
Web Service Selection with Incomplete

or Inconsistent User Preferences

Hongbing Wang1, Shizhi Shao1, Xuan Zhou2,
Cheng Wan1, and Athman Bouguettaya2

1 School of Computer Science and Engineering,
Southeast University, China
{hbw,szs,chw}@seu.edu.cn

2 CSIRO ICT Centre, Australia
{xuan.zhou,athman.Bouguettaya}@csiro.au

Abstract. Web service selection enables a user to find the most desir-
able service based on his / her preferences. However, user preferences
in real world can be either incomplete or inconsistent, such that service
selection cannot be conducted properly. This paper presents a system
to facilitate Web service selection in face of incomplete or inconsistent
user preferences. The system utilizes the information of historical users
to amend the active user’s preference, so as to improve the results of
service selection. We present a detailed design of the system and verify
its efficiency through extensive experiments.

1 Introduction

As an increasing number of Web services have been deployed on the Web, service
selection is becoming an important technique for helping users identify desirable
Web services. To conduct effective service selection, we need (1) a model to
adequately describe users’ requirements or preferences over the nonfunctional
properties of services, such as Quality of Web Service, and (2) an intelligent
algorithm to select services according to a user’s preferences. In recent years, a
number of solutions have been proposed to address these two issues.

Most of existing solutions perform service selection based on quantitative
criteria, such as a utility function [1,2]. These quantitative approaches are com-
putationally efficient. However, they offer limited usability to end users, as it is
difficult for users to express their preferences using quantitative metrics [2], such
as Utility(Qantas Airline)=0.9 and Utility(Thai Airline)=0.7. In many cases,
users tend to express their preferences in a qualitative way, such as “I prefer
Qantas Airline to Thai Airline”. To obtain better usability, a number of qual-
itative methods [3,4] have recently been proposed to model users’ preferences
and to perform service selection.

Qualitative Web service selection is faced with a number of challenges as
well. On the one hand, users may not provide complete descriptions of their
preferences, such that service selection may produce too many results. On the
other hand, as users are not completely rational, they may provide inconsistent

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 83–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 H. Wang et al.

descriptions of their preferences, such that no result will be obtained. According
to [5,6], these cases are quite common in real life. To perform effective service
selection, we need an intelligent system that is able to automatically complement
users’ incomplete preferences and remove inconsistencies.

This paper proposes a system for conducting qualitative Web service selection
in face of incomplete or conflicting user preferences. To enable effective service
selection, it finds a number of historical users with similar preferences, and uses
their preferences to amend the preference of the active user. Then, it conducts
service selection using the amended preferences to obtain improved results. This
approach is in spirit similar to that of recommender systems [7,8]. We present a
detailed design of this service selection scheme, which include the technique for
finding similar users and the scheme for preference amendment. An experimental
evaluation has been conducted to verify its efficiency and effectiveness.

The rest of the paper is organized as follows. Section 2 gives some background
on qualitative service selection and recommender system. Section 3 presents our
general service selection framework. Section 4 presents the heuristics and the
algorithms for amending users’ preferences. Section 5 gives the results of our
experimental evaluation. Finally, Section 6 provides a conclusion.

2 Background

We first give a brief overview of Web service selection, and proceed to review the
technologies of Conditional Preference Network (CP-Net) [10] and Recommender
System.

2.1 Web Service Selection

In a typical scenario of service discovery, a user describes a desired service, and
an agent identifies the relevant services or service compositions that satisfies
the user’s requirements. The entire process actually consists of two steps, as
illustrated in Fig. 1. First, an abstract service or abstract service composition
is identified, which offers the conceptual functionality required by the user. For
example, if a user requests a service to store a data set, this step would returns
an abstract service called Data Storage. If the user requires that her information
be stored securely, this step would return an abstract composition consisting of a
Data Encryption service and a Data Storage service. While the abstract service
or composition is correct in functionality, it is not executable. In the second step,
a set of concrete services are selected to turn the abstract service or composi-
tion into executable process. For example, either Faidu File System or Doogle
Database can be selected to provide Data Storage service. Either Universal Pro-
tection or PGP Cypher can be selected to provide the Data Encryption service.
Service selection, also known as service optimization [9], refers to the second step.
Its objective is to select the concrete services which can best satisfy the user. The
level of satisfaction of a user is mostly determined by a service’s nonfunctional
features, such as reliability, latency and etc. Therefore, service selection always

Web Service Selection with Incomplete or Inconsistent User Preferences 85

Fig. 1. Example of Service Selection

focuses on comparing the nonfunctional attributes of concrete services. However,
as different users have different options on services’ goodness, users’ preferences
are important information for conducting effective service selection.

2.2 CP-Net

Conditional Preference Network (CP-Net) [10,11] is a widely used model for
qualitatively representing users’ preferences. This model can be briefly defined
as follows.

Definition 1 (CP-net). Let V = {X1, ..., Xn} be a set of attributes of Web
services. A CP-net over V is a directed graph G (called dependency graph) over
X1, ..., Xn, in which each node is annotated with a Conditional Preference Table,
denoted by CPT (Xi). Each conditional preference table CPT (Xi) associates a
total order of Xi’s values with each instantiation of Xi’s parents. �
We illustrate the semantics of CP-net using the example in Fig. 2. A Data Stor-
age service can be described by a number of attributes. They include Platform,
which can be a file system or a database, Location, which can be USA or China,
and Provider, which can be a private company or a public organization. As shown
in Fig. 2 (a), the user has an unconditional preference on Platform. As indicated
by the corresponding CPT, she always prefers databases to file systems. The
user’s preference on Location, however, depends on the platform she chose. As
a file system offer less data processing capability than a database, the user may
consume much more I/O traffics when using a file system. If the user is located
in China, most likely she would like the file system to be located in China too.
On the other hand, if the platform is a database, she prefers it to be located
in USA, as she believes that database technologies in USA are more sophisti-
cated. Moreover, the user’s preference on Provider depends on the location of
the service. For service providers in USA, she believes that private companies are
more trustworthy than public organizations. For service providers in China, she
believes that public sectors are more trustworthy than private companies. Based
on the CP-net presentation of the user’s reference, we can deduce the detailed
preference graph of her, which gives the user’s explicit preferences among all

86 H. Wang et al.

Fig. 2. Examples: (a) CP-net, (b) Induced Preference Graph, (c) Inconsistent CP-net

types of services. This induced preference graph is shown in Fig. 2 (b). Database
services provided by private companies in USA are the user’s first choice.

In real-world settings, a user may not want or be able to give a complete
CP-net presentation of her preferences. For instance, the user’s preference over
platform in Fig. 2 (a) can be missing. In this situation, FS∧China∧Public and
DB∧USA∧Private become incomparable. When preference specifications in a
CP-net are sparse, service selection may not be useful anymore, as there can be
too many candidate services that are possibly optimal. In a worse case, a user’s
specifications in the CP-net can be semantically inconsistent. As illustrated in
Fig. 2 (c), a user may specify that the attributes Location and Provider are
mutually dependent, and give four conditional preferences. However, based on
the user’s specification, we find conflicts in the induced preferences. (We can
deduce both China ∧ Public � USA ∧ Private and USA ∧ Private � China ∧
Public.) In this case, no optimal service can be found. According to [5,6], as
users are not complete rational, such cases are very common.

Existing techniques for service selection are unable to deal with the above sce-
narios. In this paper, we provide solutions to service selection when information
of user preferences is incomplete or conflicting.

2.3 Recommender System

Recommender system [7,8] is a technology attempting to select information items
that are likely to be interesting for users. It analyzes a user’s profile and pre-
dicts the user’s interests through statistical methods. We found that similar
approaches can be applied to complement a user’s incomplete preferences or to

Web Service Selection with Incomplete or Inconsistent User Preferences 87

Fig. 3. Process of Service Selection

fix a user’s inconsistent preferences. The most typical technique used in recom-
mender system is collaborative filtering [12]. Collaborative filtering utilizes the
regular pattern that like-minded users tend to have similar interest. It compares
users’ profiles to select users who share similar characteristic with the active
user. Then it aggregates the interests of these like-minded users to predicate the
possible interests of the active user. The method has been successfully applied to
a number of leading commercial Web-sites, such as Amazon and Ebay. To solve
the problems in service selection, we borrow the idea of collaborative filtering.
We find historical users who share similar preferences with the active user, and
use their preferences to amend the active user’s preferences, such that service
selection can be successfully conducted. In the following, we present a detailed
design of this approach.

3 Service Selection Framework

The complete process of service selection in our system is shown in Figure 3.
Upon receiving a user’s preference description, the system first checks its con-
sistency. If it contains conflicts, which are represented as cycles in the induced
preference graph, a conflict removal process is conducted to remove all conflicts
(cycles). The amended preference description is then passed to the service selec-
tor to retrieve the user’s favorite Web services. If the result set is too big to be
handled by the user, which means that the user’s preferences is under-specified,
the preference description is passed to the preference complementation process,

88 H. Wang et al.

which will find some additional preferences the user would probably agree. Fol-
lowing that, service selection is performed again to refine the result set. This
process can be repeated until the result set is manageable or no more comple-
mentation can be made.

The figure also shows the sub-steps of conflict removal and preference com-
plementation. Both processes utilize the profiles of historical users. To remove a
conflict, it first finds the users that are most similar to the active user. Then, a
voting process is conducted among these users to identify the most unimportant
preference involved in the conflict. This unimportant preference is thus removed
to break the conflict. To complement a user’s preferences, instead, the most
important preference is selected and added to the active user’s preferences.

4 Preference Amendment

Our approach of service selection is based on a single pattern – similar users
tend to have similar preferences. Hence, the key issues of preference amendment
include (1) how to find similar users and (2) how to amend a user’s preferences
based on the other users’ profiles.

4.1 Similar User Detection

To identify similar users, we compare the current user’s preferences against the
preferences of other users. The users with the most similar preferences are se-
lected. As introduced in Section 2, we describe a user’s preferences using CP-net.
Thus the similarity between two users can be measured by the similarity between
their CP-nets. An intuitive measure of this similarity is defined as follows.

Definition 2 (Distance between CP-nets). Let A and B be two CP-nets of an
abstract service composition. Let P (A) and P (B) be the induced preference
graphs of A and B respectively. Let e denote an edge in a preference graph.
Thus, the distance from B to A is calculated as:

Dis(A : B) =
|{e : e ∈ P (A) ∧ e ∈ P (B)}|

|{e : e ∈ P (A) ∨ e ∈ P (B)}| − |{e : e ∈ P (A) ∧ e ∈ P (B)}|
�

According to Definition 2, the distance between CP-net B and CP-net A can
be measured by the size of the overlap between A and B’s induced preference
graphs (as illustrated in Fig. 2 (b)) divided by the size of the non-overlapping
parts. While this measure of distance is intuitive, its computation can be very
expensive. According the definition of CP-net, the size of an induced preference
graph grows exponentially with the number of attributes of services. Therefore,
when a large number of attributes are considered in service selection, it will be
infeasible to use Definition 2 to compute users’ similarity. Fortunately, we can
largely reduce the cost by utilizing the characteristics of CP-nets.

Web Service Selection with Incomplete or Inconsistent User Preferences 89

Given a particular abstract service or service composition, we assume that dif-
ferent users’ CP-nets share the same dependency graph. This assumption is based
on two facts. First, the dependencies among the attributes of a certain service
type are usually determined by the inherent characteristics of these attributes
themselves. For instance, as illustrated in Fig. 2, the dependency between Loca-
tion and Provider is determined by the correlation between the quality of service
and these two attributes. In contrast, it is difficult to argue that a dependency
exists between Location and Platform. As another example, Destination and
Hotel are two attributes of a Travel service. It is easy to understand that Ho-
tel depends on Destination, as a tourist a choice of hotel usually depends on
where he is visiting. However, it is difficult to justify that Destination depends
on Hotel. Second, even when users specify different dependency graphs in their
CP-nets, we can create a common dependency graph for them by combining
their dependency graphs into one. The users’ CP-nets can be adjusted accord-
ingly to fit the more complex common dependency graph, without varying their
semantics. When CP-nets share a common dependency graph, their distances
can be directly calculated from their CPTs.

Lemma 1. Let {X1, ..., Xn} be the attributes of an abstract service S. Let D(Xi)
denote the set of attributes which Xi depends on. Let R(Xi) be the set of values
that can be assigned to Xi. Then, given a CP-net, each conditional preference in
CPT (Xi) forms

∏
Xj /∈D(Xi)

|R(Xj)| edges in the induced preference graphs. �

For instances, in Fig. 2, the preference Database � File System determines four
edges in the induced preference graph, while the preference China: Public �
Private determines two edge in the induced preference graph. According Lemma
1, we can compute the distance between two CP-nets using the following formula.

Theorem 1. Let {X1, ..., Xn} be the attributes of an abstract service S. Let A
and B be two CP-nets of S which share the same dependency graph. Let D(Xi)
denote the set of attributes which Xi depends on. Let R(Xi) be the set of values
that can be assigned to Xi. Then, the distance from B to A can be calculated
by:

Dis(A : B) =
∑

Xi

(|CPTA(Xi) ∩ CPTB(Xi)| × ∏
Xj /∈D(Xi)

|R(Xj)|
)

∑
Xi

(|CPTA(Xi) ∪ CPTB(Xi) − CPTA(Xi) ∩ CPTB(Xi)| × ∏
Xj /∈D(Xi)

|R(Xj)|
)

�
As discussed previously, it is expensive to compute the distance between CP-nets
by counting the overlapped edges in the induced preference graphs. By applying
Theorem 1, the computational cost can be reduced to the order of the size of CP-
nets. Specifically, the cost is linear with the number of conditional preferences
in the CPTS.

90 H. Wang et al.

4.2 Preference Voting

Using distances between CP-nets, we can identify users with similar preferences.
When a user’s preference is incomplete or inconsistent, it can be amended using
the preferences of his / her like-minded users. As we assume that different users’
CP-nets share a common dependency graph, by incompleteness or inconsistency,
we always refer to the conditional preferences in the CPTs. We apply the idea
of collaborative filtering. If a user’s preferences, i.e., the conditional preferences
in her CPTs, is incomplete, we add to it some additional preferences which are
most supported by the like-minded users. If a user’s preferences contain a conflict,
we find all the preferences involved in the conflict, and remove the one that is
least supported by the like-minded users. To measure how much an individual
preference is supported by a group of users, an voting scheme is utilized. If the
preference can be deduced from a user’s CP-net, we regard that the user votes
for this preference. In the end, the preferences with the most votes are candidates
for complementing an incomplete CP-net. The preferences with the least vote
are candidates to be removed to break a conflict.

4.3 Conflict Removal

To remove conflicts from a CP-net, we need to first identify conflicts, which
are actually cycles in the induced preference graph of the CP-net. As a number
of algorithms for conflict detection or consistency check in CP-nets have been
proposed [13,14], our system directly reuses them to detect conflicts (cycles).
Once a cycle in the induced preference graph is detected, we go through its edges
to find the corresponding conditional preferences in the CPTs. These preferences
are candidates to be removed from the CP-net. Finally, our voting scheme is
applied to determine the final preference to be removed.

According to Lemma 1, a conditional preference in a CPT can correspond
to more than one edges in the induced preference graph. When choosing the
most suitable conditional preference to remove, we consider two factors. First,
the preference should be supported by as less like-minded users as possible.
This indicates that the preference is likely to be a incorrect one, as most like-
minded users do not have it. Second, the preference should correspond to as
less edge in the induced preference graph as possible. This ensures that removal
of the preference would not affect the user’s preference graph too much. Let P
be a conditional preference in the CPT of the attribute X . Let R(X) be the
attributes which X depends on. Let V otes(P) be the number of votes P receives
from the like-minded users. We use the following score to measure the suitability
of removing P from the CP-net.

Score(P) = V otes(P) ×
∏

Xj /∈D(Xi)

|R(Xj)| (1)

The score is actually the production of the two factors mentioned above. Our
system always chooses the preference with the lowest score to remove.

Web Service Selection with Incomplete or Inconsistent User Preferences 91

Fig. 4. Example of Conflict Removal

An example of conflict removal is shown in Fig. 4. The CP-net in the figure
is inconsistent, as its induced preference graph contains a cycle, as shown on
left of Fig. 4. The edges of the cycle, i.e. e1, e2, e3, e4, are induced from the
conditional preferences B1 : C1 � C2, A2, C2 : B1 � B2, B2 : C2 � C1 and
A2, C1 : B2 � B1, respectively. Thus, these preferences are candidates to be
removed from the CP-net. Based on Formula 1, the scores of the preferences are:

Score(B1 : C1 � C2) = 3 × 2 = 6,
Score(A2, C2 : B1 � B) = 3 × 1 = 3,
Score(B2 : C2 � C1) = 2 × 2 = 4,
Score(A2, C1 : B2 � B1) = 5 × 1 = 5.

Based on the scores, A2, C2 : B1 � B2 is finally removed from the CP-net. As
we can see, even though B2 : C2 � C1 got the least votes, because it is a more
significant preference, our conflict removal algorithm did not choose to remove it.

4.4 Preference Complementation

To complement a CP-net, we consider the unknown conditional preferences in the
CPTs. Based on the voting of the like-minded users, the conditional preferences
with the most votes is chosen to be added to the current CP-net. When adding
a conditional preference in CPTs, it is important to ensure that the resulting
CP-net should not contain conflicts. The conditional preferences that will form
cycles in the induced preference graph are not considered in preference comple-
mentation. Preference complementation is an incremental process, in which one
conditional preference is added to the CPT-net at a time. The process stops
until the number of services returned by service selection is sufficiently small
(e.g., less than 20 services) or no more preference can be added to the current
CP-net.

92 H. Wang et al.

Fig. 5. Example of Preference Complementation

Fig. 5 shows an example of preference complementation. Three conditional
preferences, i.e., A1, C1 : B1?B2, A2, C1 : B1?B2 and B2 : C1?C2, are unknown
in the CPTs. Based on the voting results, which are shown on the left of Fig.
5, B2 : C2 � C1 is the most common preference among the like-minded users.
Then, it is first chosen to be added to the current CP-net. If the results of service
selection are still not satisfactory, the preference with the second highest votes
is considered, and so on. As shown in Fig. 4, because A2, C1 : B2 � B1 will
cause conflict, although it has many votes, we have to ignore it in preference
complementation. Instead, A1, C1 : B1 � B2 is used to further complement the
CP-net.

5 Experiment

As it is difficult to find sufficient real-world services and user records, we per-
formed simulation to evaluate the efficiency and effectiveness of our approach.
This section presents our results.

5.1 Simulation Setup

We simulated the scenario of service selection using randomly generated ser-
vices and user preferences. To simulate different types of services, we varied the
number of attributes and the number of possible values of each attribute. For
each type of service we randomly generated 10,000 concrete services, which have
different attribute values. To simulate user preferences, we generated random
CP-nets. As mentioned previously, for each type of services, all users’ CP-nets
share a common dependency graph. In our simulation, we generated a random
graph to represent each of the dependency graphs. Based on the dependency
graph, we generate 5,000 sets of random CPTs to represent 5,000 historical
users. Each CPT is filled with random conditional preferences, each of which
is a random order of the attribute values. To simulate real-world situations, we

Web Service Selection with Incomplete or Inconsistent User Preferences 93

(a) 2 values for each attribute (b) 4 values for each attribute

(c) 8 values for each attribute (d) 16 values for each attribute

Fig. 6. Efficiency of Conflict Removal

divided the 5,000 users into 10 groups. Each group of users was based on a sin-
gle CP-net with complete CPTs. We duplicated the CP-net for 500 times, and
randomly varied and removed the conditional preferences in their CPTs, to ob-
tain 500 incomplete CP-nets. Each CP-net then represented a user within that
group. As a result, the users in a single group were similar to each other, and
those from different groups were different. This enabled our system to easily find
like-minded users.

To perform service selection, we randomly picked a service type and randomly
selected a user from the 5,000 historical users, and executed the process in Fig. 3
to select the optimal service for that user. We repeated the whole process for
multiple times, and recorded the average execution time of each step as well as
the statistics of the result sets.

We implemented the service selection system using Java. The processes of
conflict removal and preference complementation were based on Section 4. We
reused the algorithm of [4] to perform CP-net based service selection. Our sim-
ulation was conducted in a personal computer with a CPU of 1.79GHz and a
RAM of 768M. The operating system was Windows XP.

94 H. Wang et al.

5.2 Efficiency of Conflict Removal

In the first set of experiments, we assessed the efficiency of conflict removal. We
varied the number of service attributes involved in a conflict from 2 to 6, and
the number of attribute values from 2 to 16. We repeated the process of service
selection for 100 times and calculated the average execution time for each conflict
removal step. The results are shown in Fig. 6.

As shown in the results, the performance of conflict removal is scalable with
respect to the number of attributes and the number of attribute values. Ac-
cording to Fig. 3, the process of conflict removal consist of two steps, that is,
identifying similar users and removing the least supported preference. As dis-
cussed in Section 4.1, the cost of computing CP-net distance is linear with the
size of CP-net. Thus, the cost of identifying similar users is also linear with the
size of CP-net. To remove the least supported preference, the system needs to go
through all the conditional preferences involved in the conflict. Its cost is there-
fore linear with the size of CP-net too. When the number of attributes and the
number of possible values increase, the size of CP-net normally does not increase
significantly. Therefore, the execution time does not increase significantly too.
This justifies the performance shown in Fig. 6.

5.3 Efficiency and Effectiveness of Preference Complementation

In the second set of experiments, we assessed the effectiveness and efficiency of
preference complementation. We varied the number of service attributes from 6
to 15, and the number of attribute values from 2 to 16. We also varied the de-
gree of completeness of user preferences. When the number of attributes is 6, we
set users’ CP-nets to be 50% complete. When the number of attributes is 10, we
set users’ CP-nets to be 20% complete. When the number of attributes is 15, we set
users’ CP-nets to be 10% complete. We repeated the process of service selection
for 100 times. We recorded the average execution time for each complementation
step and the number of selected services after each step.

Fig. 7 shows the numbers of services returned by service selection before and
after each step of preference complementation. We assumed that preference com-
plementation stops when less than 20 services are returned. We can see that when
a user’s preference description is incomplete, the number of services returned by
service selection can be too many for the user to evaluate. When additional
preferences are added to the description, the result set of service selection can
be significantly reduced. As shown in Fig. 7 (a), by adding 3 preferences, the
result set were reduced from 800 to only 20. The experiment results indicate
that preference complementation is effective in pruning services.

Fig. 8 shows the efficiency of preference complementation. According to Fig. 3,
the process of preference complementation consist of two steps, that is, identify-
ing similar users and adding the most supported preference to the user’s CP-net.
As discussed previously, the cost of both steps is linear with the size of CP-net.
When we increase the number of attributes and the number of possible attribute
values, the size of CP-net normally does not increase significantly. Therefore, the

Web Service Selection with Incomplete or Inconsistent User Preferences 95

(a) 2 values for each attribute (b) 4 values for each attribute

(c) 8 values for each attribute (d) 16 values for each attribute

Fig. 7. Effectiveness of Preference Complementation

performance of preference complementation is scalable with the number of at-
tributes and the number of attribute values.

6 Related Work

Service selection aims at helping user select the optimal service from the list of
results returned by service discovery. It is an important process, when (1) users’
queries are ambiguous or (2) there are too many services that meet the user’s
basic requirements. One approach to service selection is to provide interactive
interfaces for users to refine their selection criteria. For instance, in [15] the
authors proposed form based interfaces that allow user to refine the results of
service discovery. In [16], the authors proposed to cluster services based on their
various properties, so that users can prune services by choosing appropriate clus-
ters. Another approach to service selection is to rank services according to users’
preferences or utilities functions. The work of [1,2,4] as well as our approach fall
in the second types of approach. To the best of our knowledge, little work has
considered the case when users’ qualitative preferences are faulty or incomplete.
As this case can be common in real world, this paper proposes techniques to
enable service selection in face of inconsistent or incomplete preferences.

96 H. Wang et al.

(a) 2 values for each attribute (b) 4 values for each attribute

(c) 8 values for each attribute (d) 16 values for each attribute

Fig. 8. Efficiency of Preference Complementation

Application of recommender system in service selection is not new. In [17],
the authors proposed a scheme which applies collaborative filtering to facilitate
service selection. Their approach directly works on services rather than user
preferences. It utilizes users’ ratings on various services to identify like-minded
users and predicate user desired services. When the number of services is large
and users’ ratings are insufficient, this approach can be ineffective. In contrast,
our approach utilizes users’ preferences to identify like-minded users and se-
lect services. As user preferences, e.g. CP-nets, are described in the conceptual
level, it requires much less information to be effective. Moreover, it can work on
arbitrarily large repositories of services.

In [4], the authors proposed an algorithm for performing service selection
with incomplete preferences. While the algorithm enable service selection to be
correctly conducted using incomplete preferences, it may return too many results
to be handled by the user, especially when preferences are under-specified. Our
approach utilizes the preferences of historical users to complement an incomplete
preference, so as to reduce the result set to a manageable size.

Web Service Selection with Incomplete or Inconsistent User Preferences 97

7 Conclusion

In this paper, we present an approach of service selection that can handle in-
complete and inconsistent user preferences. Our approach uses CP-nets to model
user preferences. It utilizes the preferences of historical users to predicate and
amend the active user’s preference, so that service selection can be performed
properly. We conducted simulation to test our approach. The simulation results
verified the effectiveness and efficiency of our techniques in conflict removal and
preference complementation.

Acknowledgement. This work is partially supported by NSFC of China (No.
60473091 and No. 60673175).

References

1. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple qos constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC
2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

2. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: WWW, pp. 1013–1022 (2007)

3. Balke, W.T., Wagner, M.: Towards personalized selection of web services. In:
WWW (Alternate Paper Tracks) (2003)

4. Wang, H., Xu, J., Li, P.: Incomplete preference-driven web service selection. IEEE
SCC (1), 75–82 (2008)

5. Tversky, A.: Contrasting rational and psychological principles of choice. In: Zeck-
hauser, R.J., Keeney, R.L., Sebenius, J.K. (eds.) Wise Choices. Decisions, Games,
and Negotiations, pp. 5–21. Harvard Business School Press, Boston (1996)

6. Mellers, B.A., Schwartz, A., Cooke, A.D.J.: Judgment and decision making. Annual
Review of Psychology 49, 447–477 (1998)

7. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

8. Burke, R.D.: Hybrid recommender systems: Survey and experiments. User Model.
User-Adapt. Interact. 12(4), 331–370 (2002)

9. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimiza-
tion. TWEB 2(1) (2008)

10. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional
ceteris paribus preference statements. In: UAI, pp. 71–80 (1999)

11. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

12. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: WWW, pp. 285–295 (2001)

13. Wilson, N.: Extending cp-nets with stronger conditional preference statements. In:
AAAI, pp. 735–741 (2004)

14. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational com-
plexity of dominance and consistency in cp-nets. In: IJCAI, pp. 144–149 (2005)

98 H. Wang et al.

15. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with
interactive composition techniques. IEEE Intelligent Systems 19(4), 42–49 (2004)

16. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Architecture for
web services filtering and clustering. In: Second International Conference on Inter-
net and Web Applications and Services, ICIW 2007, p. 18 (2007)

17. Manikrao, U.S., Prabhakar, T.V.: Dynamic selection of web services with recom-
mendation system. In: NWESP 2005: Proceedings of the International Conference
on Next Generation Web Services Practices, Washington, DC, USA, p. 117. IEEE
Computer Society, Los Alamitos (2005)

	Web Service Selection with Incomplete or Inconsistent User Preferences
	Introduction
	Background
	Web Service Selection
	CP-Net
	Recommender System

	Service Selection Framework
	Preference Amendment
	Similar User Detection
	Preference Voting
	Conflict Removal
	Preference Complementation

	Experiment
	Simulation Setup
	Efficiency of Conflict Removal
	Efficiency and Effectiveness of Preference Complementation

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

