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Abstract. We propose a symbolic algorithm to accurately predict atomicity vio-
lations by analyzing a concrete execution trace of a concurrent program. We use
both the execution trace and the program source code to construct a symbolic
predictive model, which captures a large set of alternative interleavings of the
events of the given trace. We use precise symbolic reasoning with a satisfiabil-
ity modulo theory (SMT) solver to check the feasible interleavings for atomicity
violations. Our algorithm differs from the existing methods in that all reported
atomicity violations can appear in the actual program execution; and at the same
time the feasible interleavings analyzed by our model are significantly more than
other predictive models that guarantee the absence of false alarms.

1 Introduction

Atomicity, or serializability, is a semantic correctness condition for concurrent pro-
grams. Intuitively, a thread interleaving is serializable if it is equivalent to a serial ex-
ecution, i.e. a thread interleaving which executes a transactional block without other
threads interleaved in between. The transactional blocks are typically marked explic-
itly in the code. Much attention has recently been focused on three-access atomicity
violations [1,2], which involves one shared variable and three consecutive accesses to
the variable. Here we characterize consecutive accesses with respect to a shared vari-
able; these accesses can be separated by events over possibly other shared variables. If
two accesses in a local thread, which are inside a transactional block, are interleaved in
between by an access in another thread, this interleaving may be unserializable if the
remote access has data conflicts with the two local accesses. In practice, unserializable
interleavings often indicate the presence of subtle concurrency bugs in the program.

Known techniques for detecting atomicity violations fall into the following three
categories: static detection, runtime monitoring, and runtime prediction. Type-state or
other static analysis based methods [3,4] try to identify potential violations at compile
time. These methods typically ignore data and most of the synchronization primitives
other than locks, and tend to report a large number of bogus errors. Runtime monitoring
aims at identifying atomicity violations exposed by a given execution trace [5,1,6,7,8].
However, it is a challenging task during testing to trigger the erroneous thread schedule
in the first place. In contrast, runtime prediction aims at detecting atomicity violations
in all feasible interleavings of events of the given trace. In other words, even if no
violation exists in that trace, but an alternative interleaving is erroneous, a predictive
method [9,2,10,11,12,13] may be able to catch it without actually re-running the test.

Although there have been several predictive methods in the literature, they either suf-
fer from imprecision as a result of conservative modeling (or no modeling at all) of the
program data flow and consequently many false negatives [9,2,10], or suffer from a very
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Thread T1 Thread T2

atomic{
t1 : a := x
t2 : x := a + 1
}

t3 : b := x
t4 : if(b > 0)
t5 : x := 5;

(a) first example

Thread T1 Thread T2

atomic{
t1 : x := 1
t2 : a := x + 1
}

t3 : signal(c)
t4 : wait(c)
t5 : x := 3;

(b) second example

Fig. 1. Ignoring data/synchronizations may lead to bogus errors. All variables are initialized to 0.

limited coverage of interleavings due to trace-based under-approximations [11,12,13].
Previous efforts [4,2,10], for instance, focus on the control paths and model only locks
provided that they obey the nested locking discipline. Their model can be viewed as ab-
stracting other synchronization primitives into NOPs, including semaphores, barriers,
POSIX condition variables, and Java’s wait-notify1. Because of such approximations,
the reported atomicity violations may not exist in the actual program. Although poten-
tial atomicity violations can serve as good hints for subsequent analysis, they are often
not immediately useful to programmers, because manually deciding whether such vio-
lations exist in the actual program execution itself is a very challenging task.

Fig. 1 provides two examples in which the transactions, marked by keyword atomic,
are indeed serializable, but atomizer [9] or methods in [2,10] would report them as
atomicity violations. In each example, there are two concurrent threads T1, T2 and a
shared variable x. Variables a, b are thread-local and variable c is a condition variable,
accessible through POSIX-style signal/wait. The given trace is denoted by event se-
quence t1t2t3t4t5 and is a serial execution. If one ignores data and synchronizations,
there seems to be alternative interleavings, t1t3t4t5t2 in (a) and t1t4t5t2t3 in (b), that
are unserializable. However, these interleavings cannot occur in the actual program ex-
ecution, because of the initial value x = 0 and the if-condition in the first example and
the signal/wait in the second example.

Methods using happens-before causalities [11,12] often guarantee no bogus errors,
but tend to miss many real ones. Fig. 2 shows a model in this category—the maximal
causal model [12]—for the examples in Fig. 1. This model has been shown in [12] to
subsume many earlier happens-before causal models. Here events accessing the shared
variable x are represented by the actual values read/written in the given trace, and events
involving thread-local variables only are abstracted into NOPs. The model admits all
interleavings in which these concrete events are sequentially consistent. In Fig. 2, for
example, the alternative sequences are deemed as sequentially inconsistent in both pro-
grams, because consecutive reads t1, t3 in the first example return different values, and
in the second example t2 reads in 1 from x immediately after t5 writing 3. Therefore,
this model can avoid reporting these two bogus errors. However, consider modifying the
programs in Fig. 1 by changing t4 in the first example into if(b≥0), and removing the
signal/wait of t3, t4 in the second example. Now, the aforementioned alternative inter-
leavings expose real atomicity violations, but in both examples, the concrete read/write
events (Fig. 2) remain the same—these real violations will be missed.

1 These synchronization primitives cannot be simulated using only nested locks.
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Thread T1 Thread T2

atomic{
t1 : RD(x) : 0
t2 : WR(x) : 1
}

t3 : RD(x) : 1
t4 : NOP
t5 : WR(x) : 5

(a) first example

Thread T1 Thread T2

atomic{
t1 : WR(x) : 1
t2 : RD(x) : 1
}

t3 : signal(c)
t4 : wait(c)
t5 : WR(x) : 3

(b) second example

Fig. 2. Predictive models using under-approximations may miss real errors

In this paper, we propose a more precise algorithm for predicting atomicity viola-
tions. Given an execution trace on which transactional blocks are explicitly marked, we
check all alternative interleavings of the symbolic events of that trace for three-access
atomicity violations. The symbolic events are constructed from both the concrete trace
and the program source code. Compared to existing causal models, for example, [12],
our model covers more interleavings while guaranteeing no false alarms. Since the al-
gorithm is more precise than the methods in [9,2], we envision the following procedure
in which it may be applied:

1. Run a test of the concurrent program to obtain an execution trace.
2. Run a sound but over-approximate algorithm [9,2] to detect all potential atomicity

violations. If no violation is found, return.
3. Build the precise predictive model, and for each potential violation, check whether

it is feasible. If it is feasible, create a concrete and replayable witness trace.

More specifically, we formulate the checking in Step 3 as a satisfiability problem, by
constructing a formula which is satisfiable iff there exists a feasible and yet unseri-
alizable interleaving of events of the given trace. The formula is in a quantifier-free
first-order logic and is decided by a Satisfiability Modulo Theory (SMT) solver [14].

Our main contributions are applying the trace-based symbolic predictive model to
analyzing atomicity and encoding the detection of three-access violations on its inter-
leavings as an SMT problem, followed by the subsequent analysis using a SMT solver.
Our model for predicting atomicity violations tracks the actual data flow and models
all synchronization primitives precisely. The greater capability of covering interleav-
ings by our method is due to the use of concrete trace as well as the program source
code. Furthermore, using symbolic techniques rather than explicit enumeration makes
the analysis less sensitive to the large number of interleavings.

The remainder of this paper is organized as follows. After establishing notation in
Section 2 and Section 3, we present the SMT-based algorithm for detecting atomicity
violations in Section 4. In Section 5, we explain how to search for an erroneous prefix
as opposed to a complete interleaving. We present experimental results in Section 6,
review related work in Section 7, and give our conclusions in Section 8.

2 Preliminaries

Programs and Traces. A concurrent program has a set of threads and a set SV of
shared variables. Each thread Ti, where 1 ≤ i ≤ k, has a set of local variables LV i.
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– Let T id = {1, . . . , k} be the set of thread indices.
– Let Vi = SV ∪ LV i, where 1 ≤ i ≤ k, be the set of variables accessible in Ti.

The remaining aspects of a concurrent program are left unspecified, to apply more gen-
erally to different programming languages. An execution trace is a sequence of events
ρ = t1 . . . tn. An event t ∈ ρ is a tuple 〈tid, action〉, where tid ∈ T id and action is a
computation of the form (assume(c), asgn), i.e. a guarded assignment, where

– asgn is a set of assignments, each of the form v := exp, where v ∈ Vi is a variable
and exp is an expression over Vi.

– assume(c) means the conditional expression c over Vi must be true for the assign-
ments in asgn to execute.

Each event t in ρ is a unique execution instance of a statement in the program. If a
statement in the textual representation of the program is executed multiple times, e.g.,
in a loop or a recursive function, each execution instance is modeled as a separate
event. By defining the expression syntax suitably, the trace representation can model
executions of any multithreaded program2.

The guarded assignment action has three variants: (1) when the guard c = true,
it models normal assignments in a basic block; (2) when the assignment set asgn is
empty, assume(c) models the execution of a branching statement if(c); and (3) with
both the guard and the assignment set, it can model the atomic check-and-set operation,
which is the foundation of all concurrency/synchronization primitives.

Synchronization Primitives. We use the guarded assignments in our implementation
to model all synchronization primitives in POSIX Threads (or PThreads). This includes
locks, semaphores, condition variables, barriers, etc. For example, acquire of a mutex
lock l in the thread Ti, where i ∈ T id, is modeled as event 〈i, (assume(l = 0), {l :=
i})〉; here 0 means the lock is available and thread index i indicates the owner of the
lock. Release of lock l is accurately modeled as 〈i, (assume(l = i), {l := 0})〉. Simi-
larly, acquire of a counting semaphore cs is modeled using (assume(cs > 0), {cs :=
cs − 1}), while release is modeled using (assume(cs ≥ 0), {cs := cs + 1}). Fig. 3
shows the symbolic representations of traces in Fig. 1. Note that signal/wait in the sec-
ond example are modeled using guarded assignments as well. Specifically, wait(c)
is split into two events t4 and t4′ , which first resets c to 0, then waits for c to become
non-zero and in the same atomic action resets c back to 0. This modeling conforms to
the POSIX standard, allowing t3 :signal(c) to be interleaved in between.

Concurrent Trace Programs. The semantics of an execution trace is defined using a
state transition system. Let V = SV ∪ ⋃

i LV i, 1 ≤ i ≤ k, be the set of all program
variables and Val be a set of values of variables in V . A state is a map s : V → Val
assigning a value to each variable. We also use s[v] and s[exp] to denote the values of

v ∈ V and expression exp in state s. We say that a state transition s
t−→ s′ exists,

where s, s′ are states and t is an event in thread Ti, 1 ≤ i ≤ k, iff

– t = 〈i, (assume(c), asgn)〉, s[c] is true, and for each assignment v := exp in asgn,
s′[v ] = s[exp] holds; states s and s′ agree on all other variables.

2 Details on modeling generic language constructs, such as those in C/C++/Java, are not directly
related to concurrency; for more information refer to recent efforts in [15,16].
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t1 : 〈1, (assume(true ), {a := x })〉
t2 : 〈1, (assume(true ), {x := a + 1 })〉

t3 : 〈2, (assume(true ), {b := x })〉
t4 : 〈2, (assume(b > 0), { })〉
t5 : 〈2, (assume(true ), {x := 5 })〉

(a) first example

t1 : 〈1, (assume(true ), {x := 1 })〉
t2 : 〈1, (assume(true ), {a := x + 1 })〉
t3 : 〈1, (assume(true ), {c := 1 })〉

t4 : 〈2, (assume(true ), {c := 0 })〉
t4′ : 〈2, (assume(c > 0), {c := 0 })〉
t5 : 〈2, (assume(true ), {x := 3 })〉

(a) second example

Fig. 3. The symbolic representations of concurrent execution traces

Let ρ = t1 . . . tn be an execution trace of program P . Then ρ can be viewed as a total
order on the set of symbolic events in ρ. From ρ one can derive a partial order called
the concurrent trace program (CTP). Previously, we have used CTPs [17,18] to predict
assertion failures and to prune redundant interleavings in stateless model checking.

Definition 1. The concurrent trace program with respect to ρ, denoted CTPρ, is a par-
tially ordered set (T,	) such that,

– T = {t | t ∈ ρ} is the set of events, and
– 	 is a partial order such that, for any ti, tj ∈ T , ti 	 tj iff tid(ti) = tid(tj) and

i < j (in ρ, event ti appears before tj).

Intuitively, CTPρ orders events from the same thread by their execution order in ρ;
events from different threads are not explicitly ordered with each other. In the sequel,
we will say t ∈ CTPρ to mean that t ∈ T is associated with the CTP.

We now define feasible linearizations of CTPρ. Let ρ′ = t′1 . . . t′n be a linearization
of CTPρ, i.e. an interleaving of events of ρ. We say that ρ′ is feasible iff there exist
states s0, . . . , sn such that, s0 is the initial state of the program and for all i = 1, . . . , n,

there exists a transition si−1
t′i−→ si. This definition captures the standard sequential

consistency semantics for concurrent programs, where we modeled concurrency primi-
tives such as locks by using auxiliary shared variables.

3 Three-Access Atomicity Violations

An execution trace ρ is serializable iff it is equivalent to a feasible linearization ρ′ which
executes the transactions without other threads interleaved in between. Informally, two
traces are equivalent iff we can transform one into another by repeatedly swapping ad-
jacent independent events. Here two events are considered as independent iff swapping
their execution order always leads to the same program state.

Atomicity Violations. Three-access atomicity violation is a special case of serializabil-
ity violations, involving an event sequence tc . . . tr . . . tc′ such that:

1. tc and tc′ are in a transactional block of one thread, and tr is in another thread;
2. tc and tr are data dependent; and tr and tc′ are data dependent.

The recent study in [1] shows that in practice atomicity violations account for a very
large number of concurrency errors. Depending on whether each event is a read or
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write, there are eight combinations of the triplet tc, tr, tc′ . While R-R-R, R-R-W, and
W-R-R are serializable, the remaining five may indicate atomicity violations.

Given the CTPρ and a transaction trans = ti . . . tj , where ti . . . tj are events from
a thread in ρ, we use the set PAV to denote all these potential atomicity violations.
Conceptually, the set PAV can be computed by scanning the trace ρ once, and for
each remote event tr ∈ CTPρ, finding the two local events tc, tc′ ∈ trans such that
〈tc, tr, tc′〉 forms a non-serializable pattern.

The crucial problem of deciding whether an event sequence tc . . . tr . . . tc′ exists in
the actual program execution is difficult. However, over-approximate algorithms, such
as those based on Lipton’s reduction theory [9] or [10,2], can be used to weed out event
triplets in PAV that are definitely infeasible. For example, the method in [2] reduces
the problem of checking (the existence of) tc . . . tr . . . tc′ to simultaneous reachability
under nested locking. That is, does there exist an event tc′′ such that (1) tc′′ is within the
same thread and is located between tc and tc′ and (2) tc′′ , tr are simultaneously reach-
able? Under nested locking, simultaneous reachability can be decided by a composi-
tional analysis based on locksets and acquisition histories [19]. However, the analysis
in [2] is over-approximate in that it ignores the data flow and synchronizations other
than nested locks3.

Guarded Independence. Sometimes, two events with data conflict may still be inde-
pendent with each other, although they are conflict-dependent. A data conflict occurs
when two events access the same variable and at least one of them is a write. In the lit-
erature, conflict-independence between two events is defined as: (1) executing one does
not enable/disable another, and (2) they do not have data conflict. These conditions are
sufficient but not necessary for two events to be independent. Consider event t1:x=5 and
event t2:x=5, for example. They have a data conflict but are semantically independent.
Here, we use a more precise guarded independence relation as follows (c.f. [20]).

Definition 2. Two events t1, t2 are guarded independent with respect to a condition cG,
denoted 〈t1, t2, cG〉, iff the guard cG(t1, t2) implies that the following properties:

1. if t1 is enabled in s and s
t1→ s′, then t2 is enabled in s iff t2 is enabled in s′; and

2. if t1, t2 are enabled in s, there is a unique state s′ such that s
t1t2⇒ s′ and s

t2t1⇒ s′.

The guard cG is computed by a static traversal of the control flow structure [20]. For
each event t, let VRD(t) be the set of variables read by t, and VWR(t) be the set of
variables written by t. We define the potential conflict set between t1, t2 ∈ CTPρ as

Ct1,t2 = VRD(t1) ∩ VWR(t2) ∪ VRD(t2) ∩ VWR(t1) ∪ VWR(t1) ∩ VWR(t2) .

For programs with pointers (∗p) and arrays (a[i]), we compute the guarded indepen-
dence relation RG as follows:

1. when Ct1,t2 = ∅, add 〈t1, t2, true〉 to RG;
2. when Ct1,t2 = {a[i], a[j]}, add 〈t1, t2, i �= j〉 to RG;
3. when Ct1,t2 = {∗pi, ∗pj}, add 〈t1, t2, pi �= pj〉 to RG;
4. when Ct1,t2 = {x}, consider the following cases:

3 Programs with only nested locking can enforce mutual exclusion, but cannot coordinate thread
interactions because nested locks cannot simulate powerful primitives such as semaphores.
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a. RD-WR: if x ∈ VRD(t1) and x := e is in t2, add 〈t1, t2, x = e〉 to RG;
b. WR-WR: if x := e1 is in t1 and x := e2 is in t2, add 〈t1, t2, e1 = e2〉 to RG;
c. WR-C: if x is in assume condition cond of t1, and x := e is in t2, add
〈t1, t2, cond = cond[x → e]〉 to RG, in which cond[x → e] denotes the
replacement of x with e.

This set of rules can be easily extended to handle a richer set of language constructs.
Note that among these patterns, the syntactic conditions based on data conflict (conflict-
independence) is able to catch the first pattern only. Also note that methods in [1,2,10]
use conflict-independence (hence conflict-serializable), whereas our method is based
on guarded independence. In symbolic search based on SMT/SAT solvers, the guarded
independence relation can be compactly encoded as constraints in the problem formu-
lation, as described in the next section.

4 Capturing the Feasible Interleavings

Given the CTPρ and a set PAV of event triplets as potential atomicity violations, we
check whether a violation exists in any feasible linearization of CTPρ. For this, we
create a formula Φ which is satisfiable iff there exists a feasible linearization of CTPρ

that exposes the violation. Let Φ := ΦCTPρ ∧ ΦAV , where ΦCTPρ captures all feasible
linearizations of CTPρ and ΦAV encodes the condition that one event triplet exists.

4.1 Concurrent Static Single Assignment

Our encoding is based on transforming CTPρ into a concurrent static single assignment
(CSSA) form. Our CSSA form, inspired by [21], has the property that each variable is
defined exactly once. Here a definition of variable v ∈ V is an event that modifies v,
and a use of v is an event where it appears in a condition or in the right-hand side of an
assignment. Unlike in the classic sequential SSA form, we need not add φ-functions to
model the confluence of multiple if-else branches, because in CTPρ, each thread has a
single control path. All the branching decisions in the program have already been made
during the execution that generates the trace ρ in the first place.

We differentiate the shared variables in SV from the thread-local variables in LVi,
1 ≤ i ≤ k. Each use of v ∈ LVi corresponds to a unique preceding event in the
same thread Ti that defines v. Each use of v ∈ SV , in contrast, may map to multiple
definitions in the same or other threads, and a π-function is added to model these
definitions.

Definition 3. A π-function, added for a shared variable v before its use, has the form
π(v1, . . . , vl), where each vi, 1 ≤ i ≤ l, is either the most recent definition of v in the
same thread as the use, or a definition of v in another concurrent thread.

The construction of the CSSA form consists of the following steps:

1. Create unique names for local/shared variables in their definitions.
2. For each use of a local variable v ∈ LVi, 1 ≤ i ≤ k, replace v with the most recent

(unique) definition v′.
3. For each use of a shared variable v ∈ SV , create a unique name v′ and add the

definition v′ ← π(v1, . . . , vl). Then replace v with the new definition v′.
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t0 : 〈1, (assume(true ), {a0 := 0, b0 := 0, x0 := 0 })〉
t1 : 〈1, (assume(true ), {a1 := π1 })〉 where π1 ← π(x0, x2)
t2 : 〈1, (assume(true ), {x1 := a1 + 1 })〉

t3 : 〈2, (assume(true ), {b1 := π2 })〉 where π2 ← π(x0, x1)
t4 : 〈2, (assume(b1 > 0), { })〉
t5 : 〈2, (assume(true ), {x2 := 5 })〉

Fig. 4. The CSSA form of the concurrent trace program

Fig. 4 shows the CSSA form of the CTP in Fig. 3(a). Note that event t0 is added to model
the initial values of all variables. We add names π1 and π2 for the shared variable uses.
The assignment in t1 becomes a1 := π1 because the value read from x can be defined
as either x0 or x2, depending on the thread interleaving. The local variable a1 in t2, on
the other hand, is uniquely defined as in t1.

The semantics of π-functions are defined as follows. Let v′ ← π(v1, . . . , vl) be
defined in event t, and let each parameter vi, 1 ≤ i ≤ l, be defined in event ti. The eval-
uation of π-function depends on the write-read consistency in a particular interleaving.
Intuitively, (v′ = vi) iff vi is the most recent definition before the use in event t. More
formally, (v′ = vi), 1 ≤ i ≤ l, iff the following conditions hold,

– event ti, which defines vi, is executed before event t; and
– any event tj that defines vj , 1 ≤ j ≤ l and j �= i, is executed either before the

definition in ti or after the use in t.

4.2 Encoding Feasible Linearizations

We construct ΦCTPρ based on the notion of feasible linearizations (defined in Sec-
tion 2). It consists of the following subformulas:

ΦCTP := ΦPO ∧ ΦV D ∧ ΦPI ,

where ΦPO encodes the program order, ΦV D encodes the variable definitions, and ΦPI

encodes the π-functions.
To ease the presentation, we use the following notations.

– Event tfirst: we add a dummy event tfirst to be the first event executed in the CTP.
– Event tifirst: for each i ∈ T id, this is the first event of the thread Ti;
– Preceding event: for each event t, we define its thread-local preceding event t′ as

follows: tid(t′) = tid(t) and for any other event t′′ ∈ CTP such that tid(t′′) =
tid(t), either t′′ 	 t′ or t 	 t′′.

– HB-constraint: we use HB(t, t′) to denote that event t is executed before t′.

The detailed encoding algorithm is given as follows:

– Path Conditions. For each event t ∈ CTPρ, we define the path condition g(t) which
is true iff t is executed.
1. If t = tfirst, or t = tifirst where i ∈ T id, let g(t) := true.
2. Otherwise, let g(t) := c ∧ g(t′), where t′ : (assume(c), asgn) is the thread-

local preceding event.



336 C. Wang et al.

– Program Order (ΦPO). ΦPO captures the event order within threads. Let ΦPO :=
true initially. For each event t ∈ CTPρ,
1. if t = tfirst, do nothing;
2. if t = tifirst, where i ∈ T id, let ΦPO := ΦPO ∧HB(tfirst, t

i
first);

3. otherwise, t has a thread-local preceding event t′; let ΦPO := ΦPO∧HB(t′, t).
– Variable Definition (ΦV D). Let ΦV D := true initially. For each event t ∈ CTPρ,

1. if t has action (assume(c), asgn), for each assignment v := exp in asgn, let
ΦV D := ΦV D ∧ (v = exp);

– The π-Function (ΦPI ). Let ΦPI := true initially. For each assignment v′ ←
π(v1, . . . , vl), where v′ is used in event t, and each vi, 1 ≤ i ≤ l, is defined in
event ti; let

ΦPI := ΦPI ∧
l∨

i=1

(v′ = vi)∧g(ti)∧HB(ti, t)∧
l∧

j=1,j �=i

(HB(tj , ti)∨HB(t, tj))

This encodes that the π-function evaluates to vi iff it chooses the i-th definition
in the π-set (indicated by g(ti) ∧ HB(ti, t)), such that any other definition vj ,
1 ≤ j ≤ l and j �= i, is defined either before ti, or after this use of vi in t.

4.3 Encoding Atomicity Violations

Given a set PAV of potential violations, we build formula ΦAV as follows: Initialize
ΦAV := false. Then for each event triplet 〈tc, tr, tc′〉 ∈ PAV , where tc and tr are
guarded independent under cG(tc, tr), and tr and tc′ are guarded independent under
cG(tr, tc′), as defined in Section 3, let

ΦAV := ΦAV ∨ ( g(tc) ∧ g(tr) ∧ g(tc′) ∧ ¬cG(tc, tr) ∧ ¬cG(tr, tc′)
∧HB(tc, tr) ∧HB(tr, tc′) )

Recall that for two events t and t′, the constraint HB(t, t′) denote that t must be ex-
ecuted before t′. Consider a model where we introduce for each event t ∈ CTP a
fresh integer variableO(t) denoting its position in the linearization (execution time). A
satisfiable assignment to ΦCTPρ therefore induces values of O(t), i.e., positions of all
events in the linearization. HB(t, t′) is defined as follows:

HB(t, t′) := O(t) < O(t′)

In satisfiability modulo theory, HB(t, t′) corresponds to a special subset of Integer
Difference Logic (IDL), i.e. O(t) < O(t′), or simply O(t) −O(t′) ≤ −1. It is special
in that the integer constant c in the IDL constraint (x− y ≤ c) is always −1. Deciding
this fragment of IDL is easier because consistency can be reduced to cycle detection
in the constraint graph, which has a linear complexity, rather than the more expensive
negative-cycle detection [22].

Fig. 5 illustrates the CSSA-based encoding of CTP in Fig. 4. Note that it is common
for many path conditions, variable definitions, and HB-constraints to be constants. For
example, HB(t0, t1) and HB(t0, t5) in Fig. 4 are always true, while HB(t5, t0) and
HB(t1, t0) are always false—such simplifications are frequent and will lead to signifi-
cant reduction in formula size.
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Path Conditions:

t0 : g0 = true
t1 : g1 = true
t2 : g2 = g1

t3 : g3 = true
t4 : g4 = g3 ∧ (b1 > 0)
t5 : g5 = g4

Program Order:

HB(t0, t1)
HB(t1, t2)

HB(t0, t3)
HB(t3, t4)
HB(t4, t5)

Variable Definitions:

(a0 = 0) ∧ (b0 = 0) ∧ (x0 = 0)
a1 = π1

x1 = a1 + 1

b1 = π2

x2 = 5

The π-Functions:
t1 : (π1 = x0) ∧ g0 ∧HB(t0, t1) ∧(HB(t5, t0) ∨HB(t1, t5))
∨ (π1 = x2) ∧ g5 ∧HB(t5, t1) ∧(HB(t0, t5) ∨HB(t1, t0))

t3 : (π2 = x0) ∧ g0 ∧HB(t0, t1) ∧(HB(t5, t0) ∨HB(t1, t5))
∨ (π2 = x1) ∧ g2 ∧HB(t2, t1) ∧(HB(t0, t2) ∨HB(t1, t0))

Fig. 5. The CSSA-based encoding of CTPρ in Fig. 4

For synchronization primitives such as locks, there are even more opportunities to
simplify the formula. For example, if π1 ← π(l1, . . . , ln) denotes the value read from
a lock variable l during lock acquire, then we know that (π1 = 0) must hold, since
the lock need to be available. This means for non-zero π-parameters, the constraint
(π1 = li), where 1 ≤ i ≤ n, always evaluates to false. And due to the mutex lock
semantics, for all 1 ≤ i ≤ n, we know li = 0 iff li is defined by a lock release.

The encoding of Φ = ΦCTPρ ∧ΦAV closely follows our definitions of CTP, feasible
linearizations, and the semantics of π-functions. We now state its correctness. The proof
is straightforward and is omitted for brevity.

Theorem 1. Formula Φ = ΦCTPρ ∧ ΦAV is satisfiable iff there exists a feasible lin-
earization of the CTP that violates the given atomicity property.

Let n be the number of events in CTPρ, let nπ be the number of shared variable uses,
let lπ be the maximal number of parameters in any π-function, and let ltrans be the
number of shared variable accesses in trans. We also assume that each event in ρ ac-
cesses at most one shared variable. The size of (ΦPO ∧ΦV D ∧ΦPI ∧ΦAV ) in the worst
case is O(n+n+nπ× l2π +nπ× ltrans). We note that shared variable accesses in typ-
ical concurrent programs are often few and far in between, especially when compared
to computations within threads, to minimize the synchronization overhead. This means
that lπ, nπ, and ltrans are typically much smaller than n, which significantly reduces
the formula size4. In contrast, in conventional bounded model checking (BMC) algo-
rithms for verifying concurrent programs, e.g. [20], which employ an explicit scheduler
variable at each time frame, the BMC formula size quadratically depends on n, and
cannot be easily reduced even if lπ, nπ, and ltrans are significantly smaller than n.

5 Capturing Erroneous Trace Prefixes

The algorithm presented so far aims at detecting atomicity violations in all feasible
linearizations of a CTP. Therefore, a violation is reported iff (1) a three-access atomicity
violation occurs in an interleaving, and (2) the interleaving is a feasible linearization

4 Our experiments show that lπ is typically in the lower single-digit range (the average is 4).
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of CTPρ. Sometimes, this may become too restrictive, because the existence of an
atomicity violation often leads to the subsequent execution of a branch that is not taken
by the given trace ρ (hence the branch is not in CTPρ).

Consider the example in Fig. 6. In this trace, event t4 is guarded by (a = 1). There
is a real atomicity violation under thread schedule t1t5t2 . . .. However, this trace prefix
invalidates the condition (a = 1) in t3—event t4 will be skipped. In this sense, the trace
t1t5t2 . . . does not qualify as a linearization of CTPρ. In our aforementioned symbolic
encoding, the π-constraint in t6 will become invalid.

t6 : (π2 = x1) ∧ g1 ∧HB(t1, t6) ∧(HB(t4, t1) ∨HB(t6, t4)) ∧ (HB(t5, t1) ∨HB(t6, t5))
∨ (π2 = x2) ∧ g4 ∧HB(t4, t6) ∧(HB(t1, t4) ∨HB(t6, t1)) ∧ (HB(t5, t4) ∨HB(t6, t5))
∨ (π2 = x3) ∧ g5 ∧HB(t5, t6) ∧(HB(t1, t5) ∨HB(t6, t1)) ∧ (HB(t4, t5) ∨HB(t6, t4))

Note that in the interleaving t1t5t2 . . ., we have g4, HB(t4, t1), HB(t6, t4),
HB(t4, t5), HB(t6, t4) all evaluated to false. This rules out the interleaving as a feasi-
ble linearization of CTPρ, although it has exposed a real atomicity violation.

Thread T1 Thread T2

atomic{
t1 : x := 0
t2 : a := x + 1
}

t3 : if(a = 1)
t4 : x := 2

t5 : x := 3
t6 : b := x;

(a) the given trace

t1 : 〈1, (assume(true ), {x1 := 0 })〉
t2 : 〈1, (assume(true ), {a1 := π1 + 1 })〉

t3 : 〈1, (assume(a1 = 1), { })〉
t4 : 〈1, (assume(true ), {x2 := 2 })〉

t5 : 〈2, (assume(true ), {x3 := 3 })〉
t6 : 〈2, (assume(true ), {b1 := π2 })〉

(b) erroneous prefix

Fig. 6. The atomicity violation leads to a previously untaken branch

We now extend our notion of feasible linearizations of a CTP to all prefixes of its
feasible linearizations, or the feasible linearization prefixes. The extension is straight-
forward. Let FeaLin(CTPρ) be the set of feasible linearizations of CTPρ. We define
the set FeaPfx(CTPρ) of feasible linearization prefixes as follows:

FeaPfx(CTPρ) := {w | w is a prefix of ρ′ ∈ FeaLin(CTPρ)}
We extend our symbolic encoding to capture these erroneous trace prefixes (as op-

posed to entire erroneous traces). We extend the symbolic encoding in Section 4 as
follows. Let event triplet 〈tc, tr, tc′〉 ∈ PAV be the potential violation. We modify the
construction of ΦPI (for the π-function in event t) as follows:

ΦPI := ΦPI ∧ ( HB(tc′ , t)∨∨l
i=1(v

′ = vi) ∧ g(ti) ∧ HB(ti, t) ∧ ∧l
j=1,j �=i(HB(tj, ti) ∨ HB(t, tj)))

That is, if the atomicity violation has already happened in some prefix, as indicated
by HB(tc′ , t), i.e. when the event t associated with this π-function happens after tc′ ,
then we do not enforce any read-after-write consistency. Otherwise, read-after-write
consistency is enforced as before, as shown in the second line in the formula above.
The rest of the encoding algorithm remains the same. We now state the correctness of
this encoding extension. The proof is straightforward and is omitted for brevity.
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Theorem 2. Formula Φ = ΦCTPρ ∧ ΦAV is satisfiable iff there exists a feasible lin-
earization prefix of the CTP that violates the given atomicity property.

6 Experiments

We have implemented the proposed algorithm in a tool called Fusion. Our tool is ca-
pable of handling execution traces generated by multi-threaded C programs using the
Linux PThreads library. We use CIL [23] for instrumenting the C source code and use
the Yices SMT solver [14] to solve the satisfiability formulas. Our experiments were
conducted on a PC with 1.6 GHz Intel processor and 2GB memory running Fedora 8.

We have conducted preliminary experiments using the following benchmarks5: The
first set of examples mimic two concurrency bug patterns from the Apache web server
code (c.f. [1]). The original programs, atom001 and atom002, have atomicity viola-
tions. We generated two additional programs, atom001a and atom002a, by adding
code to the original programs to remove the violations. The second set of examples
are Linux/Pthreads/C implementation of the parameterized bank example [24]. We in-
stantiate the program with the number of threads being 2,3,. . .. The original programs
(bank-av) have nested locks as well as shared variables, and have known bugs due
to atomicity violations. We provided two different fixes, one of which (bank-nav) re-
moves all atomicity violations while another (bank-sav) removes some of them. We
used both condition variables and additional shared variables in our fixes. Although
the original programs (bank-av) does not show the difference in the quality of various
prediction methods (because violations detected by ignoring data and synchronizations
are actually feasible), the precision differences show up on the programs with fixes.
In these cases, some atomicity violations no longer exist, and yet methods based on
over-approximate predictive models would still report violations.

Table 1. Experimental results of predicting atomicity violations

Test Program The Given Trace Symbolic Analysis w/o Data [2]
name thrds svars simplify/ original regions orig-pavs hb-pavs sym-avs sym-time (s) pavs
atom001 3 14 50 / 88 1 8 2 1 0.03 1
atom001a 3 16 58 / 100 1 8 2 0 0.03 1
atom002 3 24 349 / 462 1 212 34 33 20.4 33
atom002a 3 26 359 / 462 1 212 34 0 17.6 33
bank-av-2 3 109 278 / 748 2 24 8 8 0.1 8
bank-av-4 5 113 527 / 1213 4 48 16 16 0.6 16
bank-av-6 7 117 770 / 1672 6 72 24 24 2.3 24
bank-av-8 9 121 1016 / 2134 8 96 32 32 2.5 32
bank-sav-2 3 119 337 / 852 2 24 8 4 0.2 8
bank-sav-4 5 123 642 / 1410 4 48 16 8 0.9 16
bank-sav-6 7 127 941 / 1960 6 72 24 12 3.8 24
bank-sav-8 9 131 1243 / 2517 8 96 32 16 4.6 32
bank-nav-2 3 119 341 / 856 2 24 8 0 0.2 8
bank-nav-4 5 123 647 / 1414 4 48 16 0 0.2 16
bank-nav-6 7 127 953 / 1972 6 72 24 0 3.7 24
bank-nav-8 9 131 1163 / 2362 8 96 32 0 140.6 32

5 Examples are available at http://www.nec-labs.com/∼chaowang/pubDOC/atom.tar.gz
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Table 1 shows the experimental results. The first three columns show the statistics
of test cases, including the program name, the number of threads, and the number of
shared variables that are accessed in the given trace. The next two columns show the
length of the trace, in both the original and the simplified versions, and the number of
transactions (regions). Our simplification consists of trace-based program slicing, dead
variable removal, and constant folding; furthermore, variables defined as global, but
not accessed by more than one thread in the given trace, are not counted as shared in
the table (svars). The next four columns show the statistics of our symbolic analysis,
including the size of PAV (orig-pavs), the number of violations after pruning using
a simple static must-happen-before analysis (hb-pavs), the number of real violations
(sym-avs) reported by our symbolic analysis, and the runtime in seconds. In the last
column, we provide the number of (potential) atomicity violations if we ignore the data
flow and synchronizations other than nested locking.

The results show that, if one relies on only static analysis, the number of reported
violations (in orig-pavs) is often large, even for a prediction based on a single trace. Our
simple must-happen-before analysis utilizes the semantics of thread create and join, and
seems effective in pruning away event triplets that are definitely infeasible. In addition,
if one utilizes the nested locking semantics, as in w/o Data [2], more spurious event
triplets can be pruned away. However, note that the number of remaining violations can
still be large. In contrast, our symbolic analysis prunes away all the spurious violations
and reports much fewer atomicity violations. For each violation that we report, we also
produce a concrete execution trace exposing the violation. This witness trace can be
used by the thread scheduler in Fusion, to re-run the program and replay the actual
violation. We also note that the runtime overhead of our symbolic analysis is modest.
The algorithm can be used in the context of a post-mortem analysis.

7 Related Work

We have mentioned in Section 1 some of the static methods [3,4], runtime monitor-
ing [5,1,6,7,8], and runtime prediction [9,2,10,11,12,13] for detecting atomicity viola-
tions. Lu et al. [1] used access interleaving invariants to capture patterns of test runs
and then monitor production runs for detecting three-access atomicity violations. Xu et
al. [5] used a variant of the two-phase locking algorithm to monitor and detect serial-
izability violations. Both methods were aimed at detecting, not predicting, errors in the
given trace. In [4], Farzan and Madhusudan introduced the notion of causal atomicity in
a static program analysis focusing on the control paths; subsequently they used execu-
tion traces for predicting atomicity violations [10,2]. Wang and Stoller [6] also studied
the prediction of serializability violations under the assumptions of deadlock-freedom
and nested locking; their algorithms are precise for checking violations involving one
or two transactions but incomplete for checking arbitrary runs.

Our symbolic encoding for detecting atomicity violations is related to, but is dif-
ferent from, the SSA-based SAT encoding [15], which is popular for sequential pro-
grams. Our analysis differs from the context-bounded analysis in [25,26,16] since they
a priori fix the number of context switches in order to reduce concurrent programs
to sequential programs. In contrast, our method in Section 4 is for the unbounded
case, although context-bounding constraints may be added to further improve perfor-
mance. We directly capture the partial order in difference logic, therefore differing from
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CheckFence [27], which explicitly encodes ordering between all pairs of events in pure
Boolean logic. In [28], a non-standard synchronous execution model is used to sched-
ule multiple events simultaneously whenever possible instead of using the standard in-
terleaving model. Furthermore, all the aforementioned methods were applied to whole
programs and not to concurrent trace programs (CTPs). In previous works [17,18] we
have used the notion of CTP, but the context was stateless model checking to prune
redundant interleavings in the former, and predicting assertion failures in the later.

The quantifier-free formulas produced by our encoding are decidable due to the fi-
nite size of the CTP. When non-linear arithmetic operations appear in the symbolic
execution trace, they are treated as bit-vector operations. This way, the rapid progress
in SMT solvers can be directly utilized to improve performance in practice. In the pres-
ence of unknown functions, trace-based abstraction techniques as in [29], which uses
concrete parameter/return values to model library functions, are employed to derive the
predictive model, while ensuring that the analysis results remain precise.

8 Conclusions

In this paper, we propose a symbolic algorithm for detecting three-access atomicity
violations in all feasible interleavings of events in a given execution trace. The new
algorithm uses a succinct encoding to generate an SMT formula such that the violation
of an atomicity property exists iff the SMT formula is satisfiable. It does not report
bogus errors and at the same time achieves a better interleaving coverage than existing
methods for predictive analysis.
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