Scheduling in P2P Streaming: From Algorithms
to Protocols

Luca Abeni and Alberto Montresor*

DISI - University of Trento, Trento (IT)

{luca.abeni, alberto.montresor}@unitn.it

Abstract. Chunk and peer scheduling is among the main driver of per-
formance in P2P streaming systems. While previous work has analyt-
ically proved that optimal scheduling algorithms exist, such strategies
are based on a large number of strong assumptions about the knowl-
edge that a single peer has of the rest of the system. This short paper
presents a protocol for turning these theoretical results into practical
ones, by taking into account practical aspects like the diffusion time of
signaling messages and a partial knowledge of the participating peers.

1 Introduction

Peer-to-peer streaming systems are becoming increasingly popular [TJ2/3] as a
way to overcome the scalability limitations of traditional streaming technologies
based on a client/server paradigm. In particular, there is an increasing interest
in unstructured P2P streaming solutions, which distribute a media stream by di-
viding it in chunks that are disseminated by the various peers contributing to the
stream diffusion. This approach allows to better exploit the upload bandwidth
of all the peers which actively participate in the dissemination, and to reduce
the overhead required for maintaining the overlay structure in case of churns.
Moreover, unstructured systems are more tolerant to peer failures [4].
Traditionally, unstructured P2P streaming systems tend to distribute the
chunks based on random decisions, generating a lot of useless network traffic
(due to duplicated chunks) and delaying the chunk diffusion. These effects can
be avoided by basing the chunks distribution on smarter decisions (this is the
scheduling problem), so that every peer can receive the various chunks at the
proper time and chunks duplications (the same chunk sent to the same peer mul-
tiple times) are reduced or completely eliminated. There has been a good amount
of research on scheduling in P2P streaming systems, and some scheduling al-
gorithms providing good mathematical properties have been developed [BI6I7].
Some of such algorithms (namely, Rp/Lb, Rp/LUc, MDp/LUc¢, LUc/ELp, and
DI/ELp) have been formally analysed, and various optimality properties have

* This work is supported by the European Commission through the NAPA-WINE
Project (Network-Aware P2P-TV Application over Wise Network — www.napa-
wine.eu), ICT Call 1 FP7-ICT-2007-1, 1.5 Networked Media, grant No. 214412.

T. Spyropoulos and K.A. Hummel (Eds.): IWSOS 2009, LNCS 5918, pp. 201|-206,|2009.
© IFIP International Federation for Information Processing 2009

202 L. Abeni and A. Montresor

been proved (see the papers cited above for details on the algorithms and on
their properties).

An unstructured P2P streaming system is modelled as a set of nodes in which
a special one, called the source, generates chunks at a fixed rate from an encoded
media stream. Chunks are distributed to the peers present in the system through
a push strategy: each peer contributing to the streaming selects a chunk to be
sent and the target peer, and sends (pushes) the chunk to the target. The goal
is to select the chunk to be sent and the target peer so that duplicated chunks
are reduced and the streaming performance is improved. These two decisions
are taken by two schedulers, called chunk and peer scheduler. The peer scheduler
can select a target peer from a set of peers named neighbourhood (basically, each
peer knows the existence of a limited subset of peers).

The works cited above focused on the scheduling algorithms, assuming that
each scheduler has some knowledge of the peer’s neighbourhood (and knows the
chunks that have already been received by all the neighbours). Since such algo-
rithms are often based on a set of assumptions regarding the overlay management
or the diffusion of the information about the chunks that have been received by
each peer, the creation and maintenance of the neighbourhood (overlay man-
agement) and the signalling mechanisms between different peers (chunk buffer
state management) have not been considered. Hence, the theoretical properties
proved in the original papers have to be verified in more realistic situations.

This paper presents the design of PUSHSTREAM, a protocol that can be used
to implement various peers and chunks scheduling algorithms, and evaluates the
performance of such protocol through a set of simulations which take in account
the overlay construction, the signalling delay, and churn.

2 The PushStream Protocol

As explained, to implement an effective scheduler the scheduling algorithm must
be complemented with a protocol which takes care of the chunk buffer state
management and overlay management issues.

Some overlay management protocols which are well known in the P2P commu-
nity (such as NEWSCAST [4]) can be used to construct the neighbourhoods, and
chunk buffer state management can be performed by sending signalling messages
when a peer receives a chunk. However, the overlay management algorithms gen-
erally create unidirectional links (that is, if peer P; is in P;’s neighbourhood, it
is not guaranteed that P; is in P,’s neighbourhood), while the solution men-
tioned above requires overlays based on bidirectional graphs (because when a
peer P; receives a chunk, it should notify all the peers that can potentially send
chunks to P; - that is, all the peers that have P; in their neighbourhoods). In
the following, this problem will be referred as the bidirectional neighbourhood
problem.

Another problem is caused by the one-way-delay: if peer P; receives a chunk
Cy at time ¢ and sends a message to peer P; to notify it about the chunk
reception, P; will receive such notification only at time t’ = ¢ + J, where ¢ is

Scheduling in P2P Streaming: From Algorithms to Protocols 203

the one-way-delay. Hence, if P;’s scheduler runs between ¢t and ¢’ then it might
decide to send again Cj to P;. In the following, this problem will be referred as
the delayed notification problem.

The protocol proposed in this paper, PUSHSTREAM, addresses the bidirec-
tional neighbourhood problem by dynamically constructing an input neighbour-
hood, which is used to send notification messages: when peer P; receives a chunk
from peer P;, P; is added to P;’s input neighbourhood, and a notification mes-
sage is sent to all the peers in the input neighbourhood (all but P;, clearly).

The delayed notification problem is particularly dangerous when using “more
deterministic” schedulers such as ELp [7] which try to take optimal decisions to
reduce the chunks diffusion times as much as possible. In fact, such algorithms
increase the probability to have multiple peers sending the same chunk to the
same target simultaneously (because of the “deterministic” behaviour of the
scheduler, many peers will take the same decision as they are unaware of what
the other peers are doing). This problem can be addressed by exploiting some
topological properties to reduce the collisions probability: basically, the scheduler
does not select the target from the whole neighbourhood provided by the overlay
management protocol, but from an output neighbourhood, which is a subset of
such neighbourhood. In particular, the output neighbourhood of P; is composed
by P;’s neighbours based on some desirable property (in this paper, the minimum
topological distance from P; has been used).

Hence, each peer simultaneously runs an overlay management protocol and
PUSHSTREAM, which is a cyclic protocol (with time cycle T') and works as
follows:

— When a chunk C}, is received from a peer P;

e Add C} to the chunk buffer

e Add P; to the input neighbourhood N i if not already present

e Otherwise, reset P;’s timeout to the maximum value Tout

e For each peer P, € N, send a notification about C}, reception to P,
and decrease P,’s timeout

o If the timeout of Py is 0, remove P, from N

— When a notification message is received from peer P;
e Update the information about the chunks received by P;
— At every cycle (with period T)

e Invoke the scheduler to select a target peer in the output neighbourhood
N°u! and a chunk to be sent. The scheduler uses the information provided
by the previous notification messages

e Send the selected chunk to the target

— Every K cycles

e Update N°“! by using the peers known by the gossipping protocol having

the smallest distance from the current peer.

It is worth noting that PUSHSTREAM does not require any notion or global time,
nor it assumes any kind of special synchronisation between the peers.

204 L. Abeni and A. Montresor

Chunk Diffusion Time Chunk Diffusion Time

Chunk Diffusion Time
Chunk Diffusion Time

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Number of nodes Number of nodes
Avg - Theoretical Worst Case - Theoretical
vg - Real ~——+-— jorst Case - Real ~-¥- Avera Worst Case -
Avg - Real no newscast Worst Case - Real no newscast £~ Average - Theoretical - Worst Case - Theoretical

Fig. 1. Chunk diffusion time in the ideal Fig. 2. Chunk diffusion time in realistic
case and using PUSHSTREAM situations using PUSHSTREAM

3 Preliminary Results

The PUSHSTREAM protocol has been implemented in the Peersind] P2P simula-
tor, which also emulates the chunk transmission time and the signalling delay,
and its performance have been evaluated and compared with the “theoretical
results”.

In these PUSHSTREAM tests, DI/ELp [7] has been selected as a scheduling
algorithm (because of its optimality properties), and the NEWSCAST algorithm
has been used for overlay management. The simulations have been run assuming
a chunk size of 1s (each chunk contains 1 second of encoded media), an output
neighbourhood size equal to log,(N), where N is the number of peers, and a
NEWSCAST neighbourhood size equal to 3logy(N).

Correctness of the Implementation: The correctness of the implementation
has been verified by simulating an “almost ideal situation” (all the chunk trans-
mission times and the signalling delays are set to the minimum possible value,
which is 1ms) and comparing the results with the theoretical results from

The streaming performance have been evaluated by considering the chunk dif-
fusion time (the time needed by a chunk to be diffused to all the peers): in
particular, Figure [l displays the worst case and average values for the chunk
diffusion times. The average values obtained by using PUSHSTREAM are smaller
than theoretical ones because each peer receives about 93% of the chunks, and
the statistics are computed on the received chunks only (in the theoretical case,
no chunk is lost). Such lost chunks are mainly due to NEWSCAST dynamically
changing the overlay, and to the initial startup time needed to setup the input
neighbourhood (during this time, a lot of duplicated chunks are received). To
verify this, the simulations have been repeated disabling the periodic update of

! http://peersim.sf.net

2 Such reference values have been obtained by simulating the ideal system (in which
every peer knows the exact state of all its neighbours, the overlay is static, and the
neighbourhood size is assumed to be equal to 3log,(N)).

Scheduling in P2P Streaming: From Algorithms to Protocols 205

the output neighbourhood (in this way, PUSHSTREAM ends up using a static
overlay, and NEWSCAST does not affect the streaming performance); as a result,
each pears receives more than 98.5% of the chunks and the worst case diffusion
times are a little bit larger than the theoretical bound as shown in Figure[Il In
any case, the measured values are quite close to the theoretical ones, showing
that the protocol is correctly implemented.

Realistic Setup: In the previous simulations, the size T of the periodic cycle of
each peer has been set to 1s because the D1/ELp algorithm is known to be able
to diffuse a media stream when all the peers forward the stream at its bitrate
(hence, since each chunk is 1s large the system can work if each peer outputs one
chunk per second). Since in a real system there will be some duplicate chunks,
the output bitrate requested to each peer is larger than 1; hence, in the next set
of simulations the cycle size of each peer but the source will be set to T' = 1/1.2.

In a next batch of simulations, PUSHSTREAM has been simulated in more
realistic situations, assuming that a chunk needs a time randomly distributed
in [100ms, 300ms] to be transmitted, and the one-way-delay for the signalling
messages is randomly distributed in [50ms, 200ms]. The results are reported in
Figure 2l which again displays the average and the worst case diffusion times,
compared to the theoretical values from [7]. By looking at the figure, it is possi-
ble to see that the algorithm performance are still near to the theoretical bounds
(again, the average diffusion time is smaller than the theoretical one because of
the lost packets, and because T' < 1). In these simulations, the average percent-
age of chunks not received by a peer is always less than 6%.

Overhead Measurements: A potential problem with PUSHSTREAM is that
the size of the input neighbourhood can grow too much, forcing a peer to send
a lot of signalling messages each time that it receives a new chunk. Hence, the
size of the input neighbourhood for the previous simulations has been measured,
and it turned out that the maximum value is 20 (forced by the timeout used to
remove peers from the input neighbourhood) and the average value is less than
16. Hence, the overhead introduced by the signalling protocol is not too high.

Dynamic Overlay Management: To evaluate the effect of the dynamic over-
lay construction, the simulations have been repeated disabling the periodic up-
date of the output neighbourhood. As a result, it has been observed that the
simulation results became heavily affected by the overlay topology: in some runs,
the chunk diffusion delays and the fraction of lost chunks became very similar to
the theoretical expectations, while in other runs the performance became poor.
When, instead, NEWSCAST is used to dynamically update the output neighbour-
hood, the results become very consistent from run to run.

Additional Results: To understand the effect of the output bitrate on the
protocol performance, the number of peers has been fixed to N = 500 (so, the
neighbourhood size is 27 and the output neighbourhood size is 9), and the cycle
size has been set to T' = 1.0/(1.0 + p), (where p is called surplus bandwidth).

206 L. Abeni and A. Montresor

Lost Chunks

Percentage of lost chunks

0 0.1 0.2 0.3 0.4 0.5
Surplus Bandwidth

Fig. 3. Chunk loss for 500 peers as a function of p, where T'=1.0/(1.0 + p)

The results obtained increasing p from 0 to 0.5 are shown in Figure [3} note that
if peers can forward the chunks at a bitrate that is 130% of the stream bitrate,
then the average amount of lost chunks is less than 4%.

Finally, some simulations have been run to verify how the system copes with
peers that leave the system without any kind of notification. The experiments
showed that the dynamic update of the input and output neighbourhoods allow
to tolerate such “leaving peers” without affecting the performance too much: for
example, if 1% of the peers leave the system every 500s, in a system composed by
1000 peers each peer receives about 92% of the chunks (without churn, around
95% of the chunks were received).

References

1. Hefeeda, M., Habib, A., Xu, D., Bhargava, B., Botev, B.: Collectcast: A peer-to-peer
service for media streaming. ACM Multimedia 2003 11, 68-81 (2003)

2. Liu, Y.: On the minimum delay peer-to-peer video streaming: how realtime can it
be? In: MULTIMEDIA 2007: Proceedings of the 15th international conference on
Multimedia, Augsburg, Germany, September 2007, pp. 127-136. ACM Press, New
York (2007)

3. Couto da Silva, A., Leonardi, E., Mellia, M., Meo, M.: A bandwidth-aware schedul-
ing strategy for p2p-tv systems. In: Proceedings of the 8th International Conference
on Peer-to-Peer Computing 2008 (P2P 2008), Aachen (September 2008)

4. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., Steen, M.v.: Gossip-
based peer sampling. ACM Trans. Comput. Syst. 25(3), 8 (2007)

5. Massoulie, L., Twigg, A., Gkantsidis, C., Rodriguez, P.: Randomized decentral-
ized broadcasting algorithms. In: 26th IEEE International Conference on Computer
Communications (INFOCOM 2007) (May 2007)

6. Bonald, T., Massoulié, L., Mathieu, F., Perino, D., Twigg, A.: Epidemic live stream-
ing: optimal performance trade-offs. In: Liu, Z., Misra, V., Shenoy, P.J. (eds.) SIG-
METRICS, Annapolis, Maryland, USA, June 2008, pp. 325-336. ACM Press, New
York (2008)

7. Abeni, L., Kiraly, C., Cigno, R.L.: On the optimal scheduling of streaming appli-
cations in unstructured meshes. In: Fratta, L., et al. (eds.) NETWORKING 20009.
LNCS, vol. 5550, pp. 117-130. Springer, Heidelberg (2009)

	Scheduling in P2P Streaming: From Algorithms to Protocols
	Introduction
	The PushStream Protocol
	Preliminary Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

