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Abstract. Thegeometric simultaneous embeddingproblemaskswhether
two planar graphs on the same set of vertices in the plane can be drawn
using straight lines, such that each graph is plane. Geometric simultane-
ous embedding is a current topic in graph drawing and positive and nega-
tive results are known for various classes of graphs. So far only connected
graphs have been considered. In this paper we present the first results for
the setting where one of the graphs is a matching.

In particular, we show that there exists a planar graph and a matching
which do not admit a geometric simultaneous embedding. This general-
izes the same result for a planar graph and a path. On the positive side,
we describe algorithms that compute a geometric simultaneous embed-
ding of a matching and a wheel, outerpath, or tree. Our proof for a
matching and a tree sheds new light on a major open question: do a
tree and a path always admit a geometric simultaneous embedding? Our
drawing algorithms minimize the number of orientations used to draw
the edges of the matching. Specifically, when embedding a matching and
a tree, we can draw all matching edges horizontally. When embedding a
matching and a wheel or an outerpath, we use only two orientations.

1 Introduction

The computation of node-link diagrams of two sets of relations on the same set
of data is a recent and already well-established research direction in network vi-
sualization. The interest in this problem is partly due to its theoretical relevance
and partly motivated by its importance in many application areas, such as soft-
ware engineering, data bases, and social networks. There are various application
scenarios where a visual analysis of dynamic and evolving graphs defined on the
same set of vertices is useful, see [3,4] for detailed descriptions.
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Formally, the problem can be stated as follows: Let G1 and G2 be two graphs
that share their vertex set, but which have different sets of edges. We would
like to compute two readable drawings of G1 and G2 such that the locations of
the vertices are the same in both visualizations. Cognitive experiments [9] prove
that the readability of a drawing is negatively affected by the number of edge
crossings and by the number of bends along the edges. Hence, if G1 and G2 are
both planar, we want to compute plane drawings of the two graphs where the
vertices have the same locations and edges are straight-line segments. Note that
we allow edges from different graphs to cross.

In a seminal paper, Brass et al. define a geometric simultaneous embedding
of two planar graphs sharing their vertex set as two crossing-free straight-line
drawings that share the locations of their vertices [1]. Geometric simultaneous
embedding is a current topic in graph drawing and positive and negative results
are known for various classes of graphs. A comprehensive list can be found in
Table 1 of a recent paper by Frati, Kaufmann, and Kobourov [7]. Specifically,
Brass et al. [1] show that two paths, two cycles, and two caterpillars always
admit a geometric simultaneous embedding. (A caterpillar is a tree such that
the graph obtained by deleting the leaves is a path.) The authors also prove
that three paths may not admit a geometric simultaneous embedding. Erten
and Kobourov [5] prove that a planar graph and a path may not admit a geo-
metric simultaneous embedding. Frati, Kaufmann, and Kobourov [7] extend this
negative result to the case where the path and the planar graph do not share
any edges. Geyer, Kaufmann, and Vrt’o [8] show that two trees may not have
a geometric simultaneous embedding. A major open question in this area is the
following: do a tree and a path always admit a geometric simultaneous embed-
ding? Finally, Estrella-Balderrama et al. [6] prove that determining whether two
planar graphs admit a geometric simultaneous embedding is NP-hard.

So far, only connected graphs have been considered and in particular, there are
no results for one of the simplest classes of graphs, namely matchings. A matching
is an independent set of edges. Clearly a geometric simultaneous embedding of
two matchings always exists, since the union of two matchings is a collection
of cycles and hence planar. But already the union of the edges of a path and a
matching does not have to be planar: see Fig. 1 (left), which shows a path and
a matching which form a subdivision of K3,3.
Results. We study geometric simultaneous embeddings of a matching with var-
ious standard classes of graphs. In Section 2 we show that there exists a planar

Fig. 1. Left: The union of a path (black) and a matching (gray), can be non-planar.
Right: Two orientations of the matching edges (gray) are forced.



Geometric Simultaneous Embeddings of a Graph and a Matching 185

graph and a matching which do not admit a geometric simultaneous embedding.
This generalizes the same result for a planar graph and a path [5].

On the positive side, we describe algorithms that compute a geometric simul-
taneous embedding of a matching and a wheel, outerpath, or tree. Specifically,
in Section 3 we sketch a construction that computes a geometric simultaneous
embedding of a wheel and a cycle, which immediately implies an embedding for
a wheel and a matching. In Section 4 and 5 we describe algorithms to embed a
matching together with two specific types of outerplanar graphs, namely outer-
zigzags and outerpaths. An outerzigzag is also known as a triangle strip. Its weak
dual is a path and each of its vertices has degree at most 4. An outerpath is sim-
ply an outerplanar graph whose weak dual is a path. Our result for outerpaths
of course subsumes the result for outerzigzags, but we nevertheless first present
the construction for outerzigzags, to introduce our techniques on a conceptually
simpler class of graphs. The algorithms for the wheel, the outerzigzag, and the
outerpath, preserve the “natural” embedding of these graphs. That is, the center
of the wheel is not incident to the outer face, and the embedding of outerplanar
graphs is outerplanar. Note here, that an outerplanar graph and a path may not
have a geometric simultaneous embedding if the circular ordering of the edges
around the vertices of the outerplanar graph is fixed a-priori [7].

In Section 6 we present an algorithm that computes a geometric simultaneous
embedding of a tree and a matching. This algorithm is inspired by and closely
related to an algorithm by Di Giacomo et al. [2]. Since a path can be viewed
as two matchings, our proof sheds some new light on the embeddabilty question
for a tree and a path.

All our drawing algorithms minimize the number of orientations used to draw
the edges of the matching. This may simplify the visual inspection of the data
and of their relationships in practice. Consider the simple example in Fig. 1
(right). It immediately shows that a geometric simultaneous embedding of an
outerpath or wheel with a matching requires the matching edges to have at
least two orientations. Our constructions match this bound. When embedding a
matching and a tree, we can even draw all matching edges horizontally.

2 Planar Graph and Matching

Theorem 1. There exists a planar graph and a matching that do not admit a
geometric simultaneous embedding.

Fig. 2. A planar graph (black) and a
matching (gray) that do not admit a
geometric simultaneous embedding

Consider the planar graph (black) and the
matching (gray) depicted in Fig. 2. One
can argue that either the subgraph in-
duced by the vertices marked with boxes
or the subgraph induced by the vertices
marked with circles will always incur at
least one crossing. The details can be
found in the full paper.
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3 Wheel and Matching

We can in fact compute a geometric simultaneous embedding of a wheel and
a cycle, which immediately implies the result for a wheel and a matching. The
construction is sketched in Fig. 3. The center of the wheel is marked with a
box, the rim is drawn in black, and the cycle is drawn in gray. When we use
this construction for a matching, then all but one matching edges are drawn
vertically, the remaining edge (the one edge that is necessarily shared with a
spoke of the wheel) is drawn horizontally. Details can be found in the full paper.

Theorem 2. A wheel and a cycle always admit a geometric simultaneous
embedding.

Fig. 3. A geometric simultaneous embedding of a wheel and a cycle

4 Outerzigzag and Matching

Recall that an outerzigzag is a triangle strip: it is a triangulated outerplanar
graph, whose weak dual is a path and whose vertices have degree at most 4.
More precisely, there are exactly two vertices of degree 2, two vertices of degree
3, and all other vertices have degree 4. Let G1 = (V, E1) be an outerzigzag and
let G2 = (V, E2) be a matching. We first place the vertices of V in such a way,
that their placement induces a regular plane drawing of G1. We then move some
of the vertices vertically to planarize G2, while keeping the drawing of G1 planar.

Specifically, we place the vertices of V on a grid of size 2n × 4n at positions
(0, 0), (2, 1), (4, 0), (6, 1), (8, 0), etc. One of the degree-2 vertices of G1 is drawn
at (0, 0), the remainder is drawn in such a way, that the edges of G1 always

0
1

0 1 2 3 4 2n − 2

Fig. 4. Drawing an outerzigzag G1 on a grid
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connect two consecutive points on the line y = 0, or two consecutive points on
the line y = 1, or two points at distance

√
5, see Fig. 4.

We classify the edges of the matching G2 based on the placement of their
vertices on the grid:

BB-edges connect any two vertices on the line y = 0.
TT-edges connect any two vertices on the line y = 1.
BT-edges connect two vertices (i, 0) and (j, 1) with i < j.
TB-edges connect two vertices (i, 1) and (j, 0) with i < j.

We then move half of the vertices of V vertically according to three simple rules:

1. Only the right vertex of a matching edge moves, the left vertex is fixed.
2. The right vertex of every BT-edge and every TT-edge is moved up until the

edge has slope +1.
3. The right vertex of every TB-edge and every BB-edge is moved down until

the edge has slope −1.

BT TT

TB BB TB

BT

TT

TB

BB

TB

Fig. 5. A geometric simultaneous embed-
ding of an outerzigzag (black) and a match-
ing (gray)

See Fig. 5 for an example. It is easy
to see that the displacements preserve
the planarity of the embedding of G1,
because vertices only move vertically.
The displacements also make G2 pla-
nar: all edges of E2 with slope +1 are
on parallel diagonal lines, so they can-
not intersect. Symmetrically, all edges
of E2 with slope −1 cannot inter-
sect. Finally, an edge with slope −1
and an edge with slope +1 from E2

cannot intersect because their only y-
overlap is between 0 and 1, and here
they are sufficiently separated to pre-
vent intersections. Clearly this con-
struction uses only two orientations
for the edges of the matching.

Theorem 3. An outerzigzag and a
matching always admit a geometric si-
multaneous embedding.

5 Outerpath and Matching

We now extend the approach for outerzigzags to outerpaths. First, we assume
that the outerpath is triangulated. Since a triangulated outerpath has two ver-
tices of degree 2, we can make them the ends of an initial placement. We place
all vertices on two horizontal lines y = 0 and y = 1 in such a way, that we obtain
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uk

vi vj

y = 1

y = 0
(0, 0)

Fig. 6. Outerpath with one fan indicated in gray

a plane drawing of the outerpath G1 (see Fig. 6). We say that vertices which
lie on the line y = 1 are on the top chain, correspondingly, vertices which lie on
the line y = 0 are on the bottom chain. The leftmost vertex is placed at (0, 0).
This initial placement again induces a classification of the edges of the matching
into TT-edges, TB-edges, BT-edges, and BB-edges. In the final drawing these
edges have slopes of −1 or +1 as before. However, the embedding algorithm for
outerpaths needs to move vertices not only vertically, but also horizontally and
hence the x-order of the vertices in the initial placement is not preserved.

We view an outerpath as a sequence of maximal fans that are alternatingly
directed upwards and downwards. A maximal fan shares its first and last edge
with a neighboring fan. A downward fan is indicated in gray in Fig. 6. We denote
by d the maximum degree of any vertex in the outerpath G1.

Our algorithm works as follows: we treat one fan after the other, moving
from left to right. When we treat a fan, we place its vertices at new locations
to planarize G2, while keeping the drawing of G1 planar. In the following we
explain the placement algorithm for a downward fan F , upward fans a treated
similarly. We denote the single apex vertex of F by uk and its sequence of finger
vertices by vi, . . . , vj (see Fig. 6). Note that i < j; if i = j then the outerpath
was not triangulated or F was not maximal. We place all vertices of F , with the
exception of vi and vj . Vertex vi has already been placed, since it is the apex of
the preceding fan (or it is the leftmost vertex which remains fixed). We do not
place vj since it is the apex of the following fan and will be placed when that
fan is treated. We distinguish three cases, depending on the matching partner
of the apex uk. Case (1): the matching partner of uk has already been placed,
Case (2): the matching partner of uk has not been placed yet and it is not among
vi+1, . . . , vj−1, and Case (3): the matching partner of uk is among vi+1, . . . , vj−1.

Case (1). Apex uk has a matching partner that has already been placed. Hence
the matching partner lies either on the top chain and has an index smaller than
k, or it lies on the bottom chain and has an index smaller than or equal to i.
Let X denote the total width (x-extent) of the construction so far. We place uk

at x-coordinate 2X + 1 and then move uk upwards until it lies on the line with
slope +1 through its matching partner (see Fig. 7 (left)).

Next we place vi+1, . . . , vj−1 at positions (2X, 0), (2X+1/d, 0), . . ., (2X+(j−
i−2)/d, 0). Consider the j−i−1 lines through uk and each of vi+1, . . . , vj−1. If we
ensure that the final placements of vi+1, . . . , vj−1 lie on these lines, then we will
never invert any triangle of the fan. We now move those vertices of vi+1, . . . , vj−1

that are right vertices of matching edges down on their lines until they reach
the proper position, determined by the slope −1 lines through their matching
partners. Those vertices of vi+1, . . . , vj−1 that are left vertices of matching edges
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uk

vi+1 vj−1

uk

vi+1

vj−1

y = 1

y = 0

Fig. 7. Left: Case 1, uk is a right vertex of a matching edge. Right: Case 2, uk is a left
vertex of a matching edge.

stay where they are; they define slope −1 or +1 lines on which their matching
partners will be placed eventually. By construction, none of these lines intersect
to the right of the vertices that defined them, also not with lines defined by
vertices treated earlier (see Fig. 7 (left)).

See Fig. 8 for a global sketch of Case 1. Note that vi+1 stays to the right of all
vertices placed before. This is true because the line defined by uk and vi+1 has
slope > 1, and the separation between vi+1 and the previously placed vertices is
at least X . The value of X also bounds the y-extent for the previously placed
vertices to the range [−X, +X ], since the edges of the matching have slopes −1
and +1. Further note that triangle �ukvi+1vi is not inverted, regardless of where
vi is placed in the initial part and whether vi+1 is moved on its line. Finally,
note that vj can be placed anywhere on the line y = 0 lower, as long as its
x-coordinate is at least that of uk: the triangle �ukvjvj−1 will not be inverted.

X

X

X

vi+1

uk
u1, . . . , uk−1

v1, . . . , vi

Fig. 8. Global situation of Case 1, previously placed vertices lie inside the gray triangle
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uk

vi+1

vm

y = 1

y = 0 vj−1

Fig. 9. Case 3

Case (2). Apex uk has a matching partner that has not been placed yet and
which is not among vi+1, . . . , vj−1. We place uk at position (3X+2, 1), where X is
again defined as the total width so far. Next we place the vertices vi+1, . . . , vj−1

at positions (3X, 0), (3X + 1/d, 0), . . ., (3X + (j − i − 2)/d, 0). Consider the
j − i − 1 lines through uk and each of vi+1, . . . , vj−1. We again move those
vertices of vi+1, . . . , vj−1 that are right vertices of matching edges down on their
lines until they reach the proper position, determined by the slope −1 lines
through their matching partners (see Fig. 7 (right)).

All lines on which the vertices move have slope at least 1/2, implying that all
vertices of vi+1, . . . , vj−1 are placed to the right of all previously placed vertices,
due to the x-separation of at least 2X . Again we note that �ukvi+1vi is not
inverted, and that vj may be placed anywhere to the right of uk without the risk
of inverting �ukvjvj−1.
Case (3). Apex uk has a matching partner vm that is among vi+1, . . . , vj−1, see
Fig. 9. We place uk at position (3X +2, 1) and vm at position (3X +1, 0), where
X is again the total width so far. Note that the edge (uk, vm) is an edge of both
G1 and G2. Next we place the vertices vi+1, . . . , vm−1 at positions (3X, 0), (3X+
1/d, 0), . . ., (3X + (m− i− 2)/d, 0), and the vertices vm+1, . . . , vj−1 at positions
(3X + 1 + 1/d, 0), (3X + 1 + 2/d, 0), . . . , (3X + 1 + (j −m− 1)/d, 0). As before
we now use the lines through uk and each of vi+1, . . . , vm−1, vm+1, . . . , vj−1 to
move vertices down if they are right vertices of matching edges.

Theorem 4. An outerpath and a matching always admit a geometric simulta-
neous embedding.

6 Tree and Matching

Our algorithm that computes a geometric simultaneous embedding for a tree and
a matching is inspired by and closely related to an algorithm by Di Giacomo
et al. [2], which computes a matched drawing of two trees. Matched drawings
are a relaxation of geometric simultaneous embeddings. Specifically, two planar
graphs G1 and G2 are matched, if they are defined on two vertex sets V1 and
V2 of the same cardinality and if there is a one-to-one mapping between V1
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and V2. A matched drawing of two matched graphs is a pair of planar straight-
line drawings, such that matched vertices of G1 and G2 are assigned the same
y-coordinate. A geometric simultaneous embedding of a tree and a matching
is in essence a matched drawing of half of the vertices of the tree with the
other half. And indeed, the algorithm by Di Giacomo et al. can be adapted in
a straightforward manner to compute a geometric simultaneous embedding of a
tree and a matching. However, the edges of the matching in the resulting drawing
will in general not all have the same orientation. In the remainder of this section
we show how to refine the construction from [2], to compute a simultaneous
embedding where all matching edges are drawn horizontally.

We place the vertices one by one, always placing the two vertices of a matching
edge consecutively at the same y-coordinate. We use y-coordinates 1, . . . , n/2,
from the outside in. That is, at any point of the construction, there are two
indices i and j with 1 ≤ i ≤ j ≤ n/2 such that the coordinates 1, . . . , i − 1 and
j + 1, . . . , n/2 have been used, and the coordinates i, . . . , j have not been used
yet. At every even placement we decide if we should place the next vertex at the
top or at the bottom, that is, at the highest or the lowest available y-coordinate.

Let T be the tree with some of its vertices already placed. The placed vertices
partition the tree into connected components (subtrees); we call each component
up to and including the placed vertices a rope. The placed vertices incident to a
rope are called the knots of that rope. We maintain the following invariant: after
every odd placement, every rope of T has one or two knots, but not more. After
an even placement this invariant might be false for exactly one rope, which has
three knots. There is a unique vertex, which we call the splitter, that lies on the
three paths between the knots. We show below how to restore the invariant with
the next odd placement by choosing the splitter as the next vertex to place.

Since we place vertices from the outside in, there are nine types of ropes which
we encounter during the construction. They are the degree-1 ropes with one knot
at the top or at the bottom, the degree-2 ropes with two knots at the top, or two
at the bottom, or one at the top and one at the bottom, and the degree-3 ropes
with zero, one, two, or three knots at the top and three, two, one, or zero knots
at the bottom. We call these ropes T-rope, B-rope, TT-rope, BB-rope, TB-rope,
BBB-rope, TBB-rope, TTB-rope, or TTT-rope.

Even placement. The invariant above implies that before an even placement
there are only degree-1 and degree-2 ropes. Furthermore, there is exactly one
edge (v, w) of the matching M that has one, but not both of its vertices placed.
We assume that v has been placed and place w next, at the same y-coordinate as
v. The exact placement depends on the type of rope w is part of, as well as the
y-coordinate of v. Fig. 10 shows the cases for T-ropes, TB-ropes, and TT-ropes,
B-ropes and BB-ropes are symmetric. Placing w can create at most two degree-
2 ropes or one degree-3 rope, plus zero or more degree-1 ropes. New degree-1
ropes all have w as their knot. The new degree-2 ropes may have no internal
vertices, in which case they are fully placed or tight, as they are a straight edge.
Placing w creates a degree-3 rope, if w was part of a degree-2 rope but did not
lie on the path between its two knots. In this case a new splitter s is identified
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Fig. 10. Even placement for T-ropes, TB-ropes, and TT-ropes

(marked by a circle in Fig. 10), which is placed in the next odd placement. The
top right case depicted in Fig. 10 shows two dashed arrows, indicating that there
are two possible locations for w. Which of the two we have to use depends on the
matching partner of the splitter s. We explain below how to make this decision.
Odd placement. Before an odd placement, all matching edges are either com-
pletely placed, or not placed at all. There are two cases: the previous even place-
ment left us with a splitter, or not. If there is no splitter, then we place any
unplaced vertex, whose placement does not create a splitter. Any vertex that is
directly adjacent to an already placed vertex qualifies. If there is a splitter s,
then we place it next. If s is part of a TTT-rope or a TTB-rope, then we place
it at the lowest unused y-coordinate i, which creates two or three new TB-ropes
and one or zero new BB-ropes. Symmetrically, if s is part of a TBB-rope or a
BBB-rope, then we place it at the highest unused y-coordinate j.

There are two additional things to consider. Let u be the matching partner of
the splitter s. By construction u has not been placed yet, but it will be placed
in the next step, on the same y-coordinate as s.

(1) If s was part of a TTT-rope (or symmetrically, a BBB-rope), then placing
s creates three new TB-ropes. If u is part of one of these TB-ropes, then we need
to ensure that this particular TB-rope is one of the two “on the outside”. The
TTT-rope was created by placing a vertex w at y-coordinate j in the previous
step (top right case in Fig. 10). Recall that we had two choices for the location
of w. One of the two ensures that u is on the outside (see Fig. 11 (top)). Hence
we look ahead and place w accordingly. Placing s might also have created one
or more B-ropes. If u is part of one of these B-ropes, then we need to ensure
again that this particular B-rope is on the outside. We can easily achieve that
by ordering the degree 1-ropes with knot s accordingly.

(2) If s was part of a TTB-rope (or symmetrically, a TBB-rope), then placing
s creates two TB-ropes and one BB-rope. If u is part of one of the TB-ropes,
then we have to ensure again that this particular TB-rope is on the outside.
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Fig. 11. Odd placement for a splitter and a TTT-rope or a TTB-rope

However, we have a choice of two possible locations for s, see Fig. 11 (bottom).
One of the two ensures that u is on the outside, hence we place s accordingly.
Again, placing s might also have created one or more B-ropes. In general we
place these B-ropes between the two TB-ropes. But if u is part of a B-rope, then
we need to place this particular rope on the outside.

Next we have to argue that there is actually space to draw the tree without
crossings and with straight edges. For the matching this is obvious since its edges
are horizontal and lie on different y-coordinates. We maintain the following in-
variant, which holds for every rope after every even placement. Let i and j be
the lowest and highest unused y-coordinates. There exists a parallelogram be-
tween the horizontal lines i and j in which the whole rope can be drawn without
crossings and with straight lines. The parallelograms have positive width and
have an “alignment” that corresponds to the needs of the rope. In particular,
the non-horizontal sides of the parallelogram have a slope s, such that any line
with slope s and through a knot of the rope intersects the interior of the paral-
lelogram. Hence every y-coordinate within the parallelogram can be reached by
a straight line from its knots. Parallelograms of different ropes are disjoint.

It remains to show how to maintain this invariant as ropes are split. We find
the new parallelograms of the sub-ropes inside the parallelogram of the parent.
We might have to scale and shear parallelograms to make this work, creating

Fig. 12. A parallelogram and its rope can be scaled to become arbitrarily narrow and
sheared to get different slopes
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extremely narrow parallelograms in the process (see Fig. 12). However, they
always keep a strictly positive width. The cases are many, but not difficult and
very similar to the ones discussed in [2]. We omit the details.

Theorem 5. A tree and a matching always admit a geometric simultaneous
embedding.

7 Conclusions

We presented the first results for geometric simultaneous embeddings where one
of the graphs is a matching. Specifically, we showed that there exist planar graphs
that do not admit a geometric simultaneous embedding with a matching. We do
not know whether this negative result holds also under the additional constraint
that the matching and the planar graph do not have any edges in common.

We also described algorithms that compute a geometric simultaneous embed-
ding of a matching and a wheel, outerpath, or tree. Our drawing algorithms
minimize the number of orientations used to draw the edges of the matching.
The main remaining open question is: do an outerplanar graph and a matching
always admit a geometric simultaneous embedding?
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