/SW interface.

– Co-verification model. We designed a formal co-verification model, BPDS, to
capture hardware and software designs, as well as their concurrent executions and
interactions. The core contribution is our process for constructing a BPDS by syn-
chronizing a BA that abstracts hardware and a PDS that abstracts software.

– Model-checking BPDS. We developed a method for checking reachability proper-
ties of a BPDS and analyzed its complexities. To evaluate the effectiveness of our
approach, we implemented an automatic verification tool for BPDS.

Another component of this flow is abstraction, which we will elaborate in another paper.

Related work. Kurshan, et al. presented a co-verification framework that models hard-
ware and software designs using finite state machines [2]. Xie, et al. extended this
framework to hardware and software implementations and improves its scalability via
component-based co-verification [3]. However, finite state machines are limited in mod-
eling software implementations, since they are not suitable to represent software fea-
tures such as a stack.

Another approach to integrating hardware and software within the same model is
exemplified by Monniaux in [4]. He modeled a USB Open Host Controller Interface
(OHCI) device using a C program and instrumented the device driver, another C pro-
gram, in such a way as to verify that the USB OHCI controller driver correctly interacts
with the device. The hardware and software were both modeled by C programs, thus
formally Pushdown Systems (PDS). However, straightforward composition of the two
PDSs to model the HW/SW concurrency is problematic, because it is known, in general,
that verification of reachability properties on concurrent PDS with unbounded stacks is
undecidable [5]. Based on an approximation of the OHCI HW/SW interface, Monni-
aux merges the C program models of both hardware and software into one sequential
program, formally a single PDS. Monniaux’s approach has three key drawbacks: (1)
programming languages such as C do not have semantics for concurrency, so the con-
current nature of hardware is not fully modeled; (2) the HW/SW concurrency is not
accurately modeled; (3) the complexity of checking the resulting PDS is often unnec-
essarily high, due to the way hardware and concurrency is modeled in the PDS.

Schwoon used a combination of PDS and BA to verify Linear Temporal Logic (LTL)
properties of PDS and his approach has been implemented in the Moped tool [6]. A LTL
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formula is first negated and then represented as a BA. Moped combines the BA and
PDS in such a way that the BA monitors the state transitions of the PDS, so the model-
checking problem is to compute if the BA has an accepting run. Schwoon’s goal was
to verify software only; however, our goal is to co-verify safety properties of HW/SW
systems. We will discuss more details about Schwoon’s work in Section 3.1.

Outline. The rest of this paper is organized as follows. In Section 2, we present our co-
specification framework, which is illustrated by a Windows PCI device driver example.
In Section 3, we introduce our co-verification model, BPDS. In Section 4, we describe
how to construct a BPDS by synchronizing a BA and a PDS. In Section 5, we discuss
how to conduct reachability analysis on a BPDS. In Section 6, we present the evaluation
and experimental results. In Section 7, we conclude and discuss future work.

2 Co-specification

Co-specification describes the HW/SW system to be verified. The essential parts include
the hardware model, the software model, and the HW/SW interface. The level of detail
varies due to (1) platform differences, e.g., embedded system or PC; (2) verification
foci, e.g., verifying software by providing hardware models, verifying hardware using
software models, or verifying both. As an example, we show how to specify the HW/SW
interface for the verification of a device driver implementation and its device model.
The goal of this specification is to verify if the driver implementation is correct in
terms of the HW/SW interface properties. In order to facilitate the understanding of
our modeling approach, we first introduce a simple Windows PCI driver example.

2.1 A Windows PCI Driver Example

Device drivers check device status or send commands to devices by reading or writ-
ing device registers, and receive notification of state changes from devices through
interrupts. In Windows [7], device drivers are organized through driver stacks. Each
layer of a driver stack services a specific type of device in the corresponding hard-
ware stack. Usually, different driver layers have different I/O interfaces. In this paper,
we utilize PCI (Peripheral Component Interconnect) device drivers as an example. PCI
drivers read/write device registers using functions such as READ REGISTER UCHAR,
WRITE REGISTER UCHAR, READ PORT UCHAR, WRITE PORT UCHAR, etc. Depe-
nding on whether a driver uses memory or port mapped I/O to represent its device
interface registers in virtual memory, the functions are different.

Figure 2 shows excerpts from an Open System Resources (OSR) sample driver for
a PCI device, Sealevel PIO-24 digital I/O card. The card has three 8-bit ports (namely,
A, B, and C) for input or output. When the interrupt is enabled and Port A has an input,
the card fires a data-ready interrupt. The driver reads data when the data-ready interrupt
fires and outputs data by writing to the port registers. DioEvtDeviceControl is the
callback function that handles device control commands and DioIsr is the Interrupt
Service Routine (ISR).
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VOID DioEvtDeviceControl( . . . ) {
. . .
switch(IoControlCode) {

. . .
// Waits for an interrupt to occur, and when it does,
// ISR/DPC will read the contents of PortA.
case IOCTL WDFDIO READ PORTA AFTER INT:
. . .
// If PortAInput is true, the interrupt is enabled
if (devContext->PortAInput == FALSE) {

status = STATUS INVALID DEVICE STATE;
} else {

// Store the I/O request to CurrentRequest
devContext->CurrentRequest = Request;

// Tell ISR: we’re waiting for an interrupt
P1: devContext->AwaitingInt = TRUE;

. . .
return;

}
break;
. . .
}
. . .
}

BOOLEAN DioIsr( . . . ) {
. . .
// Check if we have an interrupt pending
data = READ REGISTER UCHAR(

devContext->BaseAddress +
DIO INTSTATUS OFFSET );

if(data & DIO INTSTATUS PENDING) {

// Are we waiting for this interrupt
P2: if(devContext->AwaitingInt) {

// Read the contents of PortA
data = READ REGISTER UCHAR(

devContext->BaseAddress +
DIO PORTA OFFSET );

// Store it in our device context
// DPC will send the data to users
devContext->PortAValueAtInt = data;
devContext->AwaitingInt = FALSE;
}

// Request our DPC
P3: WdfInterruptQueueDpcForIsr( Interrupt );

// Tell WDF, and hence Windows, this is our interrupt
return(TRUE);
}
return(FALSE);
}

Fig. 2. Excerpts from OSR sample driver code for PIO-24 digital I/O card

2.2 Language Features for Co-specification

In our example, the C program of the driver is the software model. Next, we focus on
the hardware model and the HW/SW interface.

We specify the hardware model and hardware-related parts of the HW/SW interface
using the Verilog hardware description language [8]. There are two major reasons be-
hind using Verilog for models related to hardware. First, Verilog is a popular language
for hardware design. Lots of existing hardware has been designed using Verilog. Sec-
ond, Verilog supports the concurrent semantics of hardware. A key feature is parallel
assignments (a.k.a. nonblocking assignments that use the operator “<=” in the exam-
ples), which capture the simultaneous updates of register states through state transitions.

The hardware model describes behaviors of the device as state transitions. Different
from the commonly used clock-driven semantics of Verilog, a state transition of our
hardware model represents an arbitrarily long but finite sequence of clock cycles. This
preserves hardware design logic that is externally visible to software, but hides details
only necessary for synthesizable Register Transfer Level (RTL) design. Figure 3 shows
the hardware model of the PIO-24 digital I/O card. The model simply fires an interrupt
when it is in an interrupt-enabled state and Port A has an input. We define rand as
a function that returns a non-deterministic value in the given range. There are three
tasks: reset, environment, and random. The environment task is executed
non-deterministically to simulate inputs from the environment to the device, e.g., the
physical reset event that clears all registers. Depending on the properties to be verified,
hardware models may be extended to exhibit more behaviors. Our model in Figure 3 has
been simplified to one aspect of the device to illustrate the device/driver interactions.
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begin hardware model
// declare registers
reg [7:0] PortA, IntConfg;
. . .
// declare the tasks
task reset; begin // clears all registers

PortA <= 8’h0;
. . .

end endtask
// model the inputs from the environment
task environment; begin

// non-deterministically reset the hardware
if(rand(0,1)) reset;
// if the interrupt is enabled but not fired,
// non-deterministically input to PortA.
else if((IntConfg & 8’h4) && (IntStatus==0))

PortA <= rand(8’h0, 8’hFF);
. . .

end endtask
. . .
// assign non-deterministic value to registers
task random; begin

PortA <= rand(8’h0, 8’hFF);

. . .
Ctrl <= rand(8’h0, 8’hFF) & 8’h9B;
IntConfg <= rand(8’h0, 8’h07);
IntStatus <= rand(8’h0, 8’h01);

end endtask

// initial state of the device: non-deterministically initialized
initial random;
// non-deterministically execute the environment
if( rand(0,1) ) begin

// low level triggers the interrupt
if( (IntConfg == 8’h04) && ((PortA & 8’h01)==0) )
begin

IntStatus <= 1; // set the interrupt status
INTR <= 1; // set the interrupt pending status to SW

end
// high level triggers the interrupt
if( (IntConfg == 8’h05) && ((PortA & 8’h01)==1) )
begin IntStatus <= 1; INTR <= 1; end
. . .

end
else environment;

end hardware model

Fig. 3. Hardware model for PIO-24 digital I/O card device

The interface specification describes the HW/SW interface. Hardware and software
run asynchronously and only communicate through their interface. The HW/SW inter-
face includes two parts: shared interface states and interface events. Interface states are
state variables provided either by hardware or software and accessible to both; inter-
face events have two types: hardware or software. A hardware interface event happens
when hardware updates the software interface states, and vice versa. A typical example
of hardware interface events is an interrupt which causes context switches in software.
However, it is possible that in a HW/SW system, software provides shared memory for
hardware to access. In this case, a hardware interface event (e.g., write to the shared
memory) will not cause any context switch in software. In summary, interface events
identify the situations when both software and hardware must transit synchronously.

Modern system designs usually have software and hardware aligned as layers in a
stack, different layers of software work with their corresponding layers of hardware to-
gether to deliver certain functionalities. For example, PCI bus and USB bus are different
HW/SW layers in a PC system. Interface specification needs to describe the HW/SW
interface behaviors in order to hide the implementation details of other hardware and
software layers that lie in between the hardware and software layers to be verified.

For the PIO-24 digital I/O device/driver, the device provides interface registers for
the driver to operate the device. In order for the driver to access the interface regis-
ters, the Windows OS maps the device interface registers into virtual memory through a
technique called Memory Mapped I/O (MMIO). When the driver writes to/reads from a
mapped memory address by calling register operation functions, the corresponding in-
terface register will be updated by the OS. How the register should be updated depends
on the HW/SW interface protocol. We need to specify (1) the virtual memory alignment
for the mapped interface registers, so a specific memory address is related to the proper
interface register; (2) how interface registers should be updated when the driver ac-
cesses the registers, i.e., when software interface events happens. On the other side, the
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device communicates with the driver through interrupts, i.e., hardware interface events.
When hardware fires an interrupt, the Windows OS sets its internal interrupt pending
status to be true and schedules the driver-provided ISR to service the interrupt.

Figure 4 shows the HW/SW interface specification for the PIO-24 digital I/O de-
vice/driver: (1) resource mappings for the driver. The PIO-24 device is mapped as
MMIO. The resource mapping type indicates the set of interface register functions used
by the driver; (2) interface declaration, which declares the device interface registers
with their sizes and mapped address offsets in virtual memory, software interface events
when the driver writes/reads a specific interface register, and hardware interface events
when hardware fires interrupts; (3) implementation of software interface events. Each
interface register is associated with two software interface event functions: read and
write. The functions describe device interface state transitions when read/write events
happen on the registers. Hardware interface events are defined by connecting the inter-
rupts to the corresponding ISRs that are implemented in the driver model.

begin interface
// resource mappings: Memory Mapped I/O
use MMIO;

// interface declaration
// syntax: <offset(byte), length(byte)> -->
// name, read event, write event;
<0x00, 1> --> PortA, read PortA(), write PortA(VAR);
. . .
<0x04, 1> --> IntConfg, read IntConfg(),

write IntConfg(VAR);
<0x05, 1> --> IntStatus, read IntStatus(),

write IntStatus(VAR);
interrupt INTR: // interrupt pending status

void FireISR(); // the ISR connected to this interrupt

// implementation of software interface events
write IntConfg(val) {

if( ((val==4) && (PortA & 8’h1)!=0) ||
((val==5) && (PortA & 8’h1)==0) ||
(val==6) || (val==7) || (val==0) )

IntConfg <= val;
}
read IntStatus() { // clear the interrupt status when read

reg [7:0] retreg;
retreg <= IntStatus;
IntStatus <= 0;
return retreg; // return the register value to software
}
. . .

end interface

Fig. 4. Interface specification for PIO-24 digital I/O card device/driver

3 Co-verification Model: Büchi Pushdown System

We propose a hybrid Büchi Automaton Pushdown System, namely Büchi Pushdown
System (BPDS) to represent both hardware and software in co-verification. Before we
present BPDS, we first review the fundamentals of Büchi Automata (BA) and Pushdown
Systems (PDS).

3.1 Background

Büchi Automata as Hardware Models. A Büchi Automaton B, as defined in [9], is
a non-deterministic finite state automaton accepting infinite input strings. Formally, B
is a tuple (Σ, Q, δ, q0, F ), where Σ is the input alphabet, Q is the finite set of states,
δ ⊆ (Q × Σ × Q) is the set of state transitions, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. B accepts an infinite input string if and only if it has a run over
the string to visit at least one of the final states infinitely often. A run of B on an infinite
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string s is a sequence of states visited by B when taking s as the input. We use q
σ→ q′

to denote a transition from state q to q′ with the input symbol σ.

Pushdown Systems as Software Models. A Pushdown System, as defined in [6], is
a tuple P = (G, Γ, Δ, 〈g0, ω0〉) where G is a finite set of global states (a.k.a. control
locations), Γ is a finite stack alphabet, and Δ ⊆ (G × Γ ) × (G × Γ ∗) is a finite set
of transition rules. 〈g0, ω0〉 is the initial configuration. A PDS transition rule is written
as 〈g, γ〉 ↪→ 〈g′, ω〉, where ((g, γ), (g′, ω)) ∈ Δ. A configuration of P is a pair 〈g, ω〉,
where g ∈ G is a global state and w ∈ Γ ∗ is a stack content. The set of all configu-
rations is denoted by Conf(P). If 〈g, γ〉 ↪→ 〈g′, ω〉, then for every v ∈ Γ ∗ the con-
figuration 〈g, γv〉 is an immediate predecessor of 〈g′, ωv〉 and 〈g′, ωv〉 is an immediate
successor of 〈g, γv〉. The reachability relation ⇒ is the reflexive and transitive closure
of the immediate successor relation. Given a set C ⊆ Conf(P), the forward reacha-
bility analysis, post∗(C), computes the successors of elements of C. Schwoon [6] has
designed algorithms to check both reachability and LTL properties on PDS. For com-
puting post∗ on P , the time and space complexities are both (|G| + |Δ|)3. The Moped
tool implements all these algorithms.

3.2 Büchi Pushdown System

We synthesize a BPDS BP by building the synchronization of a BA B and a PDS P .
Let B = (Σ, Q, δ, q0, F ) represent hardware, where Σ is the power set of the set of
propositions that may hold on a configuration of P (i.e. a symbol of Σ is a set of propo-
sitions). In other words, the state transition of B is constrained by the current configura-
tion of P . We extend the definition of a pushdown system as P = (I, G, Γ, Δ, 〈g0, ω0〉)
representing software, where I is the power set of the set of propositions that may
hold on a state of B, G is a finite set of global states, Γ is a finite stack alphabet, and
Δ ⊆ (G×Γ )×I×(G×Γ ∗) is a finite set of transition rules. We write 〈g, γ〉 τ

↪→ 〈g′, w〉
as a rule ((g, γ), τ, (g′, w)) ∈ Δ. 〈g0, w0〉 is the initial configuration. It is important to
note that we extend the pushdown system so that the transition rules in Δ are all labeled
by τ ∈ I , i.e., the state transition of P is constrained by the current state of B.

To define the BPDS, BP, for co-verification, we first define two labeling functions:

– LP2B : (G × Γ ) → Σ, which associates a configuration of P , 〈g, γ〉 ∈ (G × Γ ),
with the set of propositions that hold on it.

– LB2P : Q → I , which associates a state of B with the set of propositions that hold
on it.

BP = ((G × Q), Γ, Δ′, 〈(g0, q0), ω0〉, F ′) is constructed by taking the Cartesian
product of B and P : 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′, where q

σ→ q′ ∈ δ, σ ⊆
LP2B(〈g, γ〉) and 〈g, γ〉 τ

↪→ 〈g′, w〉 ∈ Δ, τ ⊆ LB2P(q). A configuration of BP is
referred to as 〈(g, q), ω〉 ∈ (G × Q) × Γ ∗. The set of all configurations is denoted as
Conf(BP). The labeling functions defines how B and P synchronize with each other.
〈(g0, q0), ω0〉 is the initial configuration. 〈(g, q), ω〉 ∈ F ′ if q ∈ F .

If 〈(g, q), γ〉 ↪→BP 〈(g′, q′), ω〉 ∈ Δ′, then for every v ∈ Γ ∗ the configuration
〈(g, q), γv〉 is an immediate predecessor of 〈(g′, q′), ωv〉, and 〈(g′, q′), ωv〉 is an
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immediate successor of 〈(g, q), γv〉. A trace of BP is a sequence of configurations
〈(g0, q0), ω0〉, 〈(g1, q1), ω1〉, . . . , 〈(gi, qi), ωi〉, . . . such that 〈(gi, qi), ωi〉 is an immedi-
ate predecessor of 〈(gi+1, qi+1), ωi+1〉, where i ≥ 0. The reachability relation, ⇒BP ,
is the reflexive and transitive closure of the immediate successor relation. Given a set
C ⊆ Conf(BP), the forward reachability analysis, post∗(C), computes the succes-
sors of elements of C. In this paper, we are concerned with the reachability properties
of BP, i.e., given a configuration c and the initial configuration c0 = 〈(g0, q0), ω0〉, we
want to check if c ∈ post∗({c0}).

4 Constructing BPDS from Co-specification

In this section, we discuss how to construct a BPDS model from the co-specification
presented in Section 2. We assume that the hardware and software models in the co-
specification are amenable to abstraction into BA and PDS. Without loss of generality,
we describe the state space of the BPDS model using Boolean variables. Before we dis-
cuss how to construct the BPDS model, we introduce two tools for conducting predicate
abstractions of hardware and software, respectively. The predicate abstraction tools help
scale the verification but only preserve the safety properties of a system design, so we
restrict the generated BPDS model for reachability analysis. It is important to note that
(1) this approach is only one example on constructing BPDS and (2) the BPDS model
proposed in Section 3 is not restricted to safety properties only.

4.1 Background

Predicate Abstraction of RTL Designs. Jain, et al. have presented a predicate abstrac-
tion algorithm for verifying RTL designs in Verilog [10]. The algorithm computes the
abstraction of a Verilog module given certain predicates. The VCEGAR toolkit based
on this algorithm generates hardware abstractions in the form of Boolean expressions
(see example in Figure 6). This is one representation of state transition relations.

Predicate Abstraction of C Programs. Ball, et al. have shown Boolean programs to
be effective abstractions of C programs in the SLAM project [11]. A Boolean program,
conceptually a PDS, is essentially a C program in which the only data type available is
Boolean. Given predicates, C2BP, the abstraction tool of SLAM, builds Boolean pro-
grams from C programs.

4.2 From Co-specification to BPDS

There are four steps to construct a BPDS model from the co-specification: (1) instru-
menting the software model based on the HW/SW interface; (2) predicate abstraction of
the instrumented software model using C2BP based on manually provided predicates;
(3) instrumenting the hardware model based on the HW/SW interface; (4) predicate ab-
straction of the instrumented hardware model using VCEGAR based on manually pro-
vided predicates. The PDS (as a result of C2BP) and the BA (as a result of VCEGAR)
are readily synchronized due to the instrumentation, thus forming a BPDS model.
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UCHAR READ REGISTER UCHAR
(PUCHAR Register) {

switch(Register) {
case BASE ADDRESS+0x0: return read PortA();
. . .
case BASE ADDRESS+0x4: return read IntConfg();
case BASE ADDRESS+0x5: return read IntStatus();
default: abort “Register address error.”; return 0;
}
}

VOID WRITE REGISTER UCHAR
(PUCHAR Register, UCHAR Value) {

switch(Register) {
case BASE ADDRESS+0x0: write PortA(Value); return;
. . .
case BASE ADDRESS+0x4: write IntConfg(Value); return;
case BASE ADDRESS+0x5: write IntStatus(Value); return;
default: abort “Register address error.”; return;
}
}

Fig. 5. Redirecting read/write register calls to software interface events

At the software side, the instrumentation has three steps. First, we add the signatures
of the software interface events into the driver program. Since the header of a software
interface event is declared the same way as a C function, the signature of the interface
event is simply its type signature. Second, we instrument the driver program to redi-
rect the calls to the register read/write functions to the corresponding software interface
events. Third, we instrument the driver to respond to the hardware interface events. Fig-
ure 5 shows an example instrumenting the PIO-24 digital I/O card driver, where the calls
to two register read/write functions are replaced by calls to software interface events. As
discussed in Section 2.2, the OS maintains a variable (INTR in the interface specification
example) to indicate the interrupt pending status. When hardware fires an interrupt, i.e.,
a hardware interface event happens, the interrupt pending status is set true, so the OS
schedules the ISR. We instrument the driver with a guarded expression at each program
statement so that “if the interrupt pending status is true, non-deterministically call ISR”.
As a result, the context switch to ISR is simulated in the sequential software model. In
a uni-processor system, the completeness of this approach is based on the assumption
that the ISR cannot be switched out during execution. This is true for most Windows
device drivers such as the PIO-24 digital I/O card driver. It is easy and theoretically
sound to extend the instrumentation to support multiple ISRs with different priorities,
because the number of ISRs in a system are finite. In the last step of software abstrac-
tion, we use C2BP to generate Boolean programs from the instrumented C programs.
We convert the Boolean programs to PDS using Moped [6].

At the hardware side, we first convert the hardware model and the implementation of
software interface events into Verilog modules. The non-deterministic function (rand)
used in Figure 3 is not directly supported by Verilog. Since input variables of Verilog
modules are treated as non-deterministic by VCEGAR, we construct non-deterministic
functions using input variables. Second, we utilize VCEGAR to generate the predicate
abstraction of the state transition relation for the hardware design (in the form of Ver-
ilog modules). Third, we then construct the BA as follows: (1) the alphabet Σ is the
power set of the set of propositions induced by the software interface events; (2) the
set of states Q are defined by the Boolean variables from the predicate abstraction; (3)
the transition relation δ is the predicate abstraction, whose transitions are labeled with
input symbols from Σ; (4) the set of final states F is set to Q, since we are interested in
reachability only. As an example, Figure 6 shows the abstraction of the software inter-
face events read IntStatus and write IntConfg, as hardware state transitions.
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// predicates for read IntStatus
decl b0; // stands for {IntStatus == 1}
decl b1; // stands for {retreg==1}

read IntStatus
begin

TRANS ( !next(b0) )
TRANS ( (!b0 & !next(b1))

| (b0 & next(b1)) )
end

// predicates for write IntConfg
decl b0; // stands for {(4 & IntConfg) == 0}
decl b1; // stands for {(1 & PortA) == 0}
decl b2; // stands for {val == 5}

write IntConfg
begin

TRANS ( (!b1 & b0 & b2 & next(b0)) | (b1 & b0 & b2 & !next(b0))
| (!b0 & b2 & !next(b0)) | (!b2) )

end

Fig. 6. Abstraction of software interface events as state transitions in the form of Boolean expres-
sions (TRANS). The transitions are labeled corresponding to their software events respectively.

The constructed BPDS BP contains a PDS P representing software, a BA B repre-
senting hardware, and their synchronization, where P is from software abstraction, B is
from hardware abstraction, and the synchronization by interface events is from the ab-
straction of the HW/SW interface (through instrumentation). The interface events have
two directions, from P to B (referred to as software interface events) and from B to
P (referred to as hardware interface events). In the formal model, the transitions of B
are labeled corresponding to the software interface events and the transitions of P are
labeled corresponding to the hardware interface events. Thus, we are able to synchro-
nize B and P . Before software abstraction, the signatures of software interface events
are merged into the program, so P already contains the signatures. During the state
transitions of P , a software interface event happens when its dedicated stack symbol is
reached. The BA transition that is enabled will be executed with the next PDS transi-
tion. The PDS transition also needs to be enabled by the current state of B. For example,
when P inputs from B, the transition will depend on the state of B. A hardware inter-
face event happens when B transits to a state, which may cause a context switch in P .
Because P is a sequential PDS, we model the context switch by calling the function that
services the hardware event, which is done during the step of software instrumentation.

Because the transitions of hardware and software are normally asynchronous except
at their synchronization points, non-deterministic delays of either B or P should be
allowed in the BPDS. Conceptually, the delays are introduced as self-loop transitions
on the states of B or P where no interface event happens. When an interface event
happens, both hardware and software have to transit synchronously.

5 Reachability Checking of BPDS

We have developed a tool, CoVer, for checking reachability properties of BPDS. As
shown in Figure 7, CoVer has two components: (1) BPDS2PDS, which converts a BPDS
model BP into a PDS model P ′; and (2) Moped [6], which checks reachability proper-
ties of P ′. Different from the PDS P in BP, the new PDS model P ′ is a standard PDS
in the sense that P ′ does not have inputs. The properties to be checked are provided to
Moped through labeling states in the software PDS P and/or the hardware BA B.

First, we present the conversion algorithm, BPDS2PDS, and argue that the conver-
sion preserves the reachability properties of BP. Second, we analyze the complexity of
the conversion, the size of P ′ compared to BP, and the verification complexity.
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Fig. 7. CoVer: reachability checking of BPDS

5.1 Converting BPDS to PDS

The conversion works in such a way that the transition rules of B and P are selected
and merged in P ′ depending on whether or not an interface event happens. We represent
hardware transition rules as the union of two groups as δ = Rmodel ∪ Revt. Rmodel is
the set of rules that are not associated with software interface events. Revt is the set of
rules associated with software interface events. We define two functions: (1) HWevt(τ)
checks if the transition label τ of a rule in P is true for a hardware interface event. If
yes, this rule services the hardware interface event, for instance, calling the ISR; (2)
SWevt(γ) checks if γ is the stack symbol of a software interface event.

Algorithm 1 converts BP (given δ as rules of B and Δ as rules of P) into a PDS
P ′ with its rules as Δ′. Algorithm 1 explores the rules of P and B to build new PDS
rules of P ′ based on the synchronization of P and B. It terminates when all rules in
δ and Δ are processed. For each transition rule in Δ, the algorithm has three choices:
(1) if the transition handles a hardware interface event, the transition is merged with its
corresponding transition in B to form a transition of P ′; (2) if it is a software interface
event, the transition is merged with its corresponding transition in B as well. Hardware
and software should always be synchronous on interface events; (3) when no interface
event happens, the loop between lines 15-18 merges the transition of P with transitions
of B. Because hardware and software are asynchronous, the transition labels of P and

Algorithm 1. BPDS2PDS(δ = Rmodel ∪ Revt, Δ)
1: Δ′ ← ∅
2: for all 〈g, γ〉 τ

↪→ 〈g′, ω〉 ∈ Δ do
3: if HWevt(τ) then
4: {If this PDS rule handles a hardware interface event}
5: for all q

σ→ q′ ∈ Rmodel and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do
6: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉}
7: end for
8: else if SWevt(γ) then
9: {Else if this is a software interface event}
10: for all q

σ→ q′ ∈ Revt and σ ⊆ LP2B(〈g, γ〉) and τ ⊆ LB2P(q) do
11: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g′, q′), ω〉}
12: end for
13: else
14: {For transitions with no interface event}
15: for all q

σ→ q′ ∈ Rmodel do
16: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g, q′), γ〉}
17: Δ′ ← Δ′ ⋃{〈(g, q), γ〉 ↪→ 〈(g′, q), ω〉}
18: end for
19: end if
20: end for
21: return Δ′
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B trivially hold on each other. There are four types of rules that can be generated for
P ′ in the third condition: (1) P self-loops on its current state while B transits, which
occurs in line 16; (2) B self-loops on its current state while P transits, which occurs in
line 17; (3) Both B and P self-loop; (4) Both B and P transit. Rule (3) is trivial and can
be eliminated. Rule (4) equals to consecutive transitions by Rules (1) and (2), because
hardware and software execute asynchronously when no interface event happens.

P ′ preserves the reachability property of BP. (1) The state space of P ′ equals to that
of BP; (2) The initial state of P ′ is the initial state of BP; (3) We do not utilize the final
states F ′ (the BA constraints) of BP in the reachability checking; (4) In Algorithm 1,
it is clear that P ′ preserves all the transitions of both B and P . Self-loop transitions are
introduced for states of both B and P to model the asynchronous transitions between
hardware and software. They do not affect the correctness of reachability checking.

5.2 Complexity Analysis

Algorithm 1 generates O(|Δ| × |δ|) PDS rules and has a time complexity of O(|Δ| ×
|δ|). The number of rules in P ′ is equal to the number of rules of BP, because we
add a rule to P ′ only if there is a corresponding rule in BP. P ′ and BP have the
same configurations because their state space is identical. We use Schwoon’s post∗

algorithm [6] (implemented in Moped) to solve the reachability problems of P ′, so the
time and space model-checking complexities on P ′ are O((|G × Q| + |Δ × δ|)3).

6 Evaluation

We first show an overall evaluation of our co-verification framework, where we suc-
ceeded in verifying the Windows driver and the hardware model of the PIO-24 digi-
tal I/O card, finding a previously undiscovered software bug – an “invalid read” bug.
Then we discuss our experiments on evaluating the model-checking performance of our
BPDS model. All experiments were run on a workstation with Intel Xeon 3GHz dual
core CPU and 2GB physical memory.

For PIO-24, we abstract the hardware model (269 lines), the driver program (1724
lines), and the interface specification into a BPDS model. The verification detects a bug
using 12 predicates and 4165 peak live Binary Decision Diagram (BDD) nodes in 0.02
seconds. The falsifying path that combines the execution of both hardware and software
leads to a violation where a Deferred Procedure Call1 (DPC) finishes the input request
in success without actually reading the data from the device. As shown in Figure 2, the
“invalid read” bug occurs when DioIsr interrupts DioEvtDeviceControl at P1,
where CurrentRequest and AwaitingInt become inconsistent. DioIsr will
not execute the if block at P2 because AwaitingInt is FALSE. Later the DPC is
requested at P3. The DPC sends data back to the application that generated the I/O
request if CurrentRequest is not null, but the data is never actually read from the
device. It is important to note that this bug cannot be detected when using a sequential
model because the inconsistency of variable states only happens in HW/SW concurrent

1 We omit the DPC implementation due to page limitation.
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executions, as represented in our approach. Furthermore, because our approach to co-
verification includes both hardware and software models, certain kinds of false bugs
will not appear. For example, if the device’s status is always interrupt-disabled as the
driver reaches P1, the above described “invalid read” bug cannot happen. On the other
hand, the verification of this property costs one person about 6 hours’ manual efforts to
construct the BPDS model. In order to avoid this overhead, the abstraction/refinement
process needs to be fully automated (see Section 7).

We present an evaluation of the BPDS model based on synthetic programs derived
from the template T shown in Figure 8 and hardware models derived from the template
H shown in Figure 9. T is similar to the evaluation template used in [12] and later in [6].
The difference is that T operates a hardware counter which has global state. The tem-
plates allow us to generate a Boolean program T (N) and its corresponding hardware
model H(N) for N > 0. T (N) and H(N) together have four global variables2, where
there are three variables (a, b, and c) representing the states of the hardware counter.
T (N) has 2N + 2 procedures including software interface events: main as program
entry point, rd reg as a software interface event that returns the value of the most
significant bit of the counter, N software interface events of the form inc reg<i>,
and N procedures of the form level<i> that call rd reg and inc reg<i>, where
0 < i ≤ N . For 0 < j < N , the instances of <stmt> in the body of proce-
dure level<j> are replaced by a call to procedure level<j+1>. The instances of
<stmt> in the body of procedure level<N> are replaced by skip. H(N) provides
hardware transitions corresponding to the N software interface events inc reg<i>,
where the transitions increase the hardware counter by one. To further increase the
complexity of the model for purposes of testing, we define an environment model that
non-deterministically left-shifts the hardware counter by one bit. Templates T and H
cover common scenarios where software operates hardware via interface events.

We compare the two approaches that model hardware using BA or using PDS. When
using PDS, we model both hardware and software using a sequential program, similar to
Monniaux’s approach [4]. We model the environment and interface events as procedures
such as environment() and inc reg<i>(). The procedure environment is
called after each software interface event to simulate the input from environment.

Table 1 shows the statistics on the co-verification models generated from Figure 8
and Figure 9, where the counter’s size varies from 3 to 5 bits (i.e., the number of Boolean
variables used by the counter). We force the reachability checking to be exhaustive, so
the results represent the worst case performance. Statistics show that the PDS hardware
model adds significant overhead to co-verification compared to the BA hardware model.
For example, when N = 4000 and the counter has 5-bit size, the PDS hardware model
generates 148k transition rules and has 22383 peak live BDD nodes, compared to 76k
transition rules and 2115 peak live BDD nodes for the BA hardware model.

Table 2 shows the statistics on the model when interrupt checking is enabled. Com-
pared to the result in Table 1, we use one more global variable to track whether an inter-
rupt has fired. Similar to the procedure environment(), the ISR (not shown) calls
interface events to left-shift the counter by one bit. The statistics show that although the

2 Actually, we use three groups of templates. They differ in the size of the counter. For a counter
with 3, 4, or 5 bits, we have 4, 5, or 6 global variables.
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// a, b, c represent
// the hardware counter
decl g, a, b, c;
void main()
begin

level1();
level1();
if (!g) then

reach: skip;
else

skip;
fi

end

void level<i>()
begin

decl t;
t := 0;
if(g) then

while(!t) do
inc reg<i>();
t := rd reg();

od
else
<stmt>; <stmt>;

fi
g := !g;

end

bool rd reg()
begin

return c;
end

// Büchi automaton
// as hardware model
void inc reg<i>()
begin

skip;
end

// Using PDS as hardware model
void inc reg<i>()
begin

if (!a) then
a := 1;

elsif (!b) then
a,b := 0,1;

elsif (!c) then
a,b,c := 0,0,1;

else
a,b,c := 0,0,0;

fi
end

Fig. 8. Boolean program template T for evaluating the BPDS model

decl a,b,c;

inc reg<i>
begin

TRANS ( (!a & !b & !c & next(a) & !next(b) & !next(c))
| (!a & !b & c & next(a) & !next(b) & next(c))
| (!a & b & !c & next(a) & next(b) & !next(c))
| (!a & b & c & next(a) & next(b) & next(c))
| (a & !b & !c & !next(a) & next(b) & !next(c))
| (a & !b & c & !next(a) & next(b) & next(c))
| (a & b & !c & !next(a) & !next(b) & next(c))
| (a & b & c & !next(a) & !next(b) & !next(c)) )

end

// Run non-deterministically
environment
begin

TRANS( (b & next(a)) |
(!b & !next(a)) )

TRANS( (c & next(b)) |
(!c & !next(b)) )

TRANS( !next(c) )
end

// Using PDS as
// hardware model
bool environment()
begin

l0: if(*) then
a,b,c := b,c,0;
goto l0;

fi
end

Fig. 9. Hardware model template H for evaluating the BPDS model

Table 1. Comparison of co-verification statis-
tics with BA and PDS hardware models (hard-
ware does not interrupt software, and the size of
global counter varies from 3 to 5 bits)

Time usage with Time usage with
N BA HW model (Sec) PDS HW model (Sec)

3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

1k 0.42 0.72 1.28 2.47 8.08 35.62
2k 0.91 1.47 2.64 5.09 16.31 71.83
3k 1.42 2.33 4.08 8.14 25.42 109.33
4k 1.91 3.11 5.50 10.75 33.70 144.22

Table 2. Statistics when interrupt checking
is enabled (one more Boolean variable is
used to track the interrupt status)

Time usage (Sec) Peak live BDD nodes
N 3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

1k 1.67 3.31 6.98 2335 5129 10325
2k 3.70 6.97 14.42 2335 5129 10337
3k 6.12 11.19 22.76 2335 5129 10325
4k 8.30 15.61 30.41 2335 5129 10337

full HW/SW concurrency is checked, as expected the verification complexities grow in
the same order of magnitude as Table 1, where the complexities depend on the numbers
of both global states and rules (the sizes of the program and hardware design). It can
be inferred from Table 1 and Table 2 that using PDS as the hardware model without in-
terrupt checking performs even worse than when using BA as the hardware model with
interrupt checking. The time usage of Algorithm 1 that converts a BPDS to a PDS rep-
resentation is very low. In our experiments, the maximum time usage is 0.45 seconds.
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7 Conclusion and Future Work

In this paper, we have presented an automata-theoretic approach to co-verification. The
core of this approach is a formal model for co-verification, the Büchi Pushdown Sys-
tem (BPDS). We have designed a co-specification framework for HW/SW interfaces
and demonstrated a process of constructing a BPDS from the abstraction of hardware,
software, and their interface specification. A BPDS can be converted to a PDS with the
same complexities, so reachability analysis algorithms for PDS can be readily utilized
to analyze BPDS. The evaluation has shown that BPDS is an effective model for co-
verification. For the next step, we plan to automate the abstraction/refinement process
of co-verification by integrating the abstraction/refinement engine of SLAM (C2BP for
abstraction and Newton [11] for refinement) and the VCEGAR engine. One challenge
for this integration is how to automatically propagate the predicates discovered by one
engine across the HW/SW boundary to the other engine.
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Foundation of the United States (Grant #: 0916968).
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