
A Verifiable Modeling Approach to Configurable

Role-Based Access Control

Dae-Kyoo Kim, Lunjin Lu, and Sangsig Kim

Department of Computer Science and Engineering
Oakland University

Rochester, MI 48309, USA
{kim2,l2lu,skim2345}@oakland.edu

Abstract. Role-based access control (RBAC) is a popular access control
model for enterprise systems due to its economic benefit and scalability.
There are many RBAC features available, each providing a different fea-
ture. Not all features are needed for an RBAC system. Depending on
the requirements, one should be able to configure RBAC by selecting
only those features that are needed for the requirements. However, there
have not been suitable methods that enable RBAC configuration at the
feature level. This paper proposes an approach for systematic RBAC
configuration using a combination of feature modeling and UML model-
ing. The approach describes feature modeling and design principles for
specifying and verifying RBAC features and a composition method for
building configured RBAC. We demonstrate the approach by building
an RBAC configuration for a bank application.

1 Introduction

RBAC [1] is an efficient and scalable access control model that governs access
based on user roles and permissions. RBAC consists of a set of features (compo-
nents), each providing a different access control function. There have been many
RBAC features proposed. The NIST RBAC standard [1] presents features of core
RBAC, hierarchical RBAC, static separation of duties, and dynamic separation
of duties. Researchers have proposed other features such as temporal access con-
trol [2] and privacy-aware policies [3]. Not all these features are needed for an
RBAC system. Depending on the requirements, one should be able to configure
RBAC features by selecting only those that are needed for the requirements.
For example, in commercial database management systems, Informix Online
Dynamic Server 7.2 does not support static separation of duties, while Sybase
Adaptive Server release 11.5 does. Informix, however, supports dynamic sepa-
ration of duties, while Oracle Enterprise Server Version 8.0 does not [4]. If the
requirements involve time-dependent access control (e.g., periodicity, duration),
the temporal feature can be chosen.

In this paper, we present a modeling approach that enables systematic and
verifiable configuration of RBAC features. This approach is motivated to reduce
the development overheads and complexity of application-level RBAC systems

D.S. Rosenblum and G. Taentzer (Eds.): FASE 2010, LNCS 6013, pp. 188–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Verifiable Modeling Approach to Configurable Role-Based Access Control 189

(where access control is tightly coupled with application functions) by separating
access control from application functions and configuring RBAC features on a
need basis. Configured RBAC is used as a base for the functional design of the
application. In the approach, RBAC features and their relationships are captured
by feature modeling [5]. Rigorous design principles based on the Unified Modeling
Language (UML) [6] are presented for specifying RBAC features in a form that
facilitates their reuse. The design principles also serve as verification points to
ensure the correctness of RBAC feature specifications. The approach defines a
composition method for building configured RBAC by composing the features
that are necessary for the given requirements. We demonstrate the approach by
configuring RBAC for a bank application and show how the configured RBAC
can be instantiated to the application.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. Section 3 describes RBAC feature modeling. Section 4 describes the
formal basis of design principles for RBAC features. Section 5 presents RBAC
feature specifications built upon the design principles. Section 6 describes the
composition method for RBAC features. Section 7 demonstrates how RBAC
features can be configured for a bank application. Section 8 concludes the paper.

2 Related Work

There is some work on using UML to describe access control models. The work
can be categorized into two approaches. One is using the UML notation to de-
scribe the structure of an access control model and its constraints. Shin and
Ahn [7] use UML class diagrams to describe the structure of RBAC and the
Object Constraint Language (OCL) [8] to define RBAC constraints. Our previ-
ous work [9] uses object diagrams to visualize RBAC constraints. Priebe et al.
[10] view an access control model as a design pattern and use the Gang-of-Four
(GoF) pattern template [11] to describe RBAC. The other approach uses UML
profiles, an extension mechanism in the UML, to define access control concepts.
Jurjens [12] proposed a UML profile called UMLsec for modeling and evaluating
security aspects for distributed systems based on the multi-level security model
[13]. Similarly, Lodderstedt et al. proposed a UML profile called SecureUML [14]
for defining security concepts based on RBAC. Doan et al. [15] extend the UML,
not by a profile, but by directly incorporating security aspects of RBAC and
MAC into UML model elements.

Composition of RBAC features in this work is related to model composition
in aspect-oriented modeling (AOD) (e.g., [16,17,18,19]). In AOD, cross-cutting
concerns are designed as design aspects that are separated from functional as-
pects (called primary models). Clarke and Walker [16] proposed composition
patterns to compose design aspects described in UML templates with a primary
model through parameter binding. Straw et al. [19] proposed a set of composition
directives (e.g., creating, adding) for aspect composition. Similar to Clarke and
Walker’s work, Reddy et al. [17] use sequence diagram templates for specifying
behaviors of design aspects and use tags for behavior composition. An aspect

190 D.-K. Kim, L. Lu, and S. Kim

may include position fragments (e.g., begin, end) which constrain the location
of fragment interactions to be inserted in a sequence diagram. The composition
method in their work, however, is not rigorously defined, and thus it is difficult
to verify resulting models. Their position fragments influenced join points in our
work. Song et al. [18] proposed a composition method for composing a design
aspect with an application design. They verify composed behaviors described
in OCL by discharging a set of proof obligations. However, their verification is
limited to OCL expressions, and the entire composed model cannot be verified.

3 RBAC Feature Modeling

Feature modeling is a design method for modeling commonality and variability
of an application family [5]. A feature model consists of mandatory features
capturing commonality and optional features capturing variability. Features are
organized into a tree-like hierarchy. Fig. 1 shows a simplified feature model for
RBAC.

SoD

RBAC

Core Hierarchy Privacy Temporal

AdvancedLimitedGeneral DSDSSD

Fig. 1. RBAC Feature Model

We design an RBAC feature in the way that it encapsulates those and only
those properties that pertain to the functions of the feature. In Fig. 1, filled circles
represent mandatory features, while empty circles represent optional features.
The empty triangle underneath the Hierarchy feature denotes an alternative
group constraining that only one of the General and Limited features can be
selected from the group. The filled triangle beneath the SoD feature denotes an
or group constraining that at least one of the SSD and DSD features must be
selected from the group.

The Core feature captures the essential RBAC functions that all RBAC sys-
tems must possess. The Hierarchy feature enables roles to be structured in a
hierarchy in which permissions are inherited bottom-up and users are inherited
top-down. A hierarchy can be either General or Limited. A general hierarchy
allows a role to have more than one descendant, while a limited hierarchy is
limited to only one descendant. The optional Advanced feature provides admin-
istrative functions for managing roles in a hierarchy. The SoD feature enforces
Separation of Duty (SoD) constraints which divide responsibility for accessing
sensitive information. SoD constraints are divided into Static Separation of Duty
(SSD) and Dynamic Separation of Duty (DSD). The model can be extended with
consideration of other features (e.g., [2,3]).

A Verifiable Modeling Approach to Configurable Role-Based Access Control 191

4 Partial Inheritance

The Core feature forms the basis of all configurations, and other features (hence-
forth, referred to as component features) add additional properties to Core or
redefine its existing properties. This establishes inheritance relationships between
Core and component features. However, unlike the traditional inheritance where
all properties are inherited, component features may inherit only those that are
needed for their functions. Partial inheritance for class diagrams and sequence
diagrams is defined below.

An operation op with name o, formal parameter types p1, . . . , pn , and return
value type r is denoted o(p1, . . . , pn) � r . Let Pre(op) and Post(op) be pre-
condition and post-condition of op. Let Inv(c) be invariant of a class c and T1 ⊆
T2 denote that T1 is a subtype of T2. An operation opp = op(p1, . . . , pn) � r
in class cp is said to redefine an operation opc = oc(p′

1, . . . , p′
m) � r ′ in class

cc iff O1: op = oc , O2: n = m, O3: ∀ i ∈ 1..n, p′
i ⊆ pi , O4: r ⊆ r ′, O5:

Pre(opc) ∧ Inv(cp) ⇒ Pre(opp), O6: Pre(opc) ∧ Post(opp) ⇒ Post(opc) [20].
The cardinality of a relationship rel at an end e is an interval of positive

integers and it is denoted as bounds(rel(e)). The containment relationship be-
tween intervals are defined as usual. That is, 〈l1, u1〉 ⊆ 〈l2, u2〉 iff l1 ≥ l2 and
u1 ≤ u2. The intersection of two intervals 〈l1, u1〉 and 〈l2, u2〉 is 〈l1, u1〉∩〈l2, u2〉 =
〈max (l1, l2),min(u1, u2)〉. The set of traces of a sequence diagram SD is denoted
T (SD). A trace s is a sub-sequence of another trace t , denoted s � t iff s can
be obtained from t by removing zero or more events. We say a class cp in a
component feature fp is inherited from fc if cp has the same name as a class cc
in fc and we call cc the parent of cp .

Definition 1. A component feature fp partially inherits the Core feature fc iff

1. At least one class in fp is inherited from fc .
2. Each group of inherited classes preserves all relationships between their par-

ents. A relationship relc in fc is preserved iff there is a relationship relp in fp
that has the same name and the same ends as relc and for all relationship
end e, bounds(relp(e)) ⊆ bounds(relc(e)).

3. For each inherited class cc and its parent cp , ∃−Y •Inv(cp) ⇒ ∃−Y •Inv(cc)
where Y is the set of properties shared by cc and cp and ∃−Y •P is defined
as ∃ z1. · · · ∃ zn •P and {z1, · · · , zn} contains all those variables in P that are
not in Y .

4. For each inherited class cc and its parent cp , each inherited operation opp

in cp redefines the corresponding operation opc in cc.
5. If a sequence diagram SDc in fc and a sequence diagram SDp in fp have the

same name, then every trace of SDc is a sub-sequence of some trace of SDp :
∀ t ∈ T (SDc) • ∃ s ∈ T (SDp) • (t � s).

5 Specifying RBAC Features

RBAC features are specified based on partial inheritance using the UML. Due to
the limited space, we present only the Core, General hierarchy and DSD features
where General and DSD are designed to be partial inheritance of Core.

192 D.-K. Kim, L. Lu, and S. Kim

Core feature. The Core feature defines the properties that are required by all
RBAC systems. Fig. 2 shows the structure and behaviors of the Core feature. The
symbol “|” in the diagram denotes parameters to be instantiated after configu-
ration. Although the operations in the class diagram are self-descriptive, their
semantics should be defined clearly. We use the Object Constraint Language
(OCL) [8] to define operation semantics. The following defines the semantics of
addActiveRole():

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles() in
Auth: auth.hasReturned() and auth.result() = ars and
Cond: if ars → includes(r) then active in = active in@pre → including(r)

else active in = active in@pre endif

The postcondition specifies that an invocation of the operation results in invoking
authorizedRoles() which returns a set of authorized roles for the user, and the
requested role is activated only if it is included in the authorized roles. Auth and
Cond are labels to be used later in this section for proving design correctness.

1

ref

:|User

AuthorizedRoles

|monitors_object

0..*

|executed_on
1

0..*
|Object

0..*

1

|Operation

0..*

|getAactiveRoles(): Set(|Role)
|dropActiveRole(|r:|Role)

|Session

|addActiveRole(|r:|Role)

|monitors_operation

|User

0..*

1

|creates

0..* 0..*

|Permission
|given_to

0..*

RBAC::Core

|authorizedRoles(): Set(|Role)
|createSession()

AddActiveRoleAuthorizedRoles

|ars=|authorizedRoles()
|addActiveRole(|r)

:|Session

[|ars−>includes(|r)]

|add(|r)

|ars=|get()
|ars

:|User

|authroizedRoles()

opt

1

|checkAccess(|o:|Object,|op:|Operation):Boolean

1
|ReferenceMonitor

1

0..*

|revokePermission(|p:|Permission)
|grantPermission(|p:|Permission)
|deassignUser(|u:|User)
|assignUser(|u:|User)

|authorizedUsers(): Set(|User)

|Role

|permissions(): Set(|Permission)

|monitors_role

0..*

|monitors_session

0..*

|assigned_to

0..*

0..*

|active_in

0..*

0..*

Fig. 2. RBAC Core Feature

General hierarchy feature. General hierarchy allows a role to have one or more
immediate ascendants and descendants for inheriting user memberships and per-
missions from multiple sources. Fig. 3 shows the General hierarchy feature. Based
on Definition 1, it contains only the properties that are needed for role hierarchy.
The General hierarchy feature redefines several operations in the Core feature
which are in bold. For example, authorizedRoles() and createSession() in the
User class are redefined to include the roles that are inherited by the directly

A Verifiable Modeling Approach to Configurable Role-Based Access Control 193

assigned roles. addActiveRole() in the Session class is redefined to activate inher-
ited roles when the requested role is activated in a session. The new semantics
of addActiveRole() is defined as follows:

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles(),

desc: OclMessage = Role^descendants() in
Auth: auth.hasReturned() and auth.result() = ars and
Desc: desc.hasReturned() and desc.result() = descnd and
Cond: if ars → includes(r) then active in = active in@pre → including(r)

and descnd → forAll(d| active in = active in@pre → including(d)
else active in = active in@pre endif

|ars=|get()

AddActiveRole

opt

add(r)

dr=descendants()

loop [i<dr.size()]
join DSD::CheckDSD

|add(|dr[i])

[|ars−>includes(|r)]

:|Session :|User |ars[i]:|Role |r:|Role

|addActiveRole(|r)
|ars=|authroizedRoles() ref AuthorizedRoles

1..*

ascendant

descendant

1..*

1..*
|addInheritance(|r1:|Role,|r2:|Role)
|deleteInheritance(|r1:|Role,|r2:|Role)

|deassignUser(|u:|User)

|authorizedUsers(): Set(|User)

|addAscendant(|ascnt:|Role)
|addDescendant(|ascnt:|Role)

|ascendants(): Set(|Role)
|descendants(): Set(|Role)

0..*
0..*

|assigned_to

active_in
1

|addActiveRole(|r:|Role)

|Session

|creates
0..*

0..*

0..*
|createSession()
|authorizedRoles(): Set(|Role)

|User |Role
|senior1..*

|junior

|RoleHierarchy

RBAC::Hierarchy::General

:|User

|authroizedRoles()

loop
|descnd=|descendants()

[i<|rs.size()]

AuthorizedRoles

|authzd=|add(|descnd)

|ars+|authzd

|rs[i]:|Role

Fig. 3. General Hierarchy Feature

deassignUser() and authorizedUser() in the Role class are redefined to consider
whether inherited roles should be also deassigned when a directly assigned role
is deassigned, and whether the user can activate only the directly assigned roles
or also inherited roles.

In the analysis of feature behaviors, an interference is found between the
General hierarchy feature and the DSD feature when inherited roles also exist
in DSD relations. To avoid the interference, inherited roles should be checked
against DSD constraints before they can be activated in the same session. To
handle this, we use a join point to designate where in interaction DSD con-
straints should be checked. The filled rectangle in the loop fragment in the
AddActiveRole sequence diagram denotes a join point. The syntactic definition
of join points is defined as follows based on the UML metamodel:

194 D.-K. Kim, L. Lu, and S. Kim

follows <Construct>
in <FragmentOperator> join [<Qualification>]::<Joint>
precedes <Construct>

<Construct> ::= Message | InteractionUse | CombinedFragment | “None”
<Joint> ::= Message | Interaction | InteractionUse | CombinedFragment
<FragmentOperator> ::= InteractionOperator
<Qualification> ::= Feature | Feature:<Qualification>

Given the syntax, a join point can be defined between messages, fragments,
or combinations of both. If a behavior should be placed at the beginning of a
sequence, the None construct is used in the follows condition. Similarly, None is
used if a behavior should be placed at the end of a sequence. The Qualification
construct represents the ownership of the joining construct. That is, the join
point is effective only when the feature specified in the qualification is in use.

DSD feature. The DSD feature enforces DSD relations constraining that two
conflicting roles cannot be activated within the same session. Fig. 4 shows the
DSD feature. In the figure, the DSDRole class represents a single DSD relation,
and the cardinality attribute specifies the number of roles to which a user can
be assigned in an DSD relation. The DSDRoleSet class represents the set of
DSD relations. The multiplicity n on the Role class denotes the DSD cardinal-
ity which must match the value of cardinality. createSession() in the User class
and addActiveRole() in the Session class are redefined to take into account DSD
constraints. The new semantics of addActiveRole() is defined below, checking if
the requested role has an DSD relation with any active role in the session:

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles(),
dsd: OclMessage = Role^DSDRoles(),
violateDSD: active in → exists (ar|ar.constrained by DSD → includes(r)) in
Auth: auth.hasReturned() and auth.result() = ars and
DSD: dsd.hasReturned() and dsd.result() = dr and
Cond: if ars → includes(r) then active in = active in@pre → including(r)

and not violateDSD else active in = active in@pre endif

To verify the correctness of the specifications, their conformance to Definition 1
must be checked. The partial inheritance between Core and DSD can be verified
as follows by discharging the proof obligations in the definition:

– The first proof obligation is proved by the presence of the inherited classes
User, Role, and Session in the DSD feature and the fact that the relationships
assigned to, creates, and active in have the same ends and multiplicities.

– There are two classes (User, Session) in the DSD feature that have the same
set of properties as the corresponding classes in the Core feature, and the
second proof obligation can be proved by Inv(UserDSD) ⇒ Inv(UserCore)

A Verifiable Modeling Approach to Configurable Role-Based Access Control 195

:|DSDRole

|activeRoles():Role(set)
|dropActiveRole(|r:|Role)

0..*

|addActiveRole(|r:|Role)

|DSDRoleSet|Session

|createDSD()
|deleteDSD()
|DSDRoleSets(): Set(|DSDSet)

0..*1

|consists_of
0..*

RBAC::SoD::DSD

0..* 0..* 0..*0..*

1

|setDSDCardinality(|card:Integer)

|DSDCardinality(): Integer

|User |Role|assigned_to |constrained_by_DSD

|authorizedRoles():Set(|Role)
|createSession()

|DSDRoles(): Set(|Role) |cardinality: Integer

|deleteDSDRoleMember(|r:|Role)

|DSDRoles(): Set(|Role)

|DSDRole

|addDSDRoleMember(|r:|Role)

|creates
|active_in

0..*

ref

:|Session

[|ars−>includes(|r)]

|ars=|authorizedRoles()

|ar=|getActiveRoles()

|ar[i]:|Role :|User

|addActiveRole(|r)

opt

AddActiveRole

CheckDSD

|add(|r)

ref AuthorizedRoles

:|Session |ar[i]:|Role

[i<|ar.size()]
|dr=|DSDRoles()

|dr=|DSDRoles()

opt [|dr−>includes(|r)]

loop

CheckDSD

:|DSDRole

Fig. 4. DSD Feature

and Inv(SessionDSD) ⇒ Inv(SessionCore), which are both trivially true since
there is no invariant defined for the User and Session classes in both Core
and DSD .

– The third proof obligation must be discharged for every operation rede-
fined in the inherited classes. As an example, addActiveRole() in the DSD
feature redefines that of the Core feature, since they both have the same
name, the same parameter type, and no return type. This satisfies the con-
straints O1, O2, O3, and O4. Based on the OCL semantics of the addAc-
tiveRole() operations, O5 and O6 can be proved by (1) (true∧ true) ⇒ true,
which is trivially true, and (2) (true ∧ (AuthDSD ∧DSDDSD ∧CondDSD)) ⇒
AuthCore ∧ CondCore . The second condition is proved as follows: Let a =
(ars → includes(r)), b = (active in = active in • pre → including(r)),
d = (active in = active in • pre), and e = violateDSD . Let CondDSD =
((a ⇒ (b ∧ ¬e)) ∨ d) and CondCore = ((a ⇒ b) ∨ d). It suffices to prove
that (AuthDSD ∧ CondDSD) ⇒ (AuthCore ∧ CondCore) since (AuthDSD ∧
DSDDSD ∧ CondDSD) ⇒ (AuthDSD ∧ CondDSD). Since (b ∧ ¬e) ⇒ b, we
have (a ⇒ (b ∧ ¬e)) ⇒ (a ⇒ b) which implies CondDSD ⇒ CondCore which
in turn implies (AuthDSD ∧ CondDSD) ⇒ (AuthCore ∧CondCore). Other op-
erations can be proved similarly.

– The fourth proof obligation is concretized as ∀ t ∈ T (AddActiveRoleCore) •
∃ s ∈ T (AddActiveRoleDSD) • (t � s) for the AddActiveRole sequence dia-
gram. There are two traces involved in T (AddActiveRoleCore), <addActiveR-
ole(), authorizedRoles()> and <addActiveRole(), authorizedRoles(), add(r)>.
The first one exists in T (AddActiveRoleDSD) and the second one is a sub-
sequence of <addActiveRole(), authorizedRoles(), getActiveRoles(),DSDRol -
es(),DSDRoles(), add()> which also exists in T (AddActiveRoleDSD). Thus,
the proof obligation is discharged.

196 D.-K. Kim, L. Lu, and S. Kim

The partial inheritance between the Core feature and the General hierarchy
features can be verified similarly.

6 Composition Method

The partial inheritance of RBAC features enables step-wise composition, which
allows verification of immediate impact of selected features. The Core feature is
selected by default as the first configuration. The nth configuration is built upon
the (n −1)th configuration by adding or redefining the properties of the selected
feature. We view this approach a special kind of multiple inheritance where the
elements having the same name get composed rather than renamed as in the
traditional multiple inheritance. Fig. 5 illustrates the approach.

partial inheritance

component
feature2

component
feature1

configurations

config2

Core
(config1)

config3

Fig. 5. Multiple Inheritance of Configura-
tions

We define feature composition in
the view of multiple inheritance as re-
finement as follows.

Relationship composition. In compo-
sition of class diagrams CD1 and CD2,
relationship a1 from CD1 is composed
with relationship a2 from CD2 if a1

and a2 have the same name and same
relationship ends. The composed re-
lation denoted a1 ⊕ a2 has the same
name and relationship ends as a1

and a2 and bounds((a1 ⊕ a2)(e)) =
bounds(a1(e)) ∩ bounds(a2(e)) for
each relationship end e. This ensures

that the resulting end has the maximal bound interval that conforms to the end
of both a1 and a2.

Operation composition. Operation o(p1, . . . , pn) � r is said to match with opera-
tion o′(p′

1, . . . , p
′
m) � r ′ iff (1) o = o′, (2) n = m, (3) ∀ i ∈ 1..n, p′

i ⊆ pi ∨pi ⊆ p′
i ,

(4) r ⊆ r ′∨r ′ ⊆ r . The composition of two matching operations op1 and op2 is de-
noted op1⊕op2. Let op1 = o(p11, . . . , p1n) � r1 and op2 = o(p21, . . . , p2n) � r2.
We require that op1 ⊕ op2 be an operation (o(p′

1, . . . , p
′
n) � r ′) that satisfies

P1 ∀ i ∈ 1..n, p′
i = lub(p1i , p2i) where lub is the least upper bound operation;

P2 r ′ = glb(r1, r2) where glb is the greatest lower bound operation;
P3 Pre(op1) ∧ Pre(op2) ∧ Inv(c′) ⇒ Pre(op′);
P4 Pre(op1) ∧ Pre(op2) ∧ Post(op′) ⇒ Post(op1) ∧ Post(op2).

P1 ensures that composed operations can take any parameter valid for compo-
nent operations. P2 postulates that the return value of composed operations be
of the type that conforms to the return type of component operations. Consistent
with P1 and P2, P3 enforces that the precondition of composed operations must
not be stronger than that of component operations. P4 constrains that the post-
condition of composed operations must not be weaker than that of component
operations.

A Verifiable Modeling Approach to Configurable Role-Based Access Control 197

Class composition. Class c1 in class diagram CD1 is composed with class c2

in class diagram CD2 if they have the same name. Let OP(c) be the set of
operations in class c. Class c′ = c1 ⊕ c2 is the composition of c1 and c2 iff

C1 Inv(c′) ⇒ Inv(c1) ∧ Inv(c2);
C2 ∀ op ∈ OP(c1) ∪ OP(c2) • ∃ op′ ∈ OP(c′) • name(op) = name(op′);
C3 op1 ⊕ op2 ∈ OP(c′) iff op1 ∈ OP(c1), op2 ∈ OP(c2) and op1 matches op2.

C1 ensures that the invariant of the classes that are composed is preserved
in the resulting class. C2 requires that the resulting class have the operations
of both the classes composed. C3 ensures that only matching operations can be
composed. We are now ready to define composition operations on class diagrams.
Let E(CD) be the set of classes and relationships of class diagram CD .

Definition 2. An operation ⊕ on class diagrams is a composition operation iff

– ∀ e1 ∈ E(CD1) • [∀ e2 ∈ E(CD2) • (name(e1) �= name(e2)
⇒ e1 ∈ E(CD1 ⊕ CD2)] and ∀ e2 ∈ E(CD2) • [∀ e1 ∈ E(CD1) • (name(e1) �=
name(e2)) ⇒ e2 ∈ E(CD1 ⊕ CD2)];

– ∀ e1 ∈ E(CD1) • ∀ e2 ∈ E(CD2) • (name(e1) = name(e2)
⇒ ∃ e ′ ∈ E(CD1 ⊕ CD2) • e ′ = e1 ⊕ e2)

An operation on sequence diagrams ⊕ is a composition operation if each trace
of SD1 ⊕ SD2 can be obtained by interleaving a trace of SD1 and a trace of SD2

and all traces of SD1 and SD2 are used. The interleave of two traces of events is
the set of traces obtained by interleaving the two traces in all possible ways. Let
x , y be events and μ, ν traces. The following definition of the interleave operator
||| is adapted from [21].

ε ||| μ = μ

μ ||| ε = μ

x μ ||| xν = {x} × ((μ ||| xν) ∪ (x μ ||| ν) ∪ (μ ||| ν))
x μ ||| yν = {x} × (μ ||| yν) ∪ {y} × (x μ ||| v) for x �= y

Note that the above definition allows us to replace two consecutive occurrences
of the same event by a single occurrence if they arise from different traces that
are interleaved.

Definition 3. A composition operation ⊕ on sequence diagrams is defined iff

1. ∀ t ∈ T (SDi) • ∃ t ′ ∈ T (SD1 ⊕ SD2) • (t � t ′) for i = 1, 2;
2. ∀ t ′ ∈ T (SD1 ⊕ SD2) • ∃ t1 ∈ T (SD1) • ∃ t2 ∈ T (SD2) • t ′ ∈ (t1 ||| t2) where

t1 ||| t2 is the set of traces obtained from interleaving t1 and t2 in all possible
ways.

7 Configuring RBAC

To demonstrate RBAC configuration, we use a banking application taken from
[22]. The application requires the following RBAC policies:

198 D.-K. Kim, L. Lu, and S. Kim

R1: A teller can modify deposit accounts.
R2: A customer service representative can create or delete deposit accounts.
R3: An accountant can create general ledger reports.
R4: An accounting manager can modify ledger-posting rules.
R5: A loan officer can create and modify loan accounts.
R6: The customer service representative role is senior to the teller role.
R7: The accounting manager role is senior to the accountant role.
R8: A user may be assigned the customer service representative role and the

loan officer role, but they cannot be activated simultaneously.

R1-5 describe general authorization requirements for roles, which can be ad-
dressed by the Core feature. R6-7 describe role hierarchies, which can be satisfied
by the General hierarchy feature. R8 describes a dynamic SoD requirement to
be addressed by the DSD feature. The selection is assumed to be in the order of
Core, General hierarchy, and DSD, but it can be in any order by partial inher-
itance. The Core feature itself forms the first configuration by the composition
method.

7.1 Second Configuration

The second configuration is built by composing the Core and General hierarchy
features, which involves 1) adding the RoleHierarchy class and its associated
relationships to the Core feature, 2) composing the co-existing classes of User,
Session, and Role, and 3) composing the matching operations in other classes
(e.g., authorizedRoles(), addActiveRole()). Based on the composition method,
two operations are composed by conjoining preconditions and postconditions.
Due to partial inheritance, the composition of the addActiveRole() operations
results in the same operation as that of the General hierarchy feature. Thus, the
composed operation satisfies the constraints P1 − 4 in Section 6.

The AddActiveRole sequence diagrams are composed by adding the ars[i]:Role
and r:Role lifelines to the AddActiveRole sequence diagram in Core for check-
ing authorized descendant roles. The loop fragment from the General hierarchy
feature is added to check violation of DSD policies in the descendant roles. The
fragment is enabled only when the DSD feature is used. Note that the compo-
sition results in the same sequence diagram as the one in the General hierarchy
feature. This is because of the constraint 4 in Definition 1 requiring that a com-
ponent feature include every trace of the Core feature, which is consistent with
Definition 3. Thus, the resulting configuration also conforms to the composition
method. This is true for every sequence diagram in the second configuration,
provided that component features conform to Definition 1. The AuthorizedRole
operations can be composed similarly.

7.2 Third Configuration

The final configuration is built by composing the second configuration Config2
with the DSD feature. The composition is carried out by 1) adding the DSDRole

A Verifiable Modeling Approach to Configurable Role-Based Access Control 199

|descendent

|DSDRoleSets(): Set(|DSDSet)

|createDSD()
|deleteDSD()

|DSDRoleSet

1

|add(|dr[i])

CheckDSD
ref

loop

|dr=|descendants()

|ar=|getActiveRoles()

CheckDSD
ref

[|ars−>includes(|r)]

|ars=|authorizedRoles()

AddActiveRole
:|Session

|addActiveRole(|r)

|ar[i]:|Role :|DSDRole

opt

[i<|dr.size()]

|add(|r)

ref
AuthorizedRoles

|r:|Role

added by the DSD feature

|DSDRoles(): Set(|Role)
|DSDCardinality(): Integer

|cardinality: Integer

|setDSDCardinality(|card:Integer)

|addDSDRoleMember(|r:|Role)
|deleteDSDRoleMember(|r:|Role)0..*

0..*

consists_of

|constrained_by_DSD

0..*

|DSDRole

|addAscendant(|ascnt:|Role)
|addDescendant(|ascnt:|Role)
|ascendents(): Set(|Role)
|descendents(): Set(|Role)

|revokePermission(|p:|Permission)
|grantPermission(|p:|Permission)
|deassignUser(|u:|User)
|assignUser(|u:|User)

|permissions(): Set(|Permission)
|authorizedUsers(): Set(|User)

|Role

|DSDRoles(): Set(|Role)

added by the General feature

:|User |ars[i]:|Role

|addInheritance(|r1:|Role,|r2:|Role)

|RoleHierarchy
1..*

1..*|junior

|senior

|deleteInheritance(|r1:|Role,|r2:|Role)

1..*

|ascendent

1..*

Fig. 6. Partial Composition of Config2 with DSD Feature

and DSDRoleSet classes and their associated relationships to Config2, and 2)
composing the co-existing classes of User, Role, and Session. Fig. 6 shows the
DSD properties added to the Config2 class diagram.

The composition of the addActiveRole() operations in Config2 and the DSD
feature results in an operation with the following semantics which checks DSD
policies for the requested role and its inherited roles to active roles:

context Session:: addActiveRole(r:Role)
pre : true
post: let auth:OclMessage=User^authorizedRoles(),
desc: OclMessage = Role^descendants(),
dsd: OclMessage = Role^DSDRoles(),
violateDSD: active in → exists (ar|ar.constrained by DSD → includes(r)) in
Auth: auth.hasReturned() and auth.result() = ars and
Desc: desc.hasReturned() and desc.result() = descnd and
DSD: dsd.hasReturned() and dsd.result() = dr and
Cond: if ars → includes(r) then

(active in = active in@pre → including(r) and
descnd → forAll(d| active in = active in@pre → including(d)) and
not violateDSD else active in = active in@pre endif

The resulting semantics conforms to the definition of operation composition in
Section 6 as follows:

– P1 and P2 are trivially true, since the composed operation has the same
name and parameter type (Role) and no return type as that of Config2 and
the DSD feature.

– P3 is true since (true ∧ true ∧ true) ⇒ true.
– P4 is true by true ∧ true ∧ AuthConfig3 ∧ DescConfig3 ∧ DSDConfig3 ∧

CondConfig3 ⇒ (AuthConfig2 ∧ DescConfig2 ∧ CondConfig2) ∨ (AuthDSD ∧
DSDDSD ∧ CondDSD) where Config3 signifies the third configuration.

200 D.-K. Kim, L. Lu, and S. Kim

The AddActiveRole sequence diagram in Config2 is redefined to enforce DSD poli-
cies. The getActiveRoles() message, the CheckDSD fragment, and the ar[i]:Role
and :DSDRole lifelines of the DSD feature are added to Config2 to check DSD
policies for active roles. The composition also introduces another CheckDSD frag-
ment at the place of the join point on the Session lifeline, which is responsible for
checking DSD policies for the descendant roles of the requested role.

The composed sequence diagram conforms to Definition 3 as follows: Ev-
ery trace of the sequence diagram in Config2 with the join point expanded
is a sub-sequence of a trace of the sequence diagram in Fig. 6; and every
trace of the AddActiveRole sequence diagram of the DSD feature is a sub-
sequence of a trace of the sequence diagram in Fig. 6. Thus, the postulate (1)
is satisfied. Now consider the postulate (2). Let m0 = addActiveRole(r), m1 =
autorizedRoles(), m2 = getActiveRoles(), m3 = add(r), m4 = descendants(),
m5[i] = add(dr [i]) and n = dr .size(). Then the traces of the sequence di-
agram in Fig. 6 are of these forms: m0m1, m0m1m2σ0, m0m1m2σ0m3m4σ1,
m0m1m2σ0m3m4σ1m5[1]σ2, . . ., m0m1m2σ0m3m4σ1m5[1] . . .m5[i − 1]σi for 2 ≤
i ≤ n and m0m1m2σ0m3m4σ1m1

5 . . .m5[i − 1]σi . . . σnm5[n] where each σj for
0 ≤ j ≤ n is a trace of the CheckDSD sequence diagram. The traces that end
with σj result from violations of the DSD constraint. Each of the above traces
can be obtained by interleaving a trace of the AddActiveRole sequence diagram of
Config2 with the join point expanded and a trace of the AddActiveRole sequence
diagram in the DSD feature.

Fig. 7 shows partial instantiation of the third configuration in the context
of the bank application. The instantiation is carried out based on a mapping
between RBAC elements and application concepts. For example, Object and

1
|checkAccess(o:BankObject,t:Transaction):Boolean

ReferenceMonitor

0..*

1

activated_in
0..*

assigned_to

0..*

BankUser

authorizedRoles(): Set(BankRole)
createSession()

addActiveRole(r:BankRole)
dropActiveRole(r:BankRole)
activeRoles(): Set(BankRole)

BankSession

0..*

monitors_session

0..*

creates

0..*

1

RBAC::Hierarchy::General
RBAC::Core::Required

RBAC::SoD::DSD

Permission

Delete

Create

ModifyBankObject Transaction

LedgersPostingRule GeneralLedgerReport

regulates **

Account

LoanAccountCustomerAccount

0..*

descendent

ascendent

1..*

1..*

0..*

assignUser(u:BankUser)
DSDRoles(): Set(BankRole)

deassignUser(u:BankUser)
grantPermission(p:Permission)
revokePermission(p:Permission)
authorizedUsers(): Set(BankUser)
permissions(): Set(Permission)
addAscendant(ascnt:BankRole)
addDescendant(ascnt:BankRole)
ascendents(): Set(BankRole)
descendents(): Set(BankRole)

BankRole

11

0..*

monitors_role

constrained

0..*

DSDCardinality(): Integer

consists_of

1

DSDRole

deleteDSDRoleMember(r:BankRole)
addDSDRoleMember(r:BankRole)

cardinality: Integer

setDSDCardinality(card:Integer)
DSDRoles(): Set(BankRole)

0..*

createDSD()
deleteDSD()
DSDRoleSets(): Set(DSDSet)

addInheritance(r1:BankRole,r2:BankRole)
deleteInheritance(r1:BankRole,r2:BankRole)

RoleHierarchy
1..*

1..*

DSDRoleSet

monitors_object

0..* 0..*0..*

executed_on

0..* 0..*

1 1

0..*

monitors_operation isInput

|given_to 0..*

Fig. 7. Instantiation of RBAC Configured with Core, General hierarchy, and DSD

A Verifiable Modeling Approach to Configurable Role-Based Access Control 201

Operation in RBAC are mapped, respectively, to the hierarchy of bank objects
such as Account and LedgersPostingRule and transaction operations such as Cre-
ate and Modify. The instantiation lends itself as an initial design model for the
application addressing access control concerns.

8 Conclusion

We have described a feature-based modeling approach for configuring RBAC to
support the need-based development of access control systems. This approach
enables fine-grained configuration of RBAC at the feature level in a systematic
manner, which helps to lower development complexity and reduce potential er-
rors by excluding unnecessary features. The composition method allows one to
rigorously verify RBAC configurations. We have developed a prototype tool that
supports feature selection and composition and instantiation of configurations.
The tool is developed as an eclipse plug-in on top of Rational Rose Architects
(RSA). We have also used the approach for Mandatory Access Control (MAC)
and Discretionary Access Control (DAC). We found the approach less appealing
for these models because of their low variability. However, our pilot study shows
that the approach is useful for building hybrid models of RBAC and MAC which
are often used in the military domain to support polices at different levels of se-
curity per role. Configuring a hybrid model requires a comprehensive analysis
of both domains to identify possible conflicts in combined use of heterogeneous
features.

References

1. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-Based Access Control. ACM Trans. on Information and
Systems Security 4(3) (2001)

2. Bertino, E., Bonatti, P., Ferrari, E.: TRBAC: A Temporal Role-based Access Con-
trol Model. ACM Trans. on Information and Systems Security 4(3), 191–223 (2001)

3. Ferraiolo, D., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, second
edition. Artech House (2007)

4. Ramaswamy, C., Sandhu, R.: Role-Based Access Control Features in Commercial
Database Management Systems. In: Proc. of the 21st NIST-NCSC Conference
(1998)

5. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90TR-21 (1990)

6. The Object Management Group (OMG): Unified Modeling Language: Superstruc-
ture. Version 2.1.2 formal/07-11-02, OMG (November 2007), http://www.omg.org

7. Shin, M., Ahn, G.: UML-Based Representation of Role-Based Access Control. In:
Proc. of IEEE Int. Workshop on Enabling Technologies, pp. 195–200 (2000)

8. Warmer, J., Kleppe, A.: The Object Constraint Language Second Edition: Getting
Your Models Ready for MDA. Addison Wesley, Reading (2003)

9. Kim, D., Ray, I., France, R., Li, N.: Modeling Role-Based Access Control Using Pa-
rameterized UML Models. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE
2004. LNCS, vol. 2984, pp. 180–193. Springer, Heidelberg (2004)

http://www.omg.org

202 D.-K. Kim, L. Lu, and S. Kim

10. Priebe, T., Fernandez, E., Mehlau, J., Pernul, G.: A Pattern System for Access
Control. In: Proc. of Conf. on Data and Application Security, pp. 22–28 (2004)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

12. Jurjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Proc.
of the 5th Int. Conf. on the UML, Dresden, Germany, pp. 412–425 (2002)

13. Harrison, M., Ruzzo, W., Ullman, J.: Protection in Operating Systems. Commu-
nications of the ACM 19(8), 461–471 (1976)

14. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In: Proc. of the 5th Int. Conf. on the UML,
Dresden, Germany, pp. 426–441 (2002)

15. Doan, T., Demurjian, S., Phillips, C., Ting, T.: Research Directions in Data and
Applications Security XVIII. In: Proc. of the 18th IFIP TC11/WG 11.3 Annual
Conf. on Data and Applications Security, Catalonia, Spain, pp. 25–28 (2004)

16. Clarke, S., Walker, R.: Composition Patterns: An Approach to Designing Reusable
Aspects. In: Proc. of Int. Conf. on Software Engineering, pp. 5–14 (2001)

17. Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing Sequence Models using
Tags. In: Proc. of MoDELS Workshop on Aspect Oriented Modeling (2006)

18. Song, E., Reddy, R., France, R., Ray, I., Georg, G., Alexander, R.: Verifiable Com-
position of Access Control and Application Features. In: Proc. of the 10th ACM
Symp. on Access Control Models and Technologies, Stockholm, Sweden, pp. 120–
129 (2005)

19. Straw, G., Georg, G., Song, E., Ghosh, S., France, R., Bieman, J.: Model Com-
position Directives. In: Proc. of the 7th Int. Conf. on the UML, Lisbon, Portugal
(2004)

20. Brady, A.F.: A Taxonomy of Inheritance Semantics. In: Proc. of the 7th Int. Work-
shop on Software Specification and Design, Redondo Beach, California, pp. 194–203
(1993)

21. Störrle, H.: Semantics of interactions in UML 2.0. In: Proceedings of IEEE Sym-
posium on Human Centric Computing Languages and Environments

22. Chandramouli, R.: Application of XML Tools for Enterprise-Wide RBAC Imple-
mentation Tasks. In: Proc. of Workshop on Role-based Access Control (2000)

	A Verifiable Modeling Approach to Configurable Role-Based Access Control
	Introduction
	Related Work
	RBAC Feature Modeling
	Partial Inheritance
	Specifying RBAC Features
	Composition Method
	Configuring RBAC
	Second Configuration
	Third Configuration

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

