
Functional Programming in Sublinear Space

Ugo Dal Lago1 and Ulrich Schöpp2,�

1 University of Bologna, Italy
2 University of Munich, Germany

Abstract. We consider the problem of functional programming with data in ex-
ternal memory, in particular as it appears in sublinear space computation. Writing
programs with sublinear space usage often requires one to use special implemen-
tation techniques for otherwise easy tasks, e.g. one cannot compose functions
directly for lack of space for the intermediate result, but must instead compute
and recompute small parts of the intermediate result on demand. In this paper, we
study how the implementation of such techniques can be supported by functional
programming languages.

Our approach is based on modeling computation by interaction using the Int
construction of Joyal, Street & Verity. We derive functional programming con-
structs from the structure obtained by applying the Int construction to a term
model of a given functional language. The thus derived functional language is
formulated by means of a type system inspired by Baillot & Terui’s Dual Light
Affine Logic. We assess its expressiveness by showing that it captures LOGSPACE.

1 Introduction

A central goal in programming language theory is to design programming languages
that allow a programmer to express efficient algorithms in a convenient way. The pro-
grammer should be able to focus on algorithmic issues as much as possible and the
programming language should give him the means to delegate inessential implementa-
tion details to the computer.

In this paper we study programming language constructs that are useful for express-
ing sublinear space algorithms. Sublinear space algorithms use less memory space than
would be needed to store their input. They are useful for computing with large inputs
that do not fit into memory.

When writing programs with sublinear space usage, one must often use special tech-
niques for tasks that would normally be simple. A typical example is the composition
of two algorithms. In order to remain in sublinear space, one cannot run them one after
the other, as there may not be enough space to store the intermediate result. Instead, one
can implement composition by storing at any time only a small part of the intermediate
value and by (re)computing small parts only as they are needed.

Since it is easy to make mistakes in the implementation of such on-demand recom-
putation of intermediate values, we believe that programming language support should
be very useful for such tasks. Instead of implementing composition with on-demand

� This work was carried out while Ulrich Schöpp was supported by a fellowship of the Institute
of Advanced Studies at the University of Bologna.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 205–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

206 U.D. Lago and U. Schöpp

recomputation by hand, the programmer should be able to write function composition
in the usual way and have a compiler generate the complicated program.

The possibilities of doing this have been explored in work on implicit characterisa-
tions of LOGSPACE. A number of characterisations of this complexity class have been
explored in terms of function algebras [14] and linear logics [15] (there is more work
for LOGSPACE-predicates, e.g. [10,5], but we focus on functions here). However, these
characterisations are still far away from being real programming languages.

Here we work towards the goal of making the abstractions explored in this line of
work usable in programming. In contrast to previous work [14,15], we aim to enrich
the language with constructs for working with on-demand recomputation conveniently,
rather than hiding it completely. This is in line with the fact that sublinear space al-
gorithms are usually not used in isolation and will generally appear within larger pro-
grams. Language support for writing sublinear space algorithms should not become a
hindrance in other parts of the program that do not operate on large data.

In this paper we present the functional programming language INTML for
programming with sublinear space. This language is derived from an instance of the
Int construction [7]. Our thesis is that the Int construction naturally captures space
bounded computation and thus exposes mathematical structure that is useful for writ-
ing space bounded programs. Even though the type system of INTML is quite simple
when compared to earlier higher-order type systems for LOGSPACE [15], INTML allows
LOGSPACE algorithms to be written in a natural way, as is discussed in Sec. 3.2.

2 Space-Bounded Computation

Our approach to representing sublinear space computation in a functional programming
language is best explained by analysing the definition of space complexity classes.

In the definition of space complexity classes, in particular sublinear space complexity
classes, one uses Offline Turing Machines (OTMs) instead of standard Turing Machines.
Offline Turing Machines are multi-tape Turing Machines that differ from the standard
ones in that the input tape is read-only, the output tape is write-only and the output head
may be moved in one direction only; finally the input and output tapes do not count
towards the space usage of an Offline Turing Machine.

The definition of Offline Turing Machine captures a special class of Turing Machines
that do not store their input or output in memory, but instead have (random) access to
some externally stored input, and that give their output as a stream of characters. Since
neither input nor output must be stored in memory, it is justified to count only the work
tape towards the space usage of an Offline Turing Machine.

More formally, while a normal Turing Machine computes a function Σ∗ → Σ∗ on
words over an alphabet Σ, an Offline Turing Machine may be seen as a function of type

(State × Σ) + N −→ (State × N) + Σ ,

where A+B denotes the (tagged) disjoint union {inl(x) | x ∈ A}∪{inr(y) | y ∈ B}.
An input n ∈ N stands for the request to compute the n-th character on the OTM’s output
tape. An output in Σ is a response to this request. Whenever the OTM wants to read a
character from its input tape, it outputs a pair 〈s, n〉 ∈ State×N, where n is the number

Functional Programming in Sublinear Space 207

of the input character it wants to read and s is its machine state, comprising finite control
state, work tape contents, etc. Receiving this request, the environment looks up the n-th
input character in and restarts the machine with input 〈s, in〉 ∈ State × Σ. It supplies
the machine state s that was part of the input request, so that the machine can resume
its computation from the point where it requested an input.

In this way, we can consider each Offline Turing Machine as a normal Turing Ma-
chine with the special input/output interface given by the type above. This special ma-
chine needs space only to store the work tape(s) of the OTM and the positions of the
OTM’s input and output heads. This view justifies the exclusion of the input and out-
put tapes in the definition of the space usage of OTMs, as long as the space usage is at
least logarithmic. We will not consider OTMs with sublogarithmic space usage here and
indeed ‘Classes of languages accepted within sublogarithmic space depend heavily on
the machine models and the mode of space complexity’ [16].

While at first sight, the step from Turing Machines to Offline Turing Machines ap-
pears to be just a technicality, it is a step from unidirectional to bidirectional computa-
tion. For example, while standard Turing Machines are composed just by running them
one after the other, composition of Offline Turing Machines involves bidirectional data
flow. This composition is implemented as a dialogue between the machines: one starts
by requesting an output character from the second machine and every time this machine
queries a character of its input, the first machine is started to compute this character.

Bidirectional computation is thus an integral feature of space-bounded computation,
which must be accounted for in a programming language for space-bounded functions.
We argue that a good way of accounting for this bidirectionality is to study space-
bounded computation in terms of the Int construction of Joyal, Street & Verity [7,6]. The
Int construction is a general algebraic method of constructing a bidirectional universe
from a unidirectional one. It appears in categorical formulations of the Geometry of
Interaction [1,2] and has many applications, e.g. to Attribute Grammars [8].

2.1 Structuring Space Bounded Computation

In this section we observe that the step from Turing Machines to Offline Turing Ma-
chines can be understood in terms of the Int construction. This simple observation gives
us guidance for structuring space-bounded computation, since it allows us to draw on
existing work on the structure obtained by the Int construction.

The idea is to start from a computational model, e.g. the partial computable functions
as formalised by Turing Machines, and then apply the Int construction to this model.
The result is a model that still contains the original one, but in addition also captures
bidirectional (or interactive) computation in the style of Offline Turing Machines.

In general, the Int construction starts with a traced monoidal category B and yields
a category Int(B) that represents bidirectional computation in B. For the argument in
this paper, it suffices to describe just one particular instance of Int(B), that where B is
the category Pfn of sets and partial functions. In this example we drop computability
for the sake of simplicity and assume that our ‘computational’ model consists just of
partial functions between arbitrary sets.

If we apply the Int construction to Pfn with respect to tagged disjoint union as
monoidal structure, then we obtain the following category Int(Pfn). Its objects are

208 U.D. Lago and U. Schöpp

pairs (X−, X+) of sets X− and X+. A morphism f from X = (X−, X+) to Y =
(Y −, Y +) is a partial function f : X+ + Y − → Y + + X−.

Morphisms capture bidirectional computation. Let us think of the par-
tial function f as a message-passing node with two input wires and two
output wires as drawn on the right. When an input value arrives on an
input wire then the function f is applied to it and the resulting value is
passed along the corresponding output wire.

f

X+

Y +

X−

Y −

We will combine the two edges for X− and X+ into a single edge in which
messages may be passed both ways (and likewise for Y). Thus we obtain the
node on the right, whose edges are bidirectional in the sense that an edge with
label X allows any message from X+ to be passed in the forward direction and
any message from X− to be passed in the backwards direction.

f

X

Y

Composition in Int(Pfn) allows one to build message passing networks out of such
nodes. The composition g ◦ f : X → Z of f : X → Y and g : Y → Z is obtained
simply by connecting the two nodes. The underlying partial function
g ◦ f : X+ + Z− → Z+ + X− is most easily described in terms of
message passing. An input in X+ is given to f and one in Z− to g.
If either f or g give an output in X− or Z+ then this is the output of
g ◦ f . If, however, f (resp. g) outputs a message on Y + (resp. Y −), this
message is given as an input to g (resp. f). This may lead to a looping
computation and g ◦ f may be partial even if g and f are both total.

f

X+

Y +

X−

Y −

g

Z+Z−

Offline Turing Machines appear as morphisms of type (State × N, State × Σ) →
(N, Σ) in Int(Pfn). This follows immediately from the definition of morphisms and
the discussion in Sec. 2. What we gain from viewing OTMs as morphisms in Int(Pfn)
is that we can use the well-known structure of this category for constructing and ma-
nipulating them. For example, Int(Pfn) is compact closed and therefore allows us to
use linear lambda calculus and higher-order functions for the manipulation of OTMs.

We list the structure in Int(Pfn) that we use in the definition of INTML.

Partial Functions. First we note that inside Int(Pfn) we still find Pfn. For any set A
we have an object IA = (∅, A). A morphism from IA to IB is a partial function
of type A + ∅ → ∅ + B, so that the morphisms of that type are in one-to-one
correspondence with the partial functions from A to B.

Thunks. Also useful is the object [A] = ({∗}, A), where a singleton replaces the empty
set. We will use ∗ as question that signals an explicit request for a value of type A.
Thus, one may think of [A] as a type of thunks that are evaluated on demand.

Higher-order Functions. Int(Pfn) has a monoidal structure ⊗ that on objects is de-
fined by X ⊗Y = (X− + Y −, X+ + Y +). In addition, there is a dualising opera-
tion (−)∗ that exchanges question and answer sets, i.e. (X−, X+)∗ = (X+, X−).
Together, ⊗ and (−)∗ make Int(Pfn) a compact closed category. As a conse-
quence, we obtain a linear function space by letting X � Y = X∗ ⊗ Y .

Indexed Tensor. Of further use is an indexed tensor product
⊗

A X . The object
⊗

A X
is isomorphic to X ⊗ · · · ⊗ X (|A| times). It is defined by (

⊗
A X)− = A × X−

and (
⊗

A X)+ = A × X+. The first component in the messages indicates which
component of the tensor product we are communicating with.

Functional Programming in Sublinear Space 209

To see how this structure is useful for working with OTMs, consider a morphism of type
⊗

State
(IN � IΣ) −→ (IN � IΣ) (1)

in Int(Pfn). By definition, it is a partial function from (State × (∅ + Σ)) + (N + ∅) to
(State × (N + ∅)) + (∅ + Σ), which, if we remove the superfluous empty sets, is the
same as the type of an Offline Turing Machine, as described in Sec. 2.

As a morphism of type (1), an Offline Turing Machine is modelled simply as a map
from inputs to outputs, which are both modelled as (linear) functions IN � IΣ. This
encoding of words as functions reflects the fact that Offline Turing Machines do not
have access to the whole input at once, but rather can read only a single character
at a time. Reading the n-th character just corresponds to applying the input function
of type IN � IΣ to the natural number n. In Int(Pfn) we may therefore use the
input as if it were a single function from natural numbers to characters, even though
in reality the input can only be queried character by character. We argue that this is
more convenient than the access to the input by means of explicit questions as in the
direct implementation of Offline Turing Machines. For example we can use λ-calculus
to manipulate the input functions.

3 A Functional Language for Logarithmic Space

In the rest of this paper we develop a functional programming language INTML that
is based on understanding space-bounded computation in terms of the Int construction.
For the definition of INTML we start with a standard functional programming language.
In order to program sublinear space algorithms in this language, we would like to imple-
ment message passing networks in it and we would like to manipulate these networks
using the structure that we have found in the Int construction. We obtain INTML by
extending the original programming language with primitives for constructing and ma-
nipulating such message passing networks.

INTML provides a syntax for the structure that one obtains from applying the Int
construction to a term model of the standard functional programming that we start with.
In terms of the outline above, one should replace all the partial functions in Pfn with
terms in the functional programming language. That means that the message passing
networks caputred by the Int construction are now not just partial functions but partial
functions implemented in the functional programming language.

INTML is thus a typed functional programming language with two classes of terms
and types: one for the functional language that we start with and one for the structure
that we obtain by applying the Int construction to a term model of this language. We
call the former the working class and the latter the upper class. The upper class part
can be seen as a definitional extension of the working class part. Upper class terms
do not compute themselves, but rather represent message passing networks that are
implemented by working class terms.

In this paper, we choose for the working class part of INTML a simple first order
functional language with finite types. We have chosen such a simple language because
the main novelty of INTML is the upper class calculus. We stress that the working class
calculus may be replaced by a more expressive language, like PCF for example.

210 U.D. Lago and U. Schöpp

The upper class provides constructs for space-bounded programming. It is a linear
type system inspired by Dual Light Affine Logic (DLAL) [4]. INTML treats the indexed
tensor

⊗
A much like exponential modality ! is treated in DLAL. Just as the exponential

modality may only appear in negative positions in DLAL, i.e. one can have !X � Y
but not X � !Y , INTML only accounts for types of the form

⊗
A X � Y . In the

syntax we write A · X � Y for them. The restriction to negative occurrences of
⊗

A

simplifies the type system without being too limiting in applications. In fact, we do not
know of an example where

⊗
A in a positive position would be useful.

3.1 Type System

Working class types are first-order types with type variables. They may appear in the
upper class types, which represent structure obtained from the Int construction.

Working class A, B ::= α | 1 | A × B | A + B

Upper class X, Y ::= [A] | X ⊗ Y | A · X � Y

Instead of 1·X � Y we write just X � Y . For working class types we define coherent
type isomorphism to be the least congruence generated by 1 × A ∼= A × 1 ∼= A and
A × (B + C) ∼= (A × B) + (A × C) and (B + C) × A ∼= (B × A) + (C × A).

The terms of INTML are formed by the grammars below. We write c, d for working
class variables and use f , g, h to range over working class terms. Upper class variables
are ranged over by x, y and upper class terms by s, t. The terms loop(c.f)(g) and
hack(c.f) bind the variable c in f .

Working class f, g, h ::= c | minA | succA(f) | eqA(f, g)
| inl(f) | inr(f) | case f of inl(c) ⇒ g | inr(d) ⇒ h
| ∗ | 〈f, g〉 | fst(f) | snd(f) | loop(c.f)(g) | unbox(t)

Upper class s, t ::= x | 〈t, t〉 | let s be 〈x, y〉 in t | λx. t | s t
| [f] | let s be [c] in t | case f of inl(c) ⇒ s | inr(d) ⇒ t
| copy t as x, y in t | hack(c.f)

The working class terms include the standard terms for 1, × and +. In addition there are
constants minA, succA and eqA for any type A. These constants provide a total ordering
and decidable equality on any type. For example, the values of the type (1+1)×(1+1)
can be ordered as 〈inl(∗), inl(∗)〉, 〈inr(∗), inl(∗)〉, 〈inl (∗), inr(∗)〉, 〈inr(∗), inr(∗)〉
and with min and succ we can access such an ordering generically for any type without
having to define it by hand. Finally, there is a term loop(c.f) for iteration. It is a simple
syntax for a trace operator with respect to +. The intendet operational semantics of loop
is loop(c.f)(inl(v)) −→ loop(c.f)(f [inl(v)/c]) and loop(c.f)(inr(v)) −→ v, where in
both cases v has already been reduced to a value (see Section 4.1).

The typing rules for working class terms appear in Fig. 1. They derive working class
sequents of the form Σ f : A asserting that f has type A in context Σ. The context Σ
assigns working class types to a finite number of working class variables. As usual,
the comma in contexts corresponds to ×, even though loop corresponds to a trace with
respect to +. The typing rules should be unsurprising, except perhaps that for unbox.
One may think of a term t:[A] as a thunk that can be evaluated with unbox.

Functional Programming in Sublinear Space 211

Σ, c:A � c : A Σ � minA : A

Σ � f : A

Σ � succA(f) : A

Σ � f : A Σ � g : A

Σ � eqA(f, g) : 1 + 1

Σ � ∗ : 1

Σ � f : A Σ � g : B

Σ � 〈f, g〉 : A × B

Σ � f : A × B

Σ � fst(f) : A

Σ � f : A × B

Σ � snd(g) : B

Σ � f : A

Σ � inl(f) : A + B

Σ � f : A + B Σ, c:A � g : C Σ, d:B � h : C

Σ � case f of inl(c) ⇒ g | inr(d) ⇒ h : C

Σ � f : B

Σ � inr(f) : A + B

Σ, c:A + B � f : C + B Σ � g : A + B

Σ � loop(c. f)(g) : C

Σ | � t : [A]

Σ � unbox(t) : A

Fig. 1. Working Class Typing Rules

Upper class terms denote message passing networks that will be implemented by
working class terms. An upper class typing sequent has the form Σ | Γ t : X ,
where Σ is a working class context. The context Γ is a finite list of declarations of
the form x1 : A1·X1, . . . , xk : Ak·Xk. As usual, we assume that no variable is declared
more than once in Γ . The term t denotes a network with a single (bidirectional) out-
put edge of type X and (bidirectional) input edges of types

⊗
A1

X1, . . . ,
⊗

Ak
Xk.

Informally, one may think of a declaration x : A·X as a declaration of A-many copies
of a value in X , i.e. one copy for each value v:A. Having multiple copies is useful
because our message passing networks are stateless. When we send a query to X and
later receive an answer, then we may not know what to do with that answer, since we
have forgotten all that was computed earlier. However, we can use A · X instead of X
in order to remember a value of type A. If we want to remember a value v:A then we
simply query the v-th copy of X .

For any upper class context Γ and any working class type A, we define an upper
class context A · Γ by A · 〈〉 = 〈〉 and A · (Δ, x : B·X) = (A · Δ), x : (A × B)·X .

The upper class typing rules appear in Fig. 2. While upper class terms denote
message passing networks, at a first reading they may be understood without know-
ing precisely the networks they denote. In particular, the reader may wish to look at the
reduction rules in Fig. 5, which are soundly implemented by the translation of terms to
message passing networks. In Sec. 4 we describe which networks the terms denote.

The upper class rules represent a choice of the structure that the Int construction adds
to the working class calculus. It does not capture this rich structure completely, how-
ever. Therefore we add the ‘hacking’ rule below that allows one to implement message
passing nodes directly, much like one can use inline assembler in C.

Σ, c:X− � f : X+

(HACK)
Σ | Γ � hack(c.f) : X

In this rule, X− and X+ denote the negative and positive parts of X defined by:

[A]− = 1 [A]+ = A
(X ⊗ Y)− = X− + Y − (X ⊗ Y)+ = X+ + Y +

(A · X � Y)− = A × X+ + Y − (A · X � Y)+ = A × X− + Y +

212 U.D. Lago and U. Schöpp

Σ | Γ � s : Y
(WEAK)

Σ | Γ, x : A·X � s : Y

Σ | Γ, x : A·X, y : B·Y, Δ � s : Z
(EXCH)

Σ | Γ, y : B·Y, x : A·X, Δ � s : Z

Σ | Γ, x : A·X � s : Y
(LWEAK)

Σ | Γ, x : (B × A)·X � s : Y

Σ | Γ, x : A·X � s : Y
(CONGR) A ∼= B

Σ | Γ, x : B·X � s : Y

(VAR)
Σ | Γ, x : A·X � x : X

Σ | Γ � s : X Σ | Δ � t : Y
(⊗I)

Σ | Γ, Δ � 〈s, t〉 : X ⊗ Y

Σ | Γ � s : X ⊗ Y Σ | Δ, x : A·X, y : A·Y � t : Z
(⊗E)

Σ | Δ, A · Γ � let s be 〈x, y〉 in t : Z

Σ | Γ, x : A·X � s : Y
(�I)

Σ | Γ � λx. s : A · X � Y

Σ | Γ � s : A · X � Y Σ | Δ � t : X
(�E)

Σ | Γ, A · Δ � s t : Y

Σ | Γ � s : X Σ | Δ, x : A·X, y : B·X � t : Y
(CONTR)

Σ | Δ, (A + B) · Γ � copy s as x, y in t : Y

Σ � f : A + B Σ, c:A | Γ � s : X Σ, d:B | Γ � t : X
(CASE)

Σ | Γ � case f of inl(c) ⇒ s | inr(d) ⇒ t : X

Σ � f : A
([]I)

Σ | Γ � [f] : [A]

Σ | Γ � s : [A] Σ, c:A | Δ � t : [B]
([]E)

Σ | Γ, A · Δ � let s be [c] in t : [B]

Fig. 2. Upper Class Typing Rules

Examples. We give an example derivation to illustrate that while the upper class type
system is linear, working-class variables can be copied arbitrarily:

| x : 1·[α] � x : [α]

...
c:α | f : 1·([α] � [α] � [β]) � f [c] : [α] � [β]

c:α � c : α
c:α | � [c] : [α]

c:α | f : 1·([α] � [α] � [β]) � f [c] [c] : [β]
([]E)

f : (α × 1)·([α] � [α] � [β]), x : 1·[α] � let x be [c] in f [c] [c] : [β]
(CONGR), (�I)

f : α·([α] � [α] � [β]) � λx. let x be [c] in f [c] [c] : [α] � [β]
(�I)� λf. λx. let x be [c] in f [c] [c] : α · ([α] � [α] � [β]) � [α] � [β]

Even though upper class terms can be understood as if they were implemented by the
reduction rules in Fig. 5, it is important to understand that they will be (in Sec. 4)
compiled down to (large) working class terms that implement certain message passing
networks. The network for the upper class term in the conclusion of the above deriva-
tion, for example, represents a message passing network with a single (bidirectional)
output wire. It behaves as follows: if it receives a request for the value of the result
in [β], it first requests the value of x. Upon receipt of this value, the network will then
ask the function f for its return value. Since f has a type of the form α ·X , the network
has access to α-many copies of f . It chooses the copy indexed by the value of x, so that,
even though the network is stateless, the value of x will be available once an answer
from f arrives. If f answers with a value in [β], then this answer is forwarded as the

Functional Programming in Sublinear Space 213

final answer of the whole network. If f answers with a request for one of its arguments,
then the network gives the value of x as reply to f .

That being able to copy working class variables does not make copy superfluous can
be seen in the following terms for conversion between [α × β] and [α] ⊗ [β].

λy. copy y as y1, y2 in
〈let y1 be [c] in [fst(c)], let y2 be [c] in [snd(c)]〉 : (γ + δ) · [α × β] � [α] ⊗ [β]

λz. let z be 〈x, y〉 in let x be [c] in let y be [d] in [〈c, d〉] : α · ([α] ⊗ [β]) � [α × β]

Useful Combinators. The upper class calculus is a simple linear lambda calculus for
constructing message passing networks. It appears to be missing many constructs, such
as loops, that are required to make it an expressive programming language. Such con-
structs can be defined as higher-order combinators using hack.

The most important example of such a combinator is a loop iterator that informally
satisfies loop f v = w if f v = inr(w) and loop f v = loop f w if f v = inl(w).

loop : α · (γ · [α] � [α + β]) � [α] � [β]

Before we define loop, we give a typical example for its use. We define foldα, such
that foldα f y computes f xn (. . . (f x1 (f x0 y))), where x0 = minα and xi+1 =
succα(xi) and xn is the maximum element of α, i.e. the element with xn = succα(xn).

foldα : (α × β × α × β) · ([α] � [β] � [β]) � [β] � [β]

foldα = λf. λy.loop (λw. let w be [e] in let f [fst(e)] [snd(e)] be [z] in

case eqα(fst(e), succα(fst(e))) of inl(true) ⇒ [inr(z)]

| inr(false) ⇒ [inl(〈succα(fst(e)), z〉)])
(let y be [z] in [〈minα, z〉])

The definition of loop uses hack and therefore makes explicit reference to the transla-
tion of upper class terms to message passing networks, which we describe in detail in
Sec 4. The loop-combinator is defined by loop = hack(c.l), where l is a working class
term of type c:α × (γ × 1 + (α + β)) + (α + 1) l : α × (γ × α + 1) + (1 + β) that
implements the following mappings using a nested case expression: (i) inr(inr(∗)) �→
inl(inr(∗)); (ii) inr(inl (a)) �→ inl(a, inr (∗)); (iii) inl(a, inr(inr(b)) �→ inr(inr(b));
(iv) inl(a, inr(inl (a′)) �→ inl(a′, inr(∗)); and (v) inl(a, inl(g, ∗)) �→ inl(a, inl(g, a)).
These assignments can be interpreted as follows: Mapping (i) says that when we get
a request for the final value, we start by asking the base case for its value. When an
answer from the base cases arrives, we put it in a memory cell (corresponding to α · −
in the type) and ask the step function for its result (ii). Whenever the step function asks
for its argument, we supply the value from the memory cell (v). If the step function
answers inr(b), then we are done and give b as output (iii). If the step function answers
inl(a′), then we overwrite the memory cell content with a′ and restart the step function
by asking for its result (iv).

A second useful combinator is a simple version of callcc. It can be given the fol-
lowing type for any upper class type X .

callcc :
(
γ · ([α] � X) � [α]

)
� [α]

214 U.D. Lago and U. Schöpp

This combinator is defined by callcc = hack(c.l), where l is a working-class term
of type c:(γ × (α + X−) + α) + 1 l : (γ × (1 + X+) + 1) + α that imple-
ments the following mappings: (i) inr(∗) �→ inl(inr(∗)); (ii) inl(inr(a)) �→ inr(a);
(iii) inl(inl (g, inr(x))) �→ inl(inl(g, inl(∗))); and (iv) inl(inl(g, inl(a))) �→ inr (a).
These assignments implement callcc as follows: a request for the result becomes a re-
quest for the result of the argument function (i); When the argument function produces
a result value, we forward it as the final result (ii). If the argument function ever uses its
argument, i.e. calls the continuation, then the value passed to the continuation should
be returned as the final result. This is done by assignments (iii) and (iv). Whenever the
result of the continuation is requested, this request is turned into a request for the ar-
gument of the continuation (iii). Upon supply of the argument to the continuation, the
computation is aborted and this argument is returned as the end result (iv).

3.2 Programming in INTML

We have introduced the upper class in INTML with the intention of helping the pro-
grammer to implement functions with sublinear space usage. Let us give a few examples
of how we think the upper class features will be useful.

Consider for example binary words. For sublinear space computation, they are suit-
ably modelled as functions of type A · [B] � [3]. With the constants min and succ, we
can regard B as a type of numbers. We interpret 3 as a type containing characters ‘0’,
‘1’ and a blank symbol. Then, A · [B] � [3] can represent words by functions that map
the n-th element of B to the n-th character of the word (see Sec. 5 for a precise defi-
nition). Being a higher-order language, INTML allows the programmer both to define
such words directly, but also to write higher-order combinators to manipulate them.

When working with A · X � Y , we have found that often we are not interested in
the particular type A, only that some such type exists. Let us therefore in the following
hide all such annotations and write just X → Y to mean A · X � Y for some A.

Useful combinators for words encoded as functions are, e.g. zero : ([α] → [3]) for
the empty word, succ0 : ([α] → [3]) → ([α] → [3]) for appending the character 0 or
if : ([α] → [3]) → ([α] → [3]) → ([α] → [3]) → ([α] → [3]) for case distinction on
the last character of a word. They allow one to work with words encoded as functions
as if they were normal strings, even though these words do not even necessarily fit into
memory. The combinators themselves can be implemented easily in INTML.

succ0 := λw. λi. let i be [c] in case eq(c, min) of inl(true) ⇒ [min]
| inr(false) ⇒ w [pred c]

Here pred denotes a working class predecessor term, which is easy to define.

if := λw. λw0. λw1. λi. let w [min] be [c] in
case c of inl(blank) ⇒ w0 i

| inr(z) ⇒ case z of inl(zero) ⇒ w0 i
| inr(one) ⇒ w1 i

These are simple examples, of course. We believe that nontrivial combinators can also
be implemented. For example, Møller-Neergaard gives a LOGSPACE implementation of

Functional Programming in Sublinear Space 215

safe recursion on notation by computational amnesia [14]. We believe that using loop
and callcc a similar program can be implemented in INTML as a combinator saferec
taking as arguments a base case g : [α] → [3], two step functions h0, h1 : ([α] → [3]) →
([α] → [3]) and a word w : [α] → [3] to recurse on and giving a word as output.

In this way the higher-order features of INTML can be used to abstract away details
of a message-passing implementation of functions on words and to write LOGSPACE

functions just like in BC−
ε [14]. Moreover, INTML gives access to the implementa-

tion details, should the abstraction not be expressive enough. For instance, the proof
of LOGSPACE completeness in Thm. 3 below goes by a straightforward encoding of a
OTM. It is much simpler than the corresponding encoding in BC−

ε [14] because INTML
allows us to manipulate working class values directly.

The higher order approach also works for data types other than strings. For example,
graphs can be represented by a type of the form ([α] → [2]) ⊗ ([α × α] → [2]), where
the first component is a predicate that indicates which elements of α count as graph
nodes and the second component is the edge relation.

4 Evaluation

In this section we present the evaluation mechanism for INTML. Evaluation of upper
class terms is closely related to evaluation in [15], but also to Mackie’s Interaction Ab-
stract Machine [11] and to read-back from optimal reduction [12,3]. Indeed, in his 1995
paper [11] Mackie speculates that this form of evaluation could have applications where
space usage is important. With INTML we present a calculus that makes space usage
analysis possible. INTML differs from the work in loc. cit. in that one can mix working
class and upper class terms. Previously only the upper class part was considered.

4.1 Reduction of Working-Class Terms

The evaluation of INTML programs is done by reduction of working class terms. Before
evaluation of an INTML program, all upper class terms are compiled into working class
terms. Since, in particular, any occurrence of unbox will be removed, it suffices to define
reduction only for unbox-free working class terms.

Working class values are defined by:

v, w := c | ∗ | 〈v, w〉 | inl(v) | inr(v)

The reduction of working class terms is explained by a small step reduction relation −→
between closed unbox-free terms. Closedness here means the absence of both term
variables and type variables (which could appear in the type annotations of constants
like minA). The relation −→ formalises standard eager reduction, see e.g. [17]. We
omit standard reduction rules and just explain here how loop and the constants minA

and succA are treated. Loops are unfolded by the rules loop(c.f)(inr(v)) −→ v and
loop(c.f)(inl(v)) −→ loop(c.f)(f [inl(v)/c]), in both of which v must be a value. Con-
stants are unfolded on demand, guided by their type annotation. The minimum elements
of all closed types are defined by:

min1 −→ ∗ minA+B −→ inl(minA) minA×B −→ 〈minA, minB〉

216 U.D. Lago and U. Schöpp

In the implementation of succA, we must be a little careful that reducts do not become
too large. We implement succ using a new constant succmin that informally denotes a
function succminA : A → A + A with the following meaning: succminA(x) = inl(y)
means that y is the successor of x; succminA(x) = inr(y) means that x has no successor
and y is the minimum element of A. We use the following rules for succmin.

succmin1(∗) −→ inr(∗)
succminA+B(inl(v)) −→ case succminA(v) of inl(x) ⇒ inl(inl(x))

| inr(y) ⇒ inl(inr(minB))
succminA+B(inr(v)) −→ case succminB(v) of inl(x) ⇒ inl(inr(x))

| inr(y) ⇒ inr(inl(minA))
succminA×B(〈v, w〉) −→ case succminA(v) of inl(x) ⇒ inl(〈x, w〉)

| inr(x) ⇒ case succminB(w) of inl(y) ⇒ inl(〈x, y〉)
| inr(y) ⇒ inr(〈x, y〉)

We use these rules instead of the evident rules for succ because they are linear in v, w,
A and B, which is important for the proof of Prop. 1 below.

Because of the simplicity of the working class calculus, it is possible to give useful
upper bounds on how large a term can become during the course of eager reduction
directly by induction on the term structure. Essentially, we can bound the size of values
in terms of their types and use this to derive a bound on the potential size of a term
under reduction by looking at its variables and their types. We state this result in the
following proposition, in which |g| and |C| denote the size of the abstract syntax trees
of g and C respectively.

Proposition 1. If c:A f : B is derivable then there are constants n and m such that
(f [C/α])[v/c] −→∗ g implies |g| ≤ n + m · |C| for every closed type C and every
closed value v of type A[C/α].

We will use for C types of the form 2 × · · · × 2 (k times), where 2 denotes 1 + 1. This
type represents the numbers from 0 to 2k − 1 in binary and we have |C| ∈ O(k). A
unary encoding is also possible with C = 1 + · · ·+ 1 (2k times), but we have |C| ≥ 2k

and values can indeed become as large as this.

4.2 Reducing Upper Class to Working Class

Now we explain how closed upper class terms are compiled down to working class
terms, so that they can be reduced with the relation −→ from the previous section. The
compilation works by interpreting upper class terms as message passing circuits as in
Sec. 2 and then implementing these circuits by working class terms.

We start by defining the message passing circuits we use in the compilation. These
circuits may be understood as a particular instance of string diagrams for monoidal
categories [13]. The are also related to proof nets, see [13] for a discussion. Circuits are
directed graphs that represent networks in which messages are passed along edges. A
node labelling allows us to use nodes with different message passing behaviour. Edges

Functional Programming in Sublinear Space 217

are labelled with types that tell which kind of messages can be passed along them. Edge
labels are formed by the grammar below, in which A ranges over working class types.

X, Y ::= [A] | [A]∗ | X ⊗ Y |
⊗

A
X

We define an operation (−)∗ on edge labels as follows. It maps [A] to [A]∗ and [A]∗ to
[A] and is defined on compound expressions by (X⊗Y)∗ = X∗⊗Y ∗ and (

⊗
A X)∗ =⊗

A X∗. Note in particular that we have X∗∗ = X for any type label X .
Circuits are labelled directed graphs that are in addition equipped with a two-way

local ordering. A two-way local ordering for a graph G = (V, E) specifies for each
node v ∈ V a total ordering on both the set ({v} × V) ∩ E of outgoing edges from v
and on the set (V × {v}) ∩ E of incoming edges to v. The need for a local ordering
arises in the treatment of nodes such as ⊗E below. This node has an incoming edge
labelled with X ⊗ Y and two outgoing edges labelled with X and Y and we want to
distinguish the two outgoing edges even if X and Y are the same.

Furthermore, circuits have a number of input and output ports. We capture input and
output edges by means of two distinguished nodes: a source and a sink. Edges from the
distinguished source are input edges and edges to the sink are output edges. We write
D : (X1, . . . , Xn) → (Y1, . . . , Ym) for such a graph D with input edges
of type X1, . . . , Xn and output edges of type Y1, . . . , Ym (note that they
are ordered because of the local ordering for source and sink). We usually
draw D as shown on the right.

D

X1
. . . Xn

Y1 Ym
. . .

Given two graphs D : (X) → (Y) and E : (Y) → (Z), their sequential composi-
tion E ◦ D : (X) → (Z) is defined as depicted below: the i-th incoming edge to the
sink of D and the i-th outgoing edge from the source of E are joined to a single edge.
The sink of D and the source of E are removed. Furthermore, given F : (X) → (Y)
and G : (U) → (V), we write F ⊗G for the graph of type (X , U) → (Y , V) obtained
by putting F and G in parallel.

D

X1
. . . Xn

Y1 Ym
. . .

E

Z1 Zk
. . .

E ◦ D = F ⊗ G = F

X1
. . . Xn

Y1 Ym
. . .

G

V1 Vl
. . .

U1
. . . Uk

Notice that in a composition the local ordering on the edges labelled with Y dis-
appears. For example, if we let swapX,Y : (X, Y) → (Y, X) be the graph
on the right, then swapY,X ◦ swapX,Y is idX ⊗ idY : (X, Y) → (X, Y),
where idX : (X) → (X) is a single edge labelled X from input to output.

YX

Definition 1 (Circuit on Σ). For any working class context Σ, we define the set of
circuits on Σ to be the smallest set of two-way locally ordered graphs with input and
output edges that satisfies the following conditions.

218 U.D. Lago and U. Schöpp

– For all X and Y both idX and swapX,Y are are circuits on Σ.
– Each of the following single-node graphs is a circuit on Σ, where X and Y may

be arbitrary type labels, A and B may be arbitrary working class types and f and g
may be arbitrary terms with Σ f : A and Σ, c:X− g : X+.

X ⊗ Y

X Y

⊗E

X ⊗ Y

X Y

⊗I w

X

X X∗
η

X∗X

ε

c

⊗
A+B X

⊗
A X

⊗
B X

⊗
A+B X

⊗
A X

⊗
B X

c−1
d
⊗

A

⊗
B X

⊗
A×B X

j

⊗
B X

⊗
A X

if A ∼= B

πf

X

⊗
A X

inf

X

⊗
A X

[f]

[A]

hack(c.g)

X

– If D : (X) → (Y) and E : (Y) → (Z) are circuits on Σ then so is E ◦ D.
– If D : (X) → (Y) and E : (U) → (V) are circuits on Σ then so is D ⊗ E.
– If D : (X1, . . . , Xn) → (Y1, . . . , Ym) is a circuit on Σ, c:A then the graph⊗

c:A D : (
⊗

AX1, . . . ,
⊗

AXn) → (
⊗

AY1, . . . ,
⊗

AYm)
constructed as follows is a circuit on Σ: each incoming edge
of D is prepended with a node ↓c

Xi
: (

⊗
A Xi) → (Xi) and

to each outgoing edge of D a node ↑c
Yi

: (Yi) → (
⊗

A Yi) is
appended. For better readability, we do not draw these nodes
explicitly and draw a box around D instead, as depicted on
the right.

D

X1
. . .

⊗
A X1 . . .

c

Xn

⊗
A Xn

Y1 Ym
. . .

⊗
A Y1 . . .

⊗
A Ym

Given a circuit D on (Σ, c:A) and a term Σ f : A, we can form a circuit D[f/c]
on Σ by replacing each node πg with πg[f/c], each node ing with ing[f/c], each node [g]
with [g[f/c]], and each node hack(d.g) with hack(d.g[f/c]).

To each edge in a circuit D on Σ we assign a level, which is a working class context,
by the following requirements. Input and output edges have level Σ. Any two edges
incident to the same node have the same level, except if the node is ↓c

X : (
⊗

A X) →
(X) or ↑c

X : (X) → (
⊗

A X). If the incoming edge of ↓c
X (resp. the outgoing edge of

↑c
X) has level Σ′ then the outgoing edge (resp. incoming edge) has level Σ′, c:A.

Message Passing. Write VA for the set of all closed working class values of type A.
Write EΣ for the set of Σ-environments consisting of all functions that map the vari-
ables in Σ to closed values of their declared types. The set MΣ,X of messages that
can be passed along an edge labelled with X at level Σ is then defined by MΣ,X =
EΣ × (VX+ × {+} ∪ VX− × {−}). A message m ∈ MΣ,X is either a question or
an answer depending on whether its third component is ‘−’ or ‘+’. Answers travel in
the direction of the edge while questions travel in the opposite direction. Messages are
essentially the same as the contexts in context semantics [12].

To define message passing for a circuit D : (X) → (Y) on Σ, let the set MD of
messages on D consist of all pairs (e, m) of an edge e in D and a message

Functional Programming in Sublinear Space 219

m ∈ MΣ(e),X(e), where Σ(e) is the level of e and X(e) is its label. Now we define
how each node in D locally reacts to arriving messages. To this end we define for each
node v a partial function ϕv by the assignments in Fig. 3. For example ϕπ implements
the behaviour of the term in ([]E), as sketched in Sec. 3.1. An initial question on edge o
becomes a request for the value of type [A] on edge i1. Upon receipt of an answer w:A
from there, this answer is put into the memory cell provided by

⊗
A and the value of

type [B] is queried on edge i2. An answer to this request is then passed as final answer
along edge o. In Fig. 3 we have omitted the cases for ϕε and ϕc−1 , which are just like
those for ϕη and ϕc. Notice that for different nodes v and w in D, the domains of ϕv

and ϕw do not overlap.
The message passing behaviour of the whole circuit is then the partial function

ϕD : MD → MD defined by repeatedly applying the local functions ϕv:

ϕD = Tr

(⋃

v∈V (D)
ϕv

)

Tr(f)(m) =

{
Tr(f)(f(m)) if f(m) defined

m if f(m) undefined

It is not hard to see that messages cannot get stuck inside the circuit, i.e. ϕD(e, m) =
(e′, m′) implies that e′ is an input or an output edge. In fact, we will forget about the
internal structure of D and consider just the restriction of ϕD to messages on input
or output edges of D. This restriction corresponds to a partial function ΦD of type(
X+

1 + · · · + X+
n + Y −

1 + · · · + Y −
m

)×EΣ −→ Y +
1 + · · ·+ Y +

m + X−
1 + · · ·+ X−

n .
We call ΦD the behaviour of D and consider circuits with the same behaviour to be
equal. We write D ∼ E if D and E are circuits with the same interface and ΦD = ΦE .

Upper Class to Circuits. We now interpret upper class terms by circuits. To each deriva-
tion δ ending with sequent Σ | x1 : A1·X1, . . . , xn : An·Xn s : Y we assign �δ�, a
circuit on Σ with one output wire of type Y and n input wires of type (

⊗
A1

X1, . . . ,
⊗

An
Xn), where we identify A · X � Y with (

⊗
A X)∗ ⊗ Y . That is, each vari-

able declaration in Γ becomes an input wire of the translated circuit. Abusing notation
slightly, we will write Γ also for the list of input types of this circuit.

The definition goes by induction on derivations and is given in the table in Fig. 4. In
this table we denote the premises of δ by δs and δt depending on the term in the premise.
We write just

⊗
A for

⊗
c:A if c does not appear anywhere. Given an upper class con-

text Γ we write wΓ for w ⊗ · · · ⊗ w : (Γ) → (). Similarly, we write idΓ : (Γ) → (Γ),
dA·Γ : (A · Γ) → (

⊗
A Γ), (inf)Γ : (Γ) → (

⊗
A Γ) and cΓ : (Γ) → (Γ, Γ) for the

analogous tensorings of id , d, inf and c (the definition of cΓ involves evident permuta-
tions of the outputs to arrive at the indicated type).

Implementing Message Passing. The compilation of upper class terms to message pass-
ing circuits almost completes the translation from upper class to working class. It just
remains to implement message passing in the working class calculus.

That is, for any circuit D we construct a closed working class term that implements
its behaviour ΦD. In essence, the construction works in the same way as the definition
of ΦD above. First note that we can represent the set of messages MΣ,X by the working
class type (A1 × · · · × An) × (X− + X+), where Σ = x1:A1, . . . , xn:An. With this
we can represent MD in the working class calculus in the form of a big sum type. Then,

220 U.D. Lago and U. Schöpp

ϕη(o1, (S, w,−)) = (o2, (S, w, +))
ϕη(o2, (S, w,−)) = (o1, (S, w, +))

ϕ⊗I(i1, (S, w, +)) = (o, (S, inl(w), +))
ϕ⊗I(i2, (S, w, +)) = (o, (S, inr(w), +))

ϕ⊗I(o, (S, inl(w),−)) = (i1, (S, w,−))
ϕ⊗I(o, (S, inr(w),−)) = (i2, (S, w,−))

o

i1 i2

X ⊗ Y

X Y

⊗I

ϕc(i, (S, (inl(v), w), +)) = (o1, (S, (v, w), +))
ϕc(i, (S, (inr(v), w), +)) = (o2, (S, (v, w), +))

ϕc(o1, (S, (v, w),−)) = (i, (S, (inl(v), w),−))
ϕc(o2, (S, (v, w),−)) = (i, (S, (inr(v), w),−))

c

N
A+B X

N
A X

N
B X

o1

i

o2

ϕd(i, (S, (w, (v, u)), +)) = (o, (S, ((w, v), u), +))
ϕd(o, (S, ((w, v), u),−)) = (i, (S, (w, (v, u)),−))

d
N

A

N
B X

N
A×B X

o

i

ϕ[f](o, (S, ∗,−)) = (o, (S, v, +))
if fS −→∗ v

[f]

[A]
o

ϕhack(c.f)(o, (S, v,−)) = (o, (S, w, +))
if fS[v/c] −→∗ w

o

hack(c.f)

X

ϕπ(o, (S, ∗,−)) = (i1, (S, ∗,−))
ϕπ(i1, (S, w, +)) = (i2, (S, (w, ∗),−)

ϕπ(i2, (S, (w, v), +)) = (o, (S, v, +))

[B]

[A]
N

A[B]

π

o

i1 i2

X X∗
η

o2o1

ϕπf (i, (S, (v, w), +)) = (o, (S, w, +))
ϕπf (o, (S, w,−)) = (i, (S, (v, w),−) if fS −→∗ v

ϕinf (o, (S, (v, w), +)) = (i, (S, w, +))
ϕinf (i, (S, w,−)) = (o, (S, (v, w),−) if fS −→∗ v

o

i

inf
N

A X

X

πf

X

N
A X

o

i

ϕj(i, (S, (w, v)), +)) = (o, (S, (u, v), +)) if f(w) −→∗ u
ϕj(o, (S, ((w, v),−)) = (i, (S, (u, v),−)) if f−1(w) −→∗ u

where f and f−1 are canonical terms implementing A ∼= B.

ϕ↓(i, (S[c �→ v], w, +)) = (o, (S, (v, w), +))
ϕ↓(o, (S, (v, w),−)) = (i, (S[c �→ v], w,−))

c XN
A X

o

i

ϕ↑(o, (S[c �→ v], w,−)) = (i, (S, (v, w),−))
ϕ↑(i, (S, (v, w), +)) = (o, (S[c �→ v], w, +))

o

i

c X

N
A X

o

i

j
N

B X

N
A X

A ∼= B

For an environment S ∈ EΣ and a term
Σ � f :B, we write fS for the term ob-
tained by simulaneous subtitution using S.

Fig. 3. Local message passing

Functional Programming in Sublinear Space 221

(WEAK) �δ� = �δs� ◦ (idΓ ⊗ w)
(EXCH) �δ� = �δs� ◦ (idΓ ⊗ swap ⊗ idΔ)

(CONGR) �δ� = �δs� ◦ (idΓ ⊗ j)
(VAR) �δ� = wΓ ⊗ πminA

(⊗I) �δ� = ⊗I ◦ (�δs� ⊗ �δt�)
(⊗E) �δ� = �δt� ◦

(
idΔ ⊗ ((

⊗
c:A�δs�) ◦ dA·Γ)

)

(�I) �δ� = ⊗I ◦ swap ◦ (�δs� ⊗ id) ◦ (idΔ ⊗ η)
(�E) �δ� = (idY ⊗ ε) ◦ (

(swap ◦ ⊗E ◦ �δs�) ⊗ ((
⊗

c:A�δt�) ◦ dA·Γ)
)

(CONTR) �δ� = �δt� ◦ (idΔ ⊗ ((
⊗

c:A+B�δs�) ◦ d))

(CASE) �δ� = πf ◦ c−1 ◦ (⊗
A�δs� ⊗ ⊗

A�δt�
) ◦ cΓ ◦ (inf)Γ

([]I) �δ� = [f] ⊗ wΓ

([]E) �δ� = π ◦ (�δs� ⊗ (
⊗

A�δt� ◦ dA·Δ))
(HACK) �δ� = hack(c.f)

(�E)

. . .
Γ

�δs�

⊗
A X

X

�δt�

. . .

A · Δ
dd

ε

⊗E

(
⊗

A X)∗

Y

Δ

(�I)

. . .
Δ ⊗

A X

�δs�

Y

(
⊗

A X)∗ ⊗ Y

⊗I

η

(
⊗

A X)∗

Fig. 4. Compilation to Circuits

⋃
v∈V (D) ϕv : MD → MD can be implemented easily by a big case distinction and it

is easy to obtain ϕD from this using a single loop. From this, finally, we obtain ΦD .
We have thus explained how each upper class term can be translated to a working

class term. It remains to say how we deal with terms of the form Σ unbox(s) : A
where Σ | s : [A]. Note that s is translated to a circuit �δs� whose behaviour is
a function of type Φ�δs� : 1 × EΣ → A. The working class term implementing this
function is just what we need to interpret the term unbox.

4.3 Soundness

We have defined the evaluation of INTML by translation of upper class to working
class, since this allows us to obtain sublinear space bounds (cf. Sec. 5). However, the
translation is somewhat complicated and it is does not make it obvious just what it is
that the upper class terms compute. In this section, we show that one may also consider
the upper class as a functional programming language with standard reduction rules,
which are then soundly implemented by the translation.

A notion of reduction can be formulated by the rules in Fig. 5. We include a rule for
loop but note that we cannot give rules for hack in general. When we write s −→ t we
assume s : X and t : X for some X . We close these rules under evaluation contexts.

E, F ::=[·] | 〈E, t〉 | 〈t, E〉 | let E be 〈x, y〉 in t |
E t | t E | let E be [c] in t | copy E as x, y in t

As usual, E[s] is the term obtained by substituting s for the only occurrence of [·] in E.
The translation to working class terms is invariant under reduction:

Theorem 1 (Soundness). If δ derives s : X and s −→ t, then there exists a deriva-
tion ρ of t : X that satisfies �δ� ∼ �ρ�.

222 U.D. Lago and U. Schöpp

(λx.s)t −→ s[t/x]

let 〈s, t〉 be 〈x, y〉 in u −→ u[s/x][t/y]

case inl(v) of inl(c) ⇒ s | inr(d) ⇒ t −→ s[v/c] if v is a value

case inr(v) of inl(c) ⇒ s | inr(d) ⇒ t −→ t[v/d] if v is a value

let [v] be [c] in t −→ t[v/c] if v is a value

copy s as x, y in t −→ t[s/x][s/y]

[f] −→ [g] if f −→ g

case f of inl(c) ⇒ s | inr(d) ⇒ t −→ case g of inl(c) ⇒ s | inr(d) ⇒ t if f −→ g

loop s t −→ let t be [c] in let s [c] be [d] in

case d of inl(d) ⇒ loop s [d] | inr(d) ⇒ [d]

Fig. 5. Upper Class Reduction

For the proof we need substitution lemmas, which are proved by induction on ρ.

Lemma 1. If v ∈ VA and ρ derives Σ, c:A | Γ t : X , then there is a derivation
ρ[v/c] of Σ | Γ t[v/c] : X such that �ρ[v/c]� ∼ �ρ�[v/c] holds.

Lemma 2. If δ derives Σ | s : X and ρ derives Σ | Γ, x : A·X, Δ t : Y , then
there exists a derivation ρ[δ/x] of Σ | Γ, Δ t[s/x] : Y that satisfies �ρ[δ/x]� ∼
�ρ� ◦ (idΓ ⊗ ⊗

A�δ� ⊗ idΔ).

Proof (of Theorem 1). For any reduction s −→ t there exist decompositions s = E[s′]
and t = E[t′] such that s′ −→ t′ is an instance of one of the reductions in Fig 5.

The proof then goes by induction on the structure of E. The base case where E is
empty, amounts to showing the assertion for the basic reductions. For lack of space, we
just spell out the first case where s −→ t has the form (λx. q) p −→ q[p/x].

Since δ ends in a sequent with empty context, it cannot end with a structural rule.
Hence, the last two rules in δ must be (�E) after (�I). Let σ and τ be the derivations
of x:B · Z q : Y and p : Z that derive the premises of these rules. Then we can use
⊗E ◦⊗I ∼ id and (id ⊗ ε) ◦ (η ⊗ id) ∼ id , which are both easy to show directly, and
the substitution lemma to calculate:

�δ� = (idY ⊗ ε) ◦ ((swap ◦ ⊗E ◦ ⊗I ◦ swap ◦ (�σ� ⊗ id⊗
BZ) ◦ η) ⊗

⊗

B
�τ�)

∼ (idY ⊗ ε) ◦ (((�σ� ⊗ id⊗
BZ) ◦ η) ⊗

⊗

B
�τ�)

∼ �σ� ◦ ((id⊗
BZ ⊗ ε) ◦ (η ⊗ id⊗

BZ)) ◦
⊗

B
�τ�

∼ �σ� ◦
⊗

B
�τ� ∼ �σ[τ/y]�

Since σ[τ/y] derives q[p/x] : Y , this concludes this case.
The induction step follows straightforwardly from the induction hypothesis. If, for

example, E is 〈F, u〉, then δ must end in rule (⊗I) with two premises F [s′] : Y and
 u : Z , derived by σ and τ . We apply the induction hypothesis to σ to obtain σ′. Then
we note that replacing σ with σ′ in δ gives us a derivation ρ of the required term. The
assertion then follows: �δ� = ⊗I ◦ (�σ� ⊗ �τ�) ∼ ⊗I ◦ (�σ′� ⊗ �τ�) = �ρ�. ��

Functional Programming in Sublinear Space 223

We can conclude that the compilation in the previous section computes the same results
as the standard reduction introduced here.

Corollary 1. If δ derives s : [A] and s −→∗ [v] for some v ∈ VA, then Φ�δ� is the
function of type V1 × 1 → VA that maps the unique element of its domain to v.

This corollary follows by observing that [v] : [A] must be derived by some ρ with ([]I)
as last rule, that Φ�ρ� is by definition the function in the corollary and that Φ�ρ� ∼ Φ�δ�

follows from the theorem.

5 Logarithmic Space

In this section we describe a precise correspondence between the class of functions
representable in INTML and the class of functions computable in logarithmic space.

First we must define how to represent functions from binary strings to binary strings
in INTML. In principle, such functions can be programmed directly as terms of type
A · [B] � [B], where B is a working class type of binary strings. However, this would
lead to linear space usage, so we use a more interactive type as discussed in Sec. 2.

With the constants min and succ, we can view any closed type [A] as a type of natural
numbers that can represent the numbers from 0 to |VA|− 1: the number i is encoded by
the normal form of [succi

A(minA)], for which we write 〈i〉A.
Then, for every closed type B, binary strings of length at most |VB| can be rep-

resented as terms of type BA(B) = A · [B] � [3]: a binary string s is encoded by
a function that when applied to 〈i〉B returns: b if the i-th symbol in s is b and 2 if i
exceeds the length of s. Write 〈s〉A,B for the encoding of s ∈ {0, 1}≤|VB| in BA(B).

Functions that take as inputs strings of arbitrary length can be represented using type
variables. Let X be the upper class type A · BB(α) � BC(D), where α is a type
variable and where A, B, C and D are arbitrary types that may also contain α, but
not other type variables. If E is a closed type then X [E/α] is a type of functions from
strings of length at most |VE | to strings of length at most |VD[E/α]|. We say that a term
 t : X represents a function φ : {0, 1}∗ → {0, 1}∗ if and only if:

– For every n and every x ∈ {0, 1}n, |φ(x)| ≤ |VD[n/α]|;
– For every n, every x ∈ {0, 1}n and every E with |VE | ≥ n, if φ(x) = b1 . . . bm

then for every i ≤ |VD[n/α]|, the term t[E/α]〈s〉B[E/α],E〈i〉D[E/α] reduces to 〈bi〉3
if i ≤ m and to 〈2〉3 if i > m.

We remark that one may also use an alternate definition, for which the following theo-
rems are also valid, but which does not refer to upper class reduction: instead of requir-
ing t[E/α]〈s〉B[E/α],E〈i〉D[E/α] to reduce to one of 〈bi〉3 or 〈2〉3, one may ask that the
circuit for this term have the same behaviour as either 〈bi〉3 or 〈2〉3, depending on i.

Theorem 2 (Logspace Soundness). If φ : {0, 1}∗→{0, 1}∗ is represented by t, then φ
is computable in logarithmic space. Moreover, a LOGSPACE algorithm computing φ is
given by INTML-evaluation of t.

Proof. Compiling t to a working class term yields a term x:X− f : X+. We now
choose En = 2�log n� to substitute for α. Clearly, |VEn | ≥ n, but |En| ≤ 2(log n + 1).
By Prop. 1, evaluation of f [En/α] (i.e. computation of φ on strings of length up to n)
can be implemented using space linear in |2�log n�|, thus logarithmic in n.

224 U.D. Lago and U. Schöpp

Theorem 3 (Logspace Completeness). Any function φ : {0, 1}∗→{0, 1}∗ computable
in logarithmic space is represented by some upper class term tφ.

The proof goes by an easy encoding of Offline Turing Machines in INTML. The step
function of a given LOGSPACE OTM M can be mimicked by an upper class term
| x:[α] � [3] stepM : [S(α)] � [S(α) + S(α)], where x represents the input
string and where S(α) is a type with free variable α that can encode the state of M . The
term tM can be obtained by passing stepM to the loop combinator.

6 Conclusion

We have found that the Int construction is a good way of structuring space bounded
computation that can help us to understand the principles of space bounded functional
programming. This view has guided the design of INTML, a simple language capturing
LOGSPACE. Initial experience with an experimental implementation of INTML suggests
that, with suitable type inference, INTML can be made to be quite usable.

We hope that our systematic approach will be helpful for developing INTML further.
For instance, recent results on capturing non-deterministic token machines by the Int
construction [9] may perhaps be used to develop a NLOGSPACE-version of INTML.

References

1. Abramsky, S., Jagadeesan, R.: New Foundations for the Geometry of Interaction. Inf. Com-
put. 111(1), 53–119 (1994)

2. Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of interaction and linear combinatory
algebras. Math. Struct. in Comput. Sci. 12(5), 625–665 (2002)

3. Asperti, A., Guerrini, S.: The optimal implementation of functional programming languages.
Cambridge University Press, Cambridge (1998)

4. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda calculus. Inf.
Comput. 207(1), 41–62 (2009)

5. Bonfante, G.: Some programming languages for Logspace and Ptime. In: Johnson, M., Vene,
V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 66–80. Springer, Heidelberg (2006)

6. Hasegawa, M.: On traced monoidal closed categories. Math. Struct. in Comput. Sci. 19(2),
217–244 (2009)

7. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Philos.
Soc. 119(3), 447–468 (1996)

8. Katsumata, S.: Attribute grammars and categorical semantics. In: Aceto, L., Damgård, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 271–282. Springer, Heidelberg (2008)

9. Katsumata, S., Hoshino, N.: Int construction and semibiproducts. RIMS-Technical Report
1676 (2009)

10. Kristiansen, L.: Neat function algebraic characterizations of LOGSPACE and LINSPACE.
Computational Complexity 14, 72–88 (2005)

11. Mackie, I.: The geometry of interaction machine. In: POPL, pp. 198–208 (1995)

Functional Programming in Sublinear Space 225

12. Mairson, H.G.: From hilbert spaces to dilbert spaces: Context semantics made simple. In:
Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 2–17. Springer, Heidel-
berg (2002)

13. Melliès, P.A.: Functorial boxes in string diagrams. In: Ésik, Z. (ed.) CSL 2006. LNCS,
vol. 4207, pp. 1–30. Springer, Heidelberg (2006)

14. Neergaard, P.M.: A functional language for logarithmic space. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 311–326. Springer, Heidelberg (2004)

15. Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: LICS, pp. 411–420
(2007)

16. Szepietowski, A.: Turing Machines with Sublogarithmic Space. LNCS, vol. 843. Springer,
Heidelberg (1994)

17. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge
(1993)

	Functional Programming in Sublinear Space
	Introduction
	Space-Bounded Computation
	Structuring Space Bounded Computation

	A Functional Language for Logarithmic Space
	Type System
	Programming in {\sc IntML}

	Evaluation
	Reduction of Working-Class Terms
	Reducing Upper Class to Working Class
	Soundness

	Logarithmic Space
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

