
Punctual Coalescing

Fernando Magno Quintão Pereira1 and Jens Palsberg2

1 Universidade Federal de Minas Gerais, Belo Horizonte
2 University of California, Los Angeles

Abstract. Compilers use register coalescing to avoid generating code
for copy instructions. For architectures with register aliasing such as
x86, Smith, Ramsey, and Holloway (2004) presented a polynomial-time
approach, while Scholz and Eckstein (2002) presented an optimal, expo-
nential-time approach together with a near-optimal, quadratic-time
heuristic. Both methods scale poorly after aggressive live range split-
ting, especially for programs in elementary form where live ranges are
split at every program point. In contrast, we mentioned in a previous
paper (2008), without giving details, that we have a scalable, linear-time
heuristic for programs in elementary form. In an effort to formalize that
heuristic, we discovered an even better algorithm, called Punctual Co-
alescing, which we present here. Punctual Coalescing is scalable, linear
time, locally optimal in general, close to globally optimal for straight-line
code, and proven correct with the Twelf theorem prover. We define global
optimality with an ILP-formulation and we show via experiments that
Punctual Coalescing compares well to this and two other approaches.

1 Introduction

Register allocation is the problem of mapping program variables to physical loca-
tions, which are either registers or memory. Compared to mapping all variables
to memory, a good register allocator can improve the speed of the generated
code on a RISC architecture by 250% [22]. We will focus on a combination of
three important challenges for register allocation, namely live-range splitting,
coalescing and aliasing, which we recall next.

To keep more variables in registers, compiler writers use live-range splitting
[2,6,17,26,31]: split the live range of a variable y by (1) introducing a fresh vari-
able name x, (2) inserting the copy instruction x = y somewhere in y’s live
range, and (3) using the name x instead y after that copy instruction. After the
split, the register allocator has the opportunity to map x to a register and y
to memory, or vice versa. Coalescing [9,11,12,15,16,17,23,30] is the dual of live-
range splitting: eliminate copy instructions of the form x = y by mapping both
x and y to the same register. Intuitively, the more we do live-range splitting, the
more we need coalescing to eliminate unnecessary copy instructions. The third
challenge, aliasing, is a property of architectures such as ARM, PowerPC, Sparc
v8/v9, and x86: quoting Smith et al., “two registers alias when assigning a value
to one may change the value of the other” [33]. Open until now is the prob-
lem of designing a scalable, high-quality, and provably correct register allocator

R. Gupta (Ed.): CC 2010, LNCS 6011, pp. 165–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 F.M.Q. Pereira and J. Palsberg

that after aggressive live-range splitting does coalescing for an architecture with
aliasing. Let us briefly summarize the most closely related previous works.

There exist register allocation algorithms that deal with aliasing. An exam-
ple is the integer linear programming (ILP) approach of Kong and Wilken [19].
Scholz and Eckstein (2002) [32] have addressed aliasing with partitioned boolean
quadratic programming (PBQP). They presented an optimal, exponential-time
approach together with a near-optimal, quadratic-time heuristic. Smith, Ram-
sey, and Holloway [33] have generalized graph coloring register allocation to
incorporate aliased registers. Also based on graph coloring allocation, Minwook
et al. [1] have described an optimistic coalescing algorithm that is competitive
with Smith et al.’s iterative approach. These methods scale poorly after aggres-
sive live range splitting. Intuitively, aggressive live-range splitting enables a high
number of variables to be mapped to registers, but it also overwhelms the reg-
ister allocator with copy instructions. We will show how to deal with the high
number of copy instructions by adopting a particular program representation
and then developing a new coalescing algorithm.

We will work with Appel and George’s idea from 2001 [2] of “ultimate” live-
range splitting that splits every live-range at every program point, that is, be-
tween every pair of consecutive instructions. The result is a program in what
we call elementary form. A compiler can convert any program to elementary
form in polynomial time, and the elementary program requires at most as many
registers as its original version. We use the notion of elementary form because it
allows us to avoid a difficult problem. The problem of finding the minimal num-
ber of registers that is needed to compile straight-line code to an architecture
with aliasing is NP-complete [21], while for a program in elementary form, the
problem can be solved in linear time by a puzzle solver [26]. Our goal is to add
coalescing to the linear-time puzzle solver without changing the time complexity.

In a previous paper [26] we mentioned, without giving details, that we have
a scalable puzzle solver that embodies a heuristic for coalescing. In other words,
that unpublished heuristic goes a long way toward solving the open problem.
In an effort to formalize that heuristic, we discovered an even better algorithm,
called Punctual Coalescing, which we present here.

Punctual Coalescing is scalable, runs in linear time, and is a form of biased
coloring [9] that uses only local information. The puzzle solver with Punctual Co-
alescing traverses the dominator tree of the source program finding at each pro-
gram point a register assignment that minimizes the number of variables sent to
memory. The assignment is guided by the assignment found at the most-recently
visited program point. Punctual coalescing is well suited for just-in-time com-
pilers such as TraceMonkey [14], and tree-scan-based allocators such as Braun
and Hack’s [8]. We have proved the correctness of Punctual Coalescing, and in
particular we have proved the main lemma with the Twelf theorem prover [28].

In general, punctual coalescing is locally optimal for straight-line code, and
close to globally optimal. Our experiments with compiling SPEC CPU 2000 to
x86 show that punctual coalescing finds a locally optimal solution for 89% of
the program points in our benchmarks. We define global optimality with an

Punctual Coalescing 167

ILP-formulation that combines ideas from papers by Kong and Wilken [19], who
showed how to handle aliasing, and by Grund and Hack [16], who showed how to
handle coalescing. During the compilation of the SPEC CPU 2000 benchmark
suite to x86, only one copy was inserted per 14 instructions in the original pro-
gram. These copies were typically used to insert fixing code between basic blocks,
and to avoid conflicts with pre-allocated registers, as we discuss in Section 6.

We have done an experimental comparison of four register assignment ap-
proaches: register allocation via coloring of chordal graphs [25], the heuristics
used in the original puzzle solver [26], the punctual coalescing algorithm and the
ILP formulation – the last two algorithms are introduced in this paper. To over-
come scalability issues with the ILP approach we derived long program traces
from SPEC CPU 2000, that is, long sequences of code that were executed in
order. For those program traces our experiments show that Punctual Coalescing
is considerably better than the other approaches and close to globally optimal.

In the next section we briefly review register allocation by puzzle solving,
and illustrate the coalescing problem with an example. In Section 3 we describe
Punctual Coalescing, in Section 4 we describe our ILP-formulation of global
optimality, in Section 5 we show experimental results, in Section 6 we discuss
limitations of punctual coalescing and in Section 7 we conclude the paper.

2 Background

A program point is any point in between two consecutive instructions, or in
between two consecutive basic blocks. The program in Figure 1 has five program
points, numbered 2 to 6. A variable v is alive at program point p if there is a
path from p to an instruction that uses v that does not cross a definition of v.
For instance, in Figure 1, variable a is alive at program points 2, 3, 4, 5 and 6.
The program points where variable v is alive form v’s live range. We can split the
live range of a variable inserting a copy instruction at some program point in the
live range, and doing variable renaming. Many register allocators use live range
splitting to keep more variables in registers [2,17,26,31,34]. The elementary form
is a program representation introduced by Appel and George [2] in which the
live ranges of variables are split at each program point. If P is a program with
V variables and I instructions, and P ′ is P converted to elementary form, then
P ′ contains O(I × V) variables. Many register allocators are at least O(V 2) –
in particular, aliasing aware methods such as Scholz and Eckstein [32]’s PBQP
approach and Smith et al.’s [33] extensions for Chaitin style algorithms. Hence,
these algorithms run in at least O(I2×V 2) when applied to elementary programs.

Register allocation by puzzle solving: Register allocation by puzzle solving [26]
relies on elementary form to minimize register usage. In this paradigm, registers
are modeled as a puzzle board, and the live ranges of the variables as puzzle
pieces. There is one puzzle per program instruction, and the challenge is to
arrange the pieces on the board, so that no piece will be left out. We illustrate
this method with the example given in Figure 1. The program on the left side

168 F.M.Q. Pereira and J. Palsberg

a = •

B = •

c = •

d = B

E = c

• = a,d,E

a B c d E

R
3
 = R

0

a

a
B

a
c

B

a c
B

d

c

E
d a

E d a

a

a

a

a

a

a

B

B

B

c

c

c

d

d

d

E

E

R0 R1 R2 R3
1

2

3

4

5

6

Fig. 1. An example of register allocation by puzzle solving

of the figure has six instructions and five variables, a, B, c, d and E. The live
ranges of the variables are shown in the middle of the figure. We assume a target
architecture with two registers, each one with two aliases. Such architectures are
called T1, for type 1 puzzle. The type of a puzzle is determined by the number
of columns in each board area: a puzzle Tn has 2n columns per area. Lower
case letters denote single precision values, whereas upper case letters denote
double precision values. We can store two single precision values or one double
precision value in one register. The opcode of each instruction is not relevant
to our explanations, so we use •’s for “don’t care’s”. The right side of Figure 1
shows a solution to this instance of the register allocation problem.

In this paper we provide coalescing algorithms for T1 puzzles. These puzzles
model registers that have two independent aliases, such as the general purpose
registers found in x86 (AX, BX, CX and DX), and the floating point registers
found in ARM and PowerPC. It subsumes T0 puzzles, which we find in integer
registers of PowerPC and ARM. T1 puzzles have three types of pieces: X, Y and
Z. X pieces, such as a, d and E in puzzle six of Figure 1 can only be placed on
the upper half of a board area. On the other hand, Z pieces such as B in puzzle
two are only placed on the lower half of an area. Y pieces such as a and B in
puzzle three occupy the upper and lower part of an area. A T1 puzzle piece may
have width one or two. Size one pieces such as a, c and d in Figure 1 fit in one
column of an area; they represent eight bit variables in x86, or single precision
floating point values in ARM and PowerPC. Size two pieces, such as B and E
span two columns. They represent 16 or 32 bit values in x86, or double precision
numbers in ARM and PowerPC. We will be working with padded puzzles, that
is, our puzzle solver expects that the area of the pieces will equal the area freely
available on the board. We pad a puzzle by adding to its original set of pieces
as many size one X and Z pieces as needed. A puzzle has solution if, and only
if, the padded version does [26, Lemma 26].

Punctual Coalescing 169

Register coalescing: The register assignment in Figure 1 is optimal in two senses.
First, it uses the minimal number of registers – it is not possible to compile this
program with only one register divided into two aliases. Second, it uses the
minimal number of copies to split the live ranges of variables. In order to obtain
the minimal register assignment, we had to move variable a from register R0 to
register R3. This split is performed by a register move inserted at program point
five. This solution is globally optimal – the minimal register assignment requires
the insertion of one copy instruction into the source code. In general, inserting
copies to avoid mapping variables to memory leads to faster programs [26];
however, ideally we would like to minimize the number of copies inserted into
the final program – an optimization known as coalescing. We distinguish two
variations of coalescing: global and punctual, which we define below:

– Global Coalescing
Instance: a program P in elementary form that can be compiled with K
registers.
Problem: find a register assignment for P , using K registers, that minimizes
the number of instructions between puzzles.

– Punctual Coalescing
Instance: two consecutive puzzles p1 and p2, such that p1 is already solved.
Problem: find a solution of p2 that minimizes the number of copies inserted
between p1 and p2. We call puzzle p1 the guider, and puzzle p2 the follower.

In the definition of global coalescing we assume that the input program is greedy
K-colorable [6, p.18], that is, it is possible to find an allocation of variables to
registers using at most K registers. K colorability ensures that spilling plays
no role in the coalescing problem. This is the principle behind many register
allocators based on live range splitting [2,17,18,25,26,31]. These algorithms are
divided into two phases [6]. Initially a spilling phase removes variables, mapping
them to memory, in order to ensure K colorability. Subsequently, a coloring phase
finds a valid mapping of variables to registers using the available registers.

Global coalescing has a natural description as a graph coloring problem. The
interference graph of a program is the interference graph of the live-ranges of
the variables in the program. That is, given a program P , if G is its interference
graph, then G has one vertex for each variable in P , and two nodes are adjacent
if, and only if, they correspond to variables with overlapping live ranges. In the
global coalescing problem we consider a second type of edge called affinity edge.
There exists an affinity edge between two nodes v1 and v2 if P contains a copy
instruction v1 = v2. The global coalescing problem asks for a coloring of G with
at most K colors that maximizes the number of affinity related nodes that get
the same color. In the presence of register aliasing, we consider each color as an
integer number, so that some nodes must receive two consecutive colors. Figure 2
shows the graph coloring representation for the coalescing problem in Figure 1.
Dashed lines represent affinity edges, grey nodes represent variables that fit into
a full register, and white nodes represent variables that fit in half a register.

170 F.M.Q. Pereira and J. Palsberg

B

a a

c

dB

a

c

B Ed

a

c d

a

E

a

Fig. 2. A graph coloring representation for the global coalescing problem in Figure 1

Global coalescing is the version traditionally studied in the compiler literature.
This problem is NP-complete [6]; thus, it is normally solved by heuristics, such
as Chaitin’s aggressive algorithm [12], or Brigg’s conservative algorithm [9]. In
Section 4 we give an optimal solution to this problem, in a T1 architecture, via
integer linear programming. When restricted to program traces, global coalescing
has polynomial time solution for T0 register banks, and is NP-complete for T1
register banks [21]. The problem is NP-complete if some variables are forced to
be in particular registers [4], even restricted to program traces in T0 settings.
Punctual coalescing has polynomial time solution for T0 and T1 architectures,
as we show in Section 3. The complexity of this problem in the context of higher
order register banks, or when pre-coloring is allowed is left open.

A sequence of optimal solutions to the punctual coalescing problem might
produce a solution to its global counterpart, as in Figure 1. However, that is not
always the case, as we show in Figure 3. The figure contains three instances of the
punctual coalescing problem, one for each point between two consecutive puzzles.
Each of these instances is optimally solved, and a copy is inserted between puzzles
two and three. However, there is a register assignment that does not require
copies between instructions, shown in the right column of the figure.

3 An Efficient Punctual Coalescing Algorithm

In this section we describe a strategy for solving the punctual coalescing problem.
Our strategy is optimal for settings with initially empty follower boards. By
optimal we mean that, if an instance of punctual coalescing has a solution with
at most n copies inserted, then our algorithm will find it.

If a piece v fills the bottom of area a in the guider’s board, we say that a
is the preferred area for v in the follower’s board. For instance, in Figure 1, R1

is the preferred area for piece c in puzzle four, because the bottom part of R1

is holding c in puzzle three. Also, R2/R3 are the preferred areas of piece B in
puzzle three, for these areas are the location of B in puzzle two. In general, X
and Y pieces have preferred areas, whereas Z pieces never have it.

We extend the notation introduced in [26] to include preferences between
pieces and board areas. If a piece has no preference, we call it anonymous, in
contrast with labeled pieces, which have preference for some area. Anonymous
pieces are marked with the symbol •, and labeled pieces are given the name

Punctual Coalescing 171

a,b,c,d = •

• = b,d

E = •

• = E,a,c

a B c d E

a b c d

a
b d

a c

E

a

a

a
E

E

d

R0 R1 R2 R3
1

2

3

4
a

c

c

c

c

d

d

d

R
1
 = R

2

c

E

a c

a c

a
b d

a c

E

c

E

a c

b d

R0 R1 R2 R3

Punctual Global

Fig. 3. An example where a sequence of optimal punctual coalescings is worse than
global coalescing

of the variable that they represent. Each column of the board area now has a
label, which is the name of the piece with a preference for that column. There
are eight ways, up to symmetry, to label a T1 area. These patterns are shown
in Figure 4. The shaded areas are not part of the pattern; they only illustrate
where the preferred pieces should stay. Each area of the follower board has one
of these patterns. Going back to the running example from Figure 1, area R0/R1

of puzzle two has pattern (h). However, the same area in puzzle five has pattern
(g), with a preference for pieces a and c, as the registers R0 and R1 contain these
pieces in puzzle four. As another example, we illustrate puzzle three below:

ya yB•

ya yB
xc

x•

yB

ya
zB

Puzzle 2: the guider Puzzle 3: the follower

Our puzzle solving algorithm is given in Figure 5. This algorithm, written in
a visual language, solves puzzles by pattern matching. It has eight statements,
one for each possible pattern of preferences that can be found in an area. Each
statement is composed by one or more rules, which specify how an area must
be filled with pieces. Syntactically, a rule is a two-by-two diagram formed by
a pattern and a strategy. The pattern is one of the eight configurations given
in Figure 4. A strategy is a description of how to complete the area, including
which pieces to use and where to put them. We say that the pattern of a rule
matches an area a if the pattern contains the same sequence of preferences as a.
For a rule r and an area a where the pattern of r matches a:

– the application of r to a succeeds if the pieces needed by the strategy of r
are available; the result is that these pieces are placed in a;

– the application of r to a fails otherwise.

The complexity of solving a puzzle with A areas is O(A). The rules of a statement
are tried in order. If one of them succeeds, then the statement succeeds. If no

172 F.M.Q. Pereira and J. Palsberg

ybya xbxa xa y x y• • •xxyy •

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Patterns of preferences. The shaded areas are not part of the notation; they
only emphasize where the preferred pieces should stay.

rule succeeds, then the statement fails. The solution of a puzzle is found by
successive applications of statements on empty board areas, as follows:

For each i from 1 to 8:
For each empty area a such that the pattern of si matches a:

– apply si to a
– if the application of si to a fails,

then terminate the entire execution and report failure.

If the preferred area of a piece v is filled with a piece other than v, and v
is still available to fill other areas, we remove the name of v and mark it as an
anonymous piece. We illustrate this step in the figure below, which uses puzzle
five from Figure 1 as an example:

ya xc yd •

yd ya
ZE

xc x• x• xc

ZE

yd •

yd y•
rule r

2

statement s
7

The piece x• was added to pad the puzzle. This example shows the application of
the second rule of statement seven of our solving algorithm. After the application,
the piece ya can no longer be allocated into its preferred spot, so we relabel it
to an anonymous piece y•.

The algorithm in Figure 5 determines an order in which areas must be filled
with pieces. Part of the ordering that we chose is arbitrary, e.g, any ordering
between statements one to seven would preserve the optimality of the solution.
However, some choices are essential to guarantee the optimal solution of punctual
coalescing. For instance, the figure below illustrates a case in which we get more
copies if we switch the precedence between statements seven and eight:

a
•

b d •

•
a c

•
e

ya xb yc xd ye

a c e

•

b d •

• •

• db

e c

s8
 before s7

s
7 before s

8

Similarly, the figure below illustrates a case in which we get worse results if we
invert the order of rules inside statement five:

Punctual Coalescing 173

y

1

(:z•

x x

z•z•
ybya

z•

xbxa xbxa

z•z•
)

x•x

z•z•z•

x•x

z•

x•x• x•x•

z•z•(:)(:)
xxa

z•

x

z•

x•x•

z•

x•

z•
(:)

(:)

(:)
2 3 4

5 6

7

8

x ybya xbxa xbxa

x x

yy x

yy

• • • • •

••

xxxyy

•

x

y

x

: y•

y

y

y

y: y•

y •

xx•

z•
:

y x

Fig. 5. Program Pc that solves punctual coalescing for empty follower boards

xa yb yc

b c

•

a •

•

• •

•

a

• •

• ••

a •

•

• •

•

•
bc

cb
•

inverted s5

normal s
5

Correctness. We have proven that the algorithm in Figure 5 solves a puzzle
with an initially empty board, if, and only if, that puzzle has solution [24, ch.4].
This result comes from the combination of two lemmas: progress (Lemma 1) and
preservation (Lemma 2). In particular, we give a mechanical proof of Lemma 2
using the Twelf Meta Theorem prover [28].

Lemma 1. (Progress) If P is a solvable puzzle, then there is a rule r in the
algorithm from Figure 5 that applies to P .

Lemma 2. (Preservation) If P is a solvable puzzle, and the algorithm from
Figure 5 applies rule r to P to produce P ′, then P ′ is solvable.

We also show the optimality of our solution, which we state as Theorem 1 below.
To state optimality we need to define the number of displaced pieces. The number
n of pieces displaced in a solution of a type-1 puzzle, as found by the algorithm in
Figure 5, is determined uniquely by the types of patterns and the number of size
2 Z pieces in the puzzle. There are eight different patterns, shown in Figure 4.
We let Z2 be the number of size 2 Z pieces, and we let Pi, i ∈ {a, . . . , h} be the
number of patterns i in the puzzle board. The algorithm to compute n is given
below:

174 F.M.Q. Pereira and J. Palsberg

– let nd = Z2 − (Pb + Pd + Pe + Pf)
– if nd ≤ 0
• then n← 0
• else if Ph ≥ nd

∗ then n← nd

∗ else n← Ph + 2× (nd − Ph)

Theorem 1. (Optimality) If P is solvable with n displaced pieces, and rule r
is applied on P producing P ′ and causing k displaced pieces, then P ′ is solvable
with at most n− k displaced pieces.

The proofs of progress, preservation and optimality are given in [24, ch.4].

4 ILP Formulation

We use a 0/1 integer linear programming (ILP) formulation to find a solution
to the global coalescing problem. Our ILP model uses three sets: puzzle areas
R, puzzle pieces V and a set N of puzzles with one element for each split point
in the source program. The set R contains 3m elements, where m is the number
of columns in the puzzle board. We assume that, for all i, 0 ≤ i ≤ m, areas 2i
and 2i + 1 alias area i + 2m. Figure 6 gives an example. In this case we have
two puzzle areas, labeled four and five. Area four is divided into columns zero
and one, and area five is divided into columns two and three. We define binary
variables pnvr ranging on these three sets. Each pnvr is 1 if piece p has been
allocated to the area r of the puzzle n, and is 0 otherwise. Notice that pnvr only
exists if the piece v has the same width as area r. For instance, in Figure 6, piece
a of puzzle five produces the variables p5a0, p5a1, p5a2 and p5a3, but not p5a4,
because piece a has width one, and area four has width two.

Following Grund et al. [16], we define affinity variables. The affinity variable
aijvr is 0 if the puzzle pieces pivr and pjvr have the same value. This happens
when the pieces representing variable v have been assigned to the same puzzle
area r across two consecutive puzzles i and j. Affinity variables model the control
flow graph of the source program. Thus, due to affinity edges, our ILP model
finds an optimal solution to register coalescing for the whole program, and not
only for a single program block. The objective function consists in minimizing
the sum of the affinity variables:

min f =
∑

i,j,v,r

aijvr

Our formulation uses three basic types of constraints:

1. Each puzzle piece must be allocated to just one area. That is, given piece v
at puzzle n, for each area r with the same width as v we have that:

∑

r

pnvr = 1

Punctual Coalescing 175

Puzzle 5: E
5
 = c

5

3

4 5

20 1

i ii

iii iv

v vi

vii viii
a5

c5
d5

E5

a4 c4 d4

E6d6a6

Fig. 6. Puzzle five from Figure 1

i p5a0 + p5c0 + p5d0 ≤ 1 v p5a2 + p5c2 + p5d2 ≤ 1

ii p5a1 + p5c1 + p5d1 ≤ 1 vi p5a3 + p5c3 + p5d3 ≤ 1

iii p5a0 + p5d0 + p5E4 ≤ 1 vii p5a2 + p5d2 + p5E5 ≤ 1

iv p5a1 + p5d1 + p5E4 ≤ 1 viii p5a2 + p5d2 + p5E5 ≤ 1

Fig. 7. Constraints asserting that a puzzle area can contain only one piece

2. Each puzzle area must contain at most one piece. That is, given an area,
we define four inequalities, one for each region where a piece can be placed.
For all pnvr that can be placed on the same region, and all 0 ≤ i ≤ m, we
have the equations below, where the double summation is due to the double
aliasing of T1 puzzles:
∑

v

pnv(2i) +
∑

v

pnv(2m+i) ≤ 1 and also
∑

v

pnv(2i+1) +
∑

v

pnv(2m+i) ≤ 1

3. Each affinity edge aijvr must be greater than or equal the absolute value of
pivr − pjvr.

4.1 Example

As an example, we model the constraints that are produced by the puzzle in
Figure 6, i.e, puzzle five from Figure 1. We have numbered the puzzle areas
using roman numerals to help our explanation. Also, we have added indices to
the variable names, to distinguish those that are part of puzzle five from those
that are part of other puzzles. For each of the four quadrants of an area we have
a constraint that forces the piece stored in that location to be unique. These
constraints are given in Figure 7. Notice that the constraint that refers to an
area uses only the variables that may be allocated in that area. In this way, the
constraint of area i mentions only pieces a5, c5 and d5.

Figure 8 shows the constraints used to guarantee that each piece will receive
a puzzle area. There are four such constraints, one for each variable.

Finally, the affinity edges add 44 equations to our model. These equations are
described by the expressions below:

∀(r ∈ {0, 1, 2, 3}, v ∈ {a, c, d}), f45vr ≥ p4vr − p5vr and also f45vr ≥ p5vr − p4vr

∀(r ∈ {0, 1, 2, 3}, v ∈ {a, d}), f56vr ≥ p5vr − p6vr and also f56vr ≥ p6vr − p5vr

∀(r ∈ {4, 5}), f56Er ≥ p5Er − p6Er and also f56Er ≥ p6Er − p5Er

176 F.M.Q. Pereira and J. Palsberg

a p5a0 + p5a1 + p5a2 + p5a3 = 1 d p5d0 + p5d1 + p5d2 + p5d3 = 1

c p5c0 + p5c1 + p5c2 + p5c3 = 1 E p5E4 + p5E5 = 1

Fig. 8. Constraints asserting that a piece must be placed on only one area

5 Experimental Results

This section empirically validates our punctual coalescing approach. In order
to ensure reproducibility, the material used in these experiments is available at
http://homepages.dcc.ufmg.br/~fpereira/projects/puzzles/punctual/.

Punctual Coalescing in x86. We have implemented our punctual coalescing
algorithm on top of the original puzzle solver [26], running on LLVM 2.2 [20].
When compiling SPEC CPU 2000, our implementation is 4% slower than LLVM’s
default register allocator, an extended version of linear scan [29]. We emphasize
that our implementation is a research artifact, whereas LLVM’s is an industrial
quality software that does not convert the input program into elementary form.

In terms of number of copies, results are very good: no copy was required be-
tween two consecutive puzzles in which the follower had an empty puzzle board
during the compilation of SPEC CPU 2000. These puzzles account for 89% of the
instructions in the source programs. The puzzle solver inserted approximately
one copy per each group of 14 puzzles; however, these copies were used to im-
plement fixing code between basic blocks (63% of copies), and to avoid conflicts
between program variables and pre-allocated registers (37% of copies); we discuss
these issues in Section 6. These results mean that we have not found a pattern
such as that in Figure 1 in our benchmarks. However, x86 is an “easy” target for
punctual coalescing, because it contains only four aliased registers (AX, BX, CX
and DX). Moreover 67% of the puzzles that we found contain only pieces of the
same size, in which case it is possible to find a solution for punctual coalescing
requiring zero copies [24, ch.4]. Thus, to verify the behavior of our algorithm in
a larger puzzle board and with more diverse inputs, we tested it in an artificial
architecture, as we describe in the next section.

Punctual versus Global Coalescing. We have seen, in Section 2, that a se-
quence of optimal solutions to punctual coalescing may be worse than an optimal
solution to global coalescing, even for straight line programs. The objective of
this section is to measure this difference and to compare the punctual coalescer
with other polynomial-time algorithms. In these experiments, we use LLVM [20]
to compile SPEC CPU 2000 to an artificial architecture. LLVM uses a typed in-
termediate representation, in which integer values have a well known bit width:
1, 8, 16 or 32 bits. We assume a T1 architecture with 32-bit registers, each of
them divided into two 16-bit aliases. A register may contain one 32-bit value,
or two 1, 8, or 16-bit values. LLVM’s IR does not use any form of pre-allocated
registers; thus, all the puzzle instances produced have an empty register board.

Punctual Coalescing 177

0.0

0.2

0.4

0.6

0.8

1.0

gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

Size 2 pieces only Size 1 pieces only Size 1 and size 2 pieces

#traces

#puzzles

longest trace

97

3954

201

297

12907

224

2182

87062

608

26

1412

238

79

8172

728

321

9257

255

833

47920

480

922

38108

320

73

2596

188

190

15401

420

Fig. 9. Puzzle distribution obtained from LLVM’s intermediate representation.
#traces: the total number of traces produced. #puzzles: the total number of puzzles
produced. longest trace: size of longest trace, in number of puzzles.

The nature of the data produced. We use program traces in these experiments, as
they are small enough for our ILP solver to handle. A trace is a set of instructions
that are executed in sequence. We build traces by concatenating successive basic
blocks. For each function in SPEC CPU 2000, we compile the longest trace that
we obtain given a depth first traversal of the function’s control flow graph. Our
longest trace, taken from 186.crafty, contains 728 puzzles. For each trace, we
assume that our target architecture contains exactly the minimal number of
registers necessary to compile all its puzzles. This number, called T1 register
pressure, has a simple formula for puzzles with initially empty boards. In the
formula below, Y is the number of size two Y pieces, and y is the number of size
one Y pieces; similar notation applies to Z, z, X and x:

T1 register pressure = �(2Y + y + max((2X + x), (2Z + z)))/2	 (1)

By equaling available registers and register pressure, we ensure that an optimal
allocator can find a register assignment without causing spills. Spilling plays no
role in the experiments, because the four register assignment algorithms that we
compare fit the model explained in Section 2, which decouples register assign-
ment from register spilling [6].

Given the scenario previously described, we obtained the puzzle distribution
detailed in Figure 9. We have produced 5,020 traces from the ten integer SPEC
CPU 2000 programs that LLVM is able to compile in our system. Together, these
traces contain 226,789 puzzles. We distinguish three groups of puzzles: (i) those
with all the pieces having size two, (ii) those with all the pieces having size one
and (iii) those having pieces of both sizes. We notice that size one pieces are
rare: puzzles of group (ii) correspond to less than 2% of all the puzzles, and over
60% of our puzzles are in group (i), thus containing only size two pieces. This
discrepancy is due to most C programmers seldom using the char and short
data types, recurring instead to int, even to represent boolean variables.

The Competing Coalescers. We compare four register assignment algorithms.
Two of them are the punctual coalescer of Section 3 and the ILP formulation

178 F.M.Q. Pereira and J. Palsberg

of Section 4. The other two algorithms are polynomial-time register assign-
ment heuristics: a coalescing oblivious allocator based on the coloring of chordal
graphs [25], and the register assignment heuristics used in the original puzzle
based allocator [26]. The ILP algorithm uses CPLEX, the two punctual ap-
proaches – the optimal and the heuristic – are implemented in C++, and the
chordal based allocator is written in Java.

Register allocation via coloring of chordal graphs follows from the fact that
programs in static single assignment (SSA) [13] form have chordal interference
graphs, and thus, can be optimally colored in polynomial time [5,10,18]. This
property also applies to elementary programs, which are in SSA form [26]. In
this experiments, we use the register allocator introduced by Pereira and Pals-
berg [25]. This chordal allocator is not guaranteed to deliver optimal results in
the presence of aliasing. If we fail to find an allocation with n registers, where n
is the T 1 register pressure of the input program, then we re-run the algorithm
with n + 1 registers. None of our traces has caused such an iteration.

We have included the chordal based approach in these experiments to show
how bad a coalescing oblivious algorithm can do compared to an optimal alloca-
tor. There exists effective coalescing heuristics for chordal based allocators. Good
examples are given by Bouchez et al. [7] and Hack et al. [17]. However, we do
not use these sophisticated coalescing methods. Instead, after color assignment
is performed, we use a very simple coalescing heuristics. If we let G = (V, E, A)
be an interference graph with a set V of vertices, a set E of interference edges,
and a set A of affinity edges, our heuristics is:

∀ affinity edge (u, v) ∈ A such that (u, v) /∈ E
if ∃ color c such that c is not assigned to any neighbor of u or v,

assign c to u and v

The original puzzle solving heuristics [26] was the inspiration for the punctual
algorithm described in Section 3. The original placement rules are shown in
Figure 10. The main difference between this program and the program shown in
Figure 5 is the arbitrary choice of pieces for areas without preferences. In Figure 5
we use p• to denote a piece that has no preference for any area, and we use pa

to denote a piece that has preference for a given area a. In Figure 10 we write
p? to indicate that we do not take the preference of piece p into consideration
when choosing an area to place it.

Results for SPEC CPU 2000 traces. Figure 11 compares the number of copies
inserted by the coalescing algorithms. The ILP solver did not finish running on
four traces, given a two hours time limit. In total we run the CPLEX solver for 5+
days in order to find solutions to all the traces. In contrast the punctual coalescer,
implemented in C++, took 33 seconds to find a register allocation for all the
traces, and the original heuristics took 30 seconds. The chordal based algorithm
runs for 6+ hours; however, we point that this is a Java program implemented
with no concern for fast running time. For any practical purposes, the ILP and
the two punctual approaches generate a very small number of copies, hence
causing negligible increase in code size. Furthermore, for straight line programs,

Punctual Coalescing 179

y

y y
1

ya yb

ya yb3

x

z •

y x

ya

5

x x?

x •

z •

7

z • z •

x x x x

x

z • z •

x()
2

: xa xb xa xb

z • z •

xa xb xa xb

z •
()
4

:
y y• •

x?

z •
ya ya y?()

6

: x x?

z • z •

x • x •

x

z •
y?

8

():

x? x?

z • z •

••

y? y?

x?

z •
y?

•• ••
9

(): :
Fig. 10. The puzzle solving program for empty boards used by Pereira and Palsberg [26]

Benchmark gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

Chordal 13,471 47,677 329,783 4,757 46,182 27,082 174,633 199,355 10,581 101,816

Original 13 32 241 1 21 19 135 79 12 44

Punctual 0 10 17 0 1 5 33 1 0 0

ILP 0 2 4 0 0 0 3 0 0 0

Fig. 11. Number of copies inserted by: (chordal) the coalescing oblivious register al-
locator via coloring of chordal graphs. (original) the coalescing heuristics used in the
original puzzle solver [26], (punctual) the algorithm from Section 3, (ILP) the ILP
formulation from section 4.

the optimal punctual approach delivers results that are very close to the ILP
method. For instance, our punctual coalescing algorithm required 17 copies to
solve the 87,000 puzzles of gcc. This is less than one copy per 5,000 puzzles! Only
the punctual algorithms – optimal and heuristic – are implemented in LLVM, an
there is no runtime performance difference between them. Based on the results
of Hack and Goos [17], we speculate that there will be no measurable differences
among the four algorithms when targeting x86.

The influence of variable widths on the performance of punctual coalescing. We
have observed that the width of the variables found in the traces plays an im-
portant role on the quality of the solution produced by punctual coalescing. The
width of a variable determines if it fits in half a register, or if it demands a full
register. In order to support this observation, we define two types of register
pressures: T0 and T1. The T1 register pressure is computed by Equation 1. The
T0 register pressure is the register pressure computed assuming a register bank
without aliasing, and it is calculated by Equation 2, where X, Y, Z, x, y and z
are defined as in Equation 1.

180 F.M.Q. Pereira and J. Palsberg

Fig. 12. (Left) Histogram of average register pressures. (Right) Histogram of maximum
register pressures.

T1 register pressure = Y + y + max((X + x), (Z + z)) (2)

For instance, in the example of Figure 1, the average T1 register pressure
is 1.83, and the maximum T1 register pressure is 2. On the other hand, the
average T0 register pressure is 2.5, and the maximum T0 register pressure is 3.
Figure 12 gives a histogram in which the traces produced from SPEC CPU 2000
are grouped according to the T0 and T1 register pressures. Both numbers are
very similar in our benchmarks. On the average, each of our puzzles could be
solved with 7.13 registers, assuming no aliasing, and with 7.08, given T1 aliasing.
Furthermore, 95.2% of all the traces could be compiled with 16 registers of type
T0, whereas 95.4% of the functions could be compiled assuming a T1 target
architecture. These numbers are similar because programmers tend to use 32 bit
types such as int instead of smaller types.

Punctual coalescing tends to produce better results when the T1 pressure is
close to the T0 pressure. The intuition behind this fact is simple: for T0 puzzles,
if the number of registers is greater than or equal to the maximum register
pressure in the trace, then there is a register assignment that requires no copy,
and the punctual coalescing strategy discussed in Section 3 trivially finds it. As
an illustration, we have inverted the proportion of size one and size two variables

Fig. 13. Histograms obtained by inverting the proportion of size one and size two
pieces in our benchmarks. (Left) average register pressures. (Right) maximum register
pressures.

Punctual Coalescing 181

Benchmark gzip vpr gcc mcf crafty parser gap vortex bzip2 twolf

Chordal 15,160 48,878 337,608 4,746 55,468 26,894 176,097 204,325 10,581 101,747

Original 282 1,025 5,554 91 683 486 2,128 3,686 182 1,456

Punctual 25 108 516 20 29 47 251 288 13 111

ILP 0 2 39 0 1 9 21 0 2 8

Fig. 14. Number of copies inserted by different allocators compiling the traces from
Figure 13

presented in Figure 9, obtaining the histograms in Figure 13. In this artificial
setting, we have more size one than size two variables, resulting in a conspicuous
difference between the T1 and T2 register pressures. The results of global and
punctual coalescing in this new context are given in Figure 14. Our punctual
technique inserts 20 times more copies than before; however, this number is still
negligible given the amount of puzzles solved: one copy per each 160 puzzles.

6 Limitations of Punctual Coalescing

The punctual coalescing algorithm of Section 3 may not give optimal results
in two situations: settings with two or more guiding puzzles, and settings with
non-empty follower boards.

Two or more guiding puzzles stems from a merge in the control-flow graph of
the input program. Figure 15 shows an example. The program in Figure 15(a)
contains four basic blocks. Three of these blocks – L1, L2 and L4 – form the
program trace in Figure 1. If our punctual coalescer traverses this trace first,
then it will produce one copy instruction, moving variable a from register R0

into register R3, as seen in Figure 1, and shown again in Figure 15(b). However,
when performing register assignment in the trace formed by basic block L3, our
coalescer will not take into consideration the mapping of variables to registers

a = •

B = •

c = •

d = B

E = c

• = a,d,E

E = B

d = a

L1

L2 L3

L4

a

c

c

c

a

a

a

a

B

B

B

d

d
E

E ad

Ba

a

E

d

R0 = •

R2R3 = •

R1 = •

R2 = R2R3

R3 = R1

R0R1 = R1

• = R3,R2,R0R1

R2R3 = R2R3

R1 = R0

xchg(R0R1,R2R3)

xchg(R2,R3)
E

L1

L2 L3

L4

(a) (b) (c)

R0R1 R2R3

Puzzle board:

Fig. 15. The complete example, from puzzle solving to code generation

182 F.M.Q. Pereira and J. Palsberg

in block L4, previously visited. Thus, it may be necessary to insert fixing code
between basic blocks L3 and L4. The insertion of this code is analogous to
SSA elimination after register allocation, and there are standard algorithms to
perform it [27]. Figure 15(c) shows the final assembly program produced; fixing
code is shown in bold face. We borrowed the xchg instruction, that swaps the
contents of two registers, from the x86 lexicon.

The problem of maximizing coalescing in a setting with two or more guiding
puzzles is NP-complete. The reduction is from the Global Pinning problem,
defined by Rastello et al. [30]. However, we have observed that in practice, at
least in the x86 architecture, the punctual coalescer produces good results: SSA
elimination after register allocation adds approximately 5% more instructions
to the final assembly program, and has negligible impact on the run time of
compiled programs [26]. As a future work, we will couple register assignment
with the static branch prediction technique of Ball and Larus [3] to increase the
likelihood that our puzzle solver will traverse hot program paths first.

Non-empty follower boards stem from constraints in the target architecture’s
instruction set. For instance, x86’s div instruction always produces a result in
register AX. Thus, the puzzle board created for a div instruction contains the
area that corresponds to AX initially taken. Punctual coalescing is not guaranteed
to deliver optimal results if the follower board contains pre-allocated pieces. Pre-
assignment may take away the preferred spot of Y and X pieces. When faced with
pre-allocation we use the original puzzle solving algorithm [26] to eliminate areas
containing pre-assigned pieces, and then apply the punctual coalescing program
from Figure 5 on the remaining areas. In the x86 experiments, move and swap
instructions due to pre-coloring increased the final assembly program in about
2%. Optimal punctual coalescing in face of pre-assignment is an open-problem.

7 Conclusion

This paper has presented punctual coalescing, a technique for reducing the num-
ber of copy instructions inserted by tree-scan register allocators that rely on live
range splitting to lower register pressure. In addition, this paper gave an opti-
mal solution to global coalescing in register banks with aliasing. A comparison
between these two techniques showed that the linear time punctual approach is
very close to the exponential time global algorithm for straight line programs.
We are currently adapting our punctual algorithm to run on a trace compiler[14].

References

1. Ahn, M., Lee, J., Paek, Y.: Optimistic coalescing for heterogeneous register archi-
tectures. SIGPLAN Notices 42(7), 93–102 (2007)

2. Appel, A.W., George, L.: Optimal spilling for CISC machines with few registers.
In: PLDI, pp. 243–253. ACM, New York (2001)

3. Ball, T., Larus, J.R.: Branch prediction for free. In: PLDI, pp. 300–313. ACM, New
York (1993)

Punctual Coalescing 183

4. Biró, M., Hujter, M., Tuza, Z.: Precoloring extension. I. interval graphs. Discrete
Mathematics 100(1-3), 267–279 (1992)

5. Bouchez, F.: Allocation de registres et vidage en mémoire. Master’s thesis, ENS
Lyon (October 2005)

6. Bouchez, F.: A Study of Spilling and Coalescing in Register Allocation as Two
Separate Phases. PhD thesis, ENS Lyon (2008)

7. Bouchez, F., Darte, A., Rastello, F.: Advanced conservative and optimistic register
coalescing. In: CASES, pp. 147–156. ACM, New York (2008)

8. Braun, M., Hack, S.: Register spilling and live-range splitting for SSA-form pro-
grams. In: de Moor, O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp.
174–189. Springer, Heidelberg (2009)

9. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register
allocation. TOPLAS 16(3), 428–455 (1994)

10. Brisk, P., Dabiri, F., Jafari, R., Sarrafzadeh, M.: Optimal register sharing for high-
level synthesis of SSA form programs. TCAD 25(5), 772–779 (2006)

11. Chaitin, G.J.: Register allocation and spilling via graph coloring. In: Symposium
on Compiler Construction, vol. 17(6), pp. 98–105 (1982)

12. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Mark-
stein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)

13. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

14. Gal, A., Eich, B., Shaver, M., Anderson, D., Kaplan, B., Hoare, G., Mandelin, D.,
Zbarsky, B., Orendorff, J., Ruderman, J., Smith, E., Reitmair, R., Haghighat, M.R.,
Bebenita, M., Change, M., Franz, M.: Trace-based just-in-time type specialization
for dynamic languages. In: PLDI, pp. 465–478. ACM, New York (2009)

15. George, L., Appel, A.W.: Iterated register coalescing. Transactions on Program-
ming Languages and Systems (TOPLAS) 18(3), 300–324 (1996)

16. Grund, D., Hack, S.: A fast cutting-plane algorithm for optimal coalescing. In:
Krishnamurthi, S., Odersky, M. (eds.) CC 2007. LNCS, vol. 4420, pp. 111–125.
Springer, Heidelberg (2007)

17. Hack, S., Goos, G.: Copy coalescing by graph recoloring. In: PLDI, pp. 227–237.
ACM, New York (2008)

18. Hack, S., Grund, D., Goos, G.: Register allocation for programs in SSA-form. In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer,
Heidelberg (2006)

19. Kong, T., Wilken, K.D.: Precise register allocation for irregular architectures. In:
MICRO, pp. 297–307. IEEE, Los Alamitos (1998)

20. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE, Los Alamitos (2004)

21. Lee, J.K., Palsberg, J., Pereira, F.M.Q.: Aliased register allocation. Theoretical
Computer Science 407(1-3), 258–273 (2008)

22. Nandivada, V.K., Pereira, F., Palsberg, J.: A framework for end-to-end verification
and evaluation of register allocators. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007.
LNCS, vol. 4634, pp. 153–169. Springer, Heidelberg (2007)

23. Park, J., Moon, S.-M.: Optimistic register coalescing. In: IEEE PACT, pp. 196–204
(1998)

24. Pereira, F.M.Q.: Register Allocation by Puzzle Solving. PhD thesis, University of
California, Los Angeles (2008)

184 F.M.Q. Pereira and J. Palsberg

25. Pereira, F.M.Q., Palsberg, J.: Register allocation via coloring of chordal graphs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg
(2005)

26. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: PLDI, pp.
216–226. ACM, New York (2008)

27. Pereira, F.M.Q., Palsberg, J.: SSA elimination after register allocation. In: de Moor,
O., Schwartzbach, M.I. (eds.) CC 2009. LNCS, vol. 5501, pp. 158–173. Springer,
Heidelberg (2009)

28. Pfenning, F., Schürmann, C.: Twelf - a meta-logical framework for deductive sys-
tems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999)

29. Poletto, M., Sarkar, V.: Linear scan register allocation. TOPLAS 21(5), 895–913
(1999)

30. Rastello, F., de Ferriére, F., Guillon, C.: Optimizing translation out of SSA using
renaming constraints. Technical Report 03-35, École Normale Supérieure de Lyon
(2003)

31. Sarkar, V., Barik, R.: Extended linear scan: an alternate foundation for global
register allocation. In: LCTES/CC, pp. 141–155. ACM, New York (2007)

32. Scholz, B., Eckstein, E.: Register allocation for irregular architectures. In:
LCTES/SCOPES, pp. 139–148. ACM, New York (2002)

33. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring
register allocation. In: PLDI, pp. 277–288. ACM, New York (2004)

34. Traub, O., Holloway, G.H., Smith, M.D.: Quality and speed in linear-scan register
allocation. In: PLDI, pp. 142–151. ACM, New York (1998)

	Punctual Coalescing
	Introduction
	Background
	An Efficient Punctual Coalescing Algorithm
	ILP Formulation
	Example

	Experimental Results
	Limitations of Punctual Coalescing
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

