
A Two-Tiered Approach to Enabling Enhanced

Service Discovery in Embedded Peer-to-Peer
Systems�

Antonio Brogi, Sara Corfini, and Thaizel Fuentes

Department of Computer Science, University of Pisa, Italy
{brogi,corfini,fuentes}@di.unipi.it

Abstract. Recent technology advances are pushing towards a full in-
tegration of low-capacity networked devices in pervasive embedded P2P
systems. One of the challenges of such integration is to allow low-capacity
devices both to invoke and to provide services, while featuring enhanced
service discovery mechanisms that are necessary to automate service in-
vocation in pervasive environments. In this paper we present a two-tiered
approach to enabling enhanced service discovery in embedded P2P sys-
tems. We first present a super-peer based overlay network featuring a
matching capability aware routing of messages, and saving the resource
consumption of low-capacity devices while keeping the overall network
traffic low. We then present a service discovery protocol that exploits
such underlying overlay network to suitably distribute service contracts
on devices capable of analysing them, thus enabling enhanced service
discovery even in nets mainly formed by low-capacity devices. Finally,
we discuss some experimental results that confirm the viability of the
proposed approach.

1 Introduction

Recent advances in hardware and wireless technologies have paved the way for
a full integration of low-capacity networked devices in pervasive embedded P2P
systems. In this perspective, Service-oriented Computing [1] has proven to pro-
vide suitable abstractions to master the complexity of large applications. The
notion of service is used to represent sets of functionalities offered by a peer1,
service providers publish into service registries contracts describing the provided
services, while service consumers query service registries to locate the services
they need to interact with.

To achieve truly automated pervasive systems, service discovery and invoca-
tion should be entirely automated, which means that enhanced service discovery
mechanisms should be featured to reduce the possibility of failures in automated
discover-and-invoke steps. In particular, one of the desired enhancements in the

� Research partially supported by EU FP6-IST STREP 0333563 SMEPP.
1 In this paper we will use the terms “peer” and “device” interchangeably.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 68–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Two-Tiered Approach to Enabling Enhanced Service Discovery 69

service discovery process concerns the quality of the results of the discovery pro-
cess. Indeed while the need of including signature information in service contracts
to enable interoperability is universally accepted (e.g., WSDL has prominently
emerged as the de facto standard for defining the syntax of the functionalities
featured by Web services), signature information is not enough to fully automate
the discover-and-invoke step. For this reason, ontological annotations —to over-
come non-relevant differences in the syntactic description of services— as well
as behavioural information —to verify that service interactions will not lock—
are starting to be included in service contracts of embedded P2P systems [2].

Achieving an effective implementation of enhanced service discovery is how-
ever one of the critical issues in pervasive embedded P2P environments for var-
ious reasons:

– Service registries cannot be centralised for obvious scalability and reliability
reasons, thus service contracts have to be suitably distributed among the
peers participating in the application.

– A distributed implementation of the service discovery process should aim at
saving the resource consumption of low-capacity devices, which could other-
wise consume all their resources by participating in the discovery protocol
and then become unavailable when other peers will invoke the services they
offered.

– Intuitively, contracts of services published by low-capacity devices should
hence better be stored by higher-capacity devices. The implementation of
such a policy is however complicated by the fact that devices storing con-
tracts may (unexpectedly) disconnect from the network (e.g., because of
mobility or battery exhaustion reasons). Also, not all devices are in general
capable of analysing all types of information contained in service contracts.

Various service discovery architectures for (pervasive) P2P environments have
been proposed over the last years. Those architectures are however typically tai-
lored to efficiently deal with contracts and queries describing a specific type of
information (e.g., [3,4,5] focus on syntactic information, while [6,7,8] focus on
ontology-annotated queries), and they cannot be straightforwardly exploited to
efficiently implement discoveries based on other types of information. Consider a
query specifying both ontology-based and behaviour requirements. One could ex-
ploit for instance the approach of [6] to locate the service contracts matching the
ontology-based requirements, and then check whether the partially matched ser-
vices also satisfy the behaviour requirements of the query. The service contracts
found by [6] may be however hosted by peers which do not feature behaviour-
aware matching algorithms, and in those cases it would be necessary to discover
other peers capable of performing a behaviour-aware analysis of contracts and to
move the candidate contracts there to complete the matching. However, moving
sets of contracts across a P2P network would seriously increase net traffic and
severely affect the efficiency of the resulting discovery process.

In this paper we present a two-tiered approach to enabling enhanced service
discovery (taking into account different types of information contained in service
contracts) in embedded P2P systems for pervasive environments. We first present

70 A. Brogi, S. Corfini, and T. Fuentes

a super-peer based overlay network featuring a matching-capability aware rout-
ing of messages, capable of (o1) saving the resource consumption of low-capacity
devices and (o2) keeping the overall network traffic low. We then present a service
discovery protocol that exploits such underlying overlay network to (o3) suitably
distribute service contracts on devices capable of analysing them, thus enabling
enhanced service discovery even in nets mainly formed by low-capacity devices.
Finally, we discuss some experimental results to assess the level of achievement
of objectives (o1), (o2), and (o3) and to confirm the viability of the proposed
approach.

The proposed overlay network is a slight extension of the classical super-peer
model [9], where a set of connected (super) peers acts as servers for the rest of
(client) peers. One of the novelties of our overlay network is the introduction
of the notion of assistant peers, which can provide functionalities (matching
functionalities, in our context) not provided by the super peers. While assistant
peers may not own enough resources to play the role of super peers, these can
exploit assistant peers to provide the functionalities they cannot provide by
themselves. A suitable ranking function is introduced to rank peers (and classify
them as client, assistant or super peers) with respect to the provided matching
functionalities and their physical resources.

The rest of the paper is organised as follows. Sections 2 and 3 present the over-
lay network and the service discovery protocol, respectively. Section 4 discusses
some optimisations which mainly concern the maintenance of the overlay net-
work. Some experimental results are discussed in Section 5, while related work
is discussed in Section 6. Finally, Section 7 presents some concluding remarks.

2 Overlay Network

As anticipated in Section 1, the overlay network proposed in this paper slightly
extends the classical super peer model by introducing the notion of assistant
peers (Fig. 1). Intuitively, an assistant peer is a peer which provides some (match-
ing) functionalities, yet not owning enough physical resources to be a super peer.
A super peer can exploit assistant peers in its vicinity to provide its client peers
with functionalities it cannot provide by itself. In order to classify a peer as
super, assistant or client peer we introduce a ranking function ρ which ranks
peers by taking into account the features (i.e., physical resources and provided
functionalities) described in peer advertisements.

Specifically, an advertisement AP of a peer P is a tuple

AP = 〈WLP , CPUP , RAMP , MOBP , POWP , MFP 〉
where WLP ∈ [0..1] denotes the current workload of the peer in terms of both
the number of contracts stored by P and the requests managed in the last time
interval (i.e., 1 denotes an overloaded peer, 0 an idle peer), CPUP and RAMP

respectively denote the CPU speed and the RAM capacity of the peer, MOBP ∈
{stationary, moving} describes whether the peer is moving or not, POWP ∈
{power plugged, on battery} describes whether the peer is plugged to the power

A Two-Tiered Approach to Enabling Enhanced Service Discovery 71

Fig. 1. Overlay network topology

or not, and MFP = MFself(P) ∪ MFassistants(P) denotes the functionalities
that the peer provides either by itself (MFself(P)) or through its assistant peers
(MFassistants(P)).

The functionalities MFP described in a peer advertisement are precisely the
matching functionalities that the peer is able to provide. A matching functional-
ity is a type of matching algorithm. The group of matching functionalities that we
consider are 〈syntactic〉, 〈syntactic, ontological〉, 〈syntactic, light-behavioural2〉,
〈syntactic, behavioural〉, 〈syntactic, ontological, light-behavioural〉 and 〈syntactic,
ontological, behavioural〉.

A ranking function ρ : ADV×N −→ R is used to rank peers. A peer Q ranks a
peer P by computing the value ρ(AP , DPQ), where AP is the advertisement of P
and DPQ is the distance (i.e., number of physical hops) from P to Q. Intuitively,
when ranking peers featuring similar physical resources, ρ ranks higher peers
providing more matching functionalities. On the other hand, peer that advertise
no matching functionalities (viz., MFP = ∅) are always ranked 0, independently
of their physical resources.The values computed by ρ are also inversely propor-
tional w.r.t. the second parameter (i.e., ρ(AP , DPQ)>ρ(AP , DPQ + ε)) to take
into account the physical vicinity among peers.

A peer Q can exploit ρ to classify a peer P (possibly itself) as client, assistant
or super peer, as follows:

– P is a client peer if ρ(AP , DPQ) = 0,
– P may act as assistant peer if ρ(AP , DPQ) > 0, and
– P may act as super peer if ρ(AP , DPQ) > t

where t is a threshold to establish whether a peer can be a super peer or not,
and DPQ = 0 if Q = P . As illustrated in Fig. 1, client peers connect to a (single)

2 We distinguish light-behavioural matching algorithms (checking the “may”-
compatibility of service protocols, i.e., the existence of at least one successful interac-
tion trace) from full behavioural matching algorithms (checking the full compatibility
of service protocols, i.e., that all interaction traces are successful).

72 A. Brogi, S. Corfini, and T. Fuentes

nearby super peer, while – differently from the classical super peer model – a
super peer may exploit assistant peers in its vicinity to provide the matching
functionalities that it cannot provide by itself.

2.1 Network Maintenance

A peer Q acting as super peer maintains a list of fingers to other super peers
in its vicinity and a list of its current assistants. Both lists contain tuples of the
form 〈AP , DPQ, t〉, where t is the time at which Q received advertisement AP

from P . A peer that does not act as super peer maintains only one super peer
tuple, corresponding to the chosen super peer.

The core functionality of the overlay network can be summarised as follows:

– Each peer enters the net as a client peer, and it remains idle until it receives
a routing request (from one of its upper layer protocols) or it receives a
message from some other peer.

– When a client peer C needs to route a message, if it has not yet chosen its
super peer then it broadcasts to its vicinity a SuperPeerDiscovery message
carrying its advertisement AC .

– When a peer P receives a SuperPeerDiscovery message from C:
• If P is acting as super peer then P unicasts its advertisement AP to C.
• If P is not acting as super peer but ρ(AP , 0) > t or ρ(AP , DCP) ≥

ρ(AC , DCP) then P unicasts AP to C and self promotes itself to super
peer.

– When a client peer C receives an advertisement AP from P at time t:
• If C does not have a super peer and ρ(AC , 0) < ρ(AP , DPC) then C

chooses P as its super peer and stores 〈AP , DPC , t〉 as its super tuple.
• The same happens if C has a super peer S 	= P but ρ(AP , DPC) >

ρ(AS , DSC) + Δ
• If P was already the super peer chosen by C then C simply updates its

super tuple into 〈AP , DPC , t〉.
In any case, if C provides some matching functionality which is not provided
by P , then C unicasts its advertisement AC to P .

– A client C which has broadcasted a SuperPeerDiscovery message and which
has not received any advertisement AP such that ρ(AC , 0) < ρ(AP , DPC)
self promotes itself to super peer after a timed wait.

Super peers periodically broadcast their advertisements to their vicinity and
unicast their fingers list to the super peers in such a list. When a super peer
receives an advertisement or the list of another super peer, it updates its own
finger and assistant lists by exploiting the ranking function ρ. Note that a super
peer can be chosen as an assistant by another super peer.

2.2 Message Routing Protocol

The objective of the overlay network is to deliver messages to the peers which
provide the required matching functionalities. The overlay network routes each

A Two-Tiered Approach to Enabling Enhanced Service Discovery 73

message with respect to an associated key k = 〈MFS , MFG〉, which specifies
the set MFS of matching functionalities which must be strictly provided by the
target peer, and the set MFG of the matching functionalities which should be
greedily provided by the target peer.

If the sender of the message is a client peer, the message is first routed to
the super peer of the sender (if any, otherwise the sender peer broadcasts a
SuperPeerDiscovery message to choose a super peer). If the target super peer
provides the required matching functionalities, the message and – possibly – the
link(s) to the assistant peer(s) necessary to satisfy 〈MFS , MFG〉, are dispatched
to the upper service discovery layer. The super peer may also forward the message
to those super peers in its fingers table which match the received key k. The
radius of such forwarding is set by the service discovery layer.

3 Service Discovery Protocol

The service discovery layer features a service discovery protocol by storing service
contracts in super peers and by exploiting matching functionalities provided by
super and assistant peers to match contracts with queries.

The service discovery protocol exploits the overlay network to publish and to
search for service contracts by passing a publication or query message and a key
k = 〈MFS , MFG〉 to the overlay network. As described in the previous section,
the key specifies the matching functionalities that the target peer(s) must provide
(viz., MFS) and should greedily provide (viz., MFG). For instance, a message
associated with the key 〈{〈syntactic, light-behavioural〉}, {〈syntactic, ontological,
light-behavioural〉}〉 will be received by super peers capable of performing (possi-
bly with the help of their assistants) both syntactic and light-behavioural match-
ing and optionally, also ontological matching.

When a (service discovery) message and the associated key k are received by
a target super peer, the overlay network dispatches the message, and the link(s)
to the assistant peer(s) possibly necessary to satisfy the matching functionalities
〈MFS , MFG〉, to the service discovery layer. If the message is a publication
message the (discovery layer of the) target super peer stores the contract of
the published service. If the message is a query, the (discovery layer of the)
target super peer first matches the contracts that it stores locally. If the super
peer can provide all the required matching functionalities MFS by itself, it
returns the matched contracts to the peer that generated the request, otherwise,
it forwards the query and the (partially matched) contracts to (some of) its
assistant peers. Assistant peers match the received contracts by executing the
matching functionalities requested by k, and return the matched contracts the
peer that generated the request.

As anticipated in the previous section, the service discovery layer can specify
the radius of the forwarding of messages among super peers. A peer can hence
decide for instance to publish and search services only in its super peer.

Summing-up, the service discovery protocol (SDP) publishes and searches
service contracts by invoking the overlay network (ON). To do this, the former

74 A. Brogi, S. Corfini, and T. Fuentes

invokes the later with calls of the form: route(m,k,forwardHops) where m is either
publish(contract) or query(contractTemplate) and where k=〈MFS, MFG〉. Sup-
pose that the service discovery protocol of a peer Q invokes such a call. Then
the behaviour of the overlay network of Q can be synthesised as follow:

If Q is not super peer Then {
If � super peer Then Q starts discovering a super peer

<m,k,forwardHops> is sent to the ON of the super peer of Q

}
Else { // this branch is also the code to be executed when a ON component receives a

// message from another ON component

If MFQ ⊇ MF S Then {
If MFself(Q) � MF S AND m=query(ct) Then

m is dispatched to the SDP (of Q), together with a subset H of the assistants of

Q such that (∪h∈HMFh ∪ MFself(Q)) ⊇ MF S∧
∀h ∈ H (∪k∈H\{h}MFk ∪ MFself(Q)) � MF S

Else m is dispatched to the SDP (of Q)

dispatched = true

}
Else dispatched = false

// to forward message m

If (dispatched is false) OR (forwardHops > 0) Then {
If (dispatched is true) Then forwardHops=(forwardHops−1)

<m,k,forwardHops> is sent to all R in the fingers of Q such that MFR ⊇ MF S

}
}

4 Optimisations

To simplify the reading, in Section 2 we have presented the core aspects of our
overlay network. There are, however several important optimisations that have
been implemented to reduce the number of messages exchanged for network
maintenance and routing.

– Limited broadcast. We have seen that super peers periodically broadcast
their advertisement. To control the number of potential clients, super peers
dynamically update the radius of such broadcast according to their own
current workload and available resources.

– Passive mode. If an (active) super peer does not receive routing message for
a while, it switches to passive mode and stop periodically broadcasting its
advertisement – until it will receive a routing message and switch back to
active mode.

– Checking the aliveness of super peers. Whenever a peer routes a message to
a super peer A, it firstly checks the time tA when it received the advertise-
ment from A. If tA is up-to-date (i.e., the advertisement has been received
recently), the message is sent asynchronously to the super peer. Otherwise,
if tA is out-of-date, the message is sent synchronously to the super peer, in

A Two-Tiered Approach to Enabling Enhanced Service Discovery 75

order to get an acknowledgement from it. If an acknowledgement is received,
tA is updated, otherwise A is not considered a valid super peer any more.

– Avoiding network partitioning. Network partitioning may especially occur
in networks of mobile, limited-resource devices, where super peers advertise
themselves in a short vicinity. To avoid that, whenever a peer chooses a new
super peer, it notifies its old super peer (if any) of the availability of the new
super peer, thus facilitating the inter-connection among super peers.

5 Evaluation

In order to assess the viability of the proposed overlay network and service dis-
covery protocol, we analysed their behaviour with PlanetSim[10], an extensible
discrete-event Java simulator for key-based routing protocols in P2P overlay
networks.

We run a set of simulations for networks populated by heterogeneous peers,
randomly distributed and moving in a 600 × 600m2 area and capable of com-
municating within a 100m range. The matching functionalities provided by each
peer were obtained according to the peer’s randomly generated capabilities, and
peers could unexpectedly leave the network due to battery exhaustion. In all the
simulations, first all peers join the network, then 40% of peers (randomly chosen)
started publishing service contracts, and then 60% of peers (randomly chosen)
started issueing queries to discover services. The simulations were run by scaling
the number n of peers from 10 to 150 (with a pace of 10), and for each n the re-
sult was obtained by taking the average of the results of 15 different tests run for
200 units of simulation time. In each test 20% of peers (randomly chosen) were
high-capacity devices and 10% of peers (randomly chosen) were mobile devices,
(randomly) moving in their vicinity during the entire simulation.

The first set of simulations was run to assess the degree with which the pro-
posed service discovery protocol accomplished objective (o3) set in the Intro-
duction, namely “to suitable distribute service contracts on devices capable of
analysing them”.

The metric we used to measure the accomplishment level of (o3) was the
percentage of published contracts matching a query q that were successfully
located by the service discovery protocol on devices capable of analysing them.

Formally, let q be a query, let k be the key used to route q and let MFS(q)
be the set of required matching functionalities specified with q. Then for each
query q we computed the ratio:

�{ch | ∃P : P stores ch ∧ h �� k ∧ q hits P ∧ MFP ⊇ MFS(q)}
�{ch | ∃P : P stores ch ∧ h �� k} (1)

where ch denotes a contract that was published with key h, h �� k denotes that
the key h and k match, and MFP denotes the set of matching functionalities
provided by peer P (possibly with the help of its assistants).

Fig. 2 illustrates the results of the simulation, with only 1-hop routing for-
warding among super peers. We can observe that even with a little percentage

76 A. Brogi, S. Corfini, and T. Fuentes

Fig. 2. Testing the ability of locating contracts on devices capable of analysing them

of high-capacity devices (20%), the accuracy of the discovery is very high up to
100 peers. After that it starts to decrease because of the incompleteness inher-
ent to the super peer model (exacerbated here by considering only 1-hop routing
forwarding among super peers).

The second set of simulations was run to assess the degree with which the
proposed overlay network accomplishes objective (o1) set in the Introduction,
namely “saving the resource consumption of low-capacity devices”.

The first metric we used to measure this was the percentage of (overlay)
messages received by low-capacity devices w.r.t the overall number of messages
exchanged due to routing activities (Fig. 3(a)). We compared our proposal with
a basic implementation of the super-peer model (similar to [3]3) and with the im-
plementation of Chord DHT[11] provided by PlanetSim, customised to support
mobility and to fit our statistics outputs.

We observed in Fig. 3(a) that, while Chord does not take into account device
capabilities, when the number of peer grows, our proposal reduces the percentage
of messages received by low-capacity devices w.r.t the basic super peer imple-
mentation.

The saving of resource consumption of low-capacity devices achieved by our
proposal is even better highlighted in Fig. 3(b), where the used metric is directly
the number of low-capacity devices still alive4 at the end of the simulation.

A further set of simulations was done to assess the degree with which the
proposed overlay network accomplishes objective (o2) set in the Introduction,
namely “keeping the overall network traffic low”.

We first measured the number of (overlay network) messages generated by
network maintenance activities. We can observe in Fig. 4(a) how the optimi-
sations implemented in our proposal (Section 4) allow to reduce the network

3 Super peer advertises right after joining the net, maintains a registry of their clients,
and client requests are routed to super peers with compatible (numeric) keys.

4 The simulation decrements the battery of a device every time it receives a message
at the physical level (either for network maintenance or for routing).

A Two-Tiered Approach to Enabling Enhanced Service Discovery 77

(a) Percent of messages received by low-
capacity devices during routing

(b) Number of low-capacity devices alive
at the end of the simulation

Fig. 3. Testing resource consumption of low-capacity devices

(a) Traffic due to network maintenance (b) Traffic due to routing

Fig. 4. Testing network traffic

traffic generated for network maintenance by the basic super peer model. The
numerical values for Chord –which generates only O(log2

2(N)) messages during
network maintenances[11]– are not plotted in Fig. 4.

We then measured the number of (overlay network) messages generated by
routing activity. Fig.4(b) shows that our proposal generates, as expected, quite
more traffic for routing than the basic super peer implementation. The reason for
this is that the implementation of our overlay network used in the experimenta-
tion routes messages with the objective of hitting devices providing the desired
matching functionalities, but it does not take into account the other information
included in contracts and queries (whose analysis is to be entirely performed by
the upper service discovery level). A more fair comparison of the two approaches
should consider an implementation of our overlay network capable of exploit-
ing such information to reduce the number of fingers and assistants to which
messages are routed. Such an implementation could be obtained by allowing the

78 A. Brogi, S. Corfini, and T. Fuentes

Fig. 5. Overlay/physical messages ratio

service discovery level to suitably configure the type of filters to be exploited by
the overlay network. This is precisely one of our planned future works.

In order to get an estimation of the actual traffic generated at the physical
level, we measured the ratio (Fig. 5) between the number of messages (both for
routing and network maintenance) at the overlay level and the corresponding
messages at the physical level5. Fig. 5 shows that the ratio of our proposal is
better that Chord (which is not topology-aware), but worse than the basic super-
peer model, as our ranking function ρ privileges the availability of (matching)
functionalities to physical vicinity.

6 Related Work

To overcome the serious limitations —scalability and reliability (single point
of failure)— of the first P2P architectures that relied on a centralised server
(e.g., like in Napster’s original design), a number of decentralised architectures
have been proposed for P2P systems. These can be roughly partitioned into
unstructured, structured and semi-structured architectures.

A main drawbackof unstructured architectures (like Gnutella[12], JXTA[13,14])
is message explosion, caused by the use of message flooding to route messages.
Moreover, each peer –target of a message routing– executes its own matching al-
gorithm(s) without exploiting enhanced matching algorithms possibly provided
by higher-capacity peers. This makes unstructured architectures unsuitable to im-
plement enhanced service discovery mechanisms for embedded P2P systems.

Structured architectures, such as Distributed Hash Tables (DHTs [4,5]), sen-
sibly reduce the number of (overlay) messages. However, the unawareness of the
underlying physical topology and of peers’capacities make DHTs unsuitable to
implement enhanced service discovery mechanisms for embedded P2P systems.
5 The simulator determined the number of physical messages corresponding to an

overlay message sent from A to B by counting one physical hop every 100m over the
Euclidean distance between A and B.

A Two-Tiered Approach to Enabling Enhanced Service Discovery 79

Also, DHTs are not particularly well-suited for mobile environments, where fre-
quent unexpected (dis)connections would cause frequent costly reorganisation of
the overlay network. It is worth mentioning [15], an extension of Pastry DHT
[16] which takes into account static physical capabilities of peers (viz., cpu speed,
ram, etc.), but does not consider dynamic properties like vicinity, workload or
battery consumption, and [17], which extends Chord’s identifiers [11] to take
into account any type of information regarding the service provider. Both [15]
and [17] however present the other general drawbacks of DHTs.

Semi-structured architectures (like our proposal) set up a backbone of super
peers which act as mini-servers for the other peers in the network. While they
do not present the drawbacks of unstructured and structured approaches, net-
work partitioning and cyclic message forwarding may occur in semi-structured
approaches like [18], where peers autonomously choose their links to other peers.
[7] and [19] build an overlay network among peers “sharing common interests”
(e.g., semantic concepts or types of services). In [7] peers are organised in clus-
ters, each mapping a semantic concept and storing “similar” files, while queries
are forwarded to clusters that feature compatible concepts. In [19], each cluster
has a coordinator, coordinators are linked one another, and coordinators do not
take into account the physical capabilities of peers. Data-centered approaches
like [7] and [19] are however tailored to handle specific types of data, and they
cannot straightforwardly exploited to efficiently implement discoveries based on
other types of information, as we already mentioned in the Introduction. In [20]
super peers exchange a hierarchical XML representation of the data they store
and use path expressions to process incoming queries. Such an approach cannot
be however exploited in networks consisting of low-capacity devices only, because
of the resources needed to process path expressions.

In [21] and [22], super peers constitute a DHT. In [21] low-capacity devices
connect to a bootstrap node, which is chosen as super peer. If the chosen super
peer is overloaded, the client is redirected to a non-overloaded super peer in the
(Chord) ring, and service publication and discovery is based on keywords. In [22]
peers discover and connect to super peers via JXTA protocols [13], and peers
discover services by sending trivial semantic-based queries (a single taxonomy of
types of services is considered) to super peers. Both [21] and [22] are not however
well-suited for mobile networks of low-capacity devices, and they suffer from the
previously discussed general drawbacks of structured architectures.

The approaches [23,24,25,3,6] are the most related with our proposal. In de-
signing our architecture, we followed the guideline of [9] on how super peers
can be selected, and we extended the concrete, yet partially defined, super peer
network protocol of FastTrack [23] (inspired by Kazaa, http://www.kazaa.com).
[24] ranks peers considering their static and dynamic capabilities. Super peers
are dynamically elected in order to keep bounded the ratio between the number
of clients peers and the number of super peers. Each super peer periodically
compares its ranking against the ranking of its clients (and vice-versa). If the
number of highest-ranked client peers exceeds a predefined threshold, then the
super peer downgrades to client peer while the best ranked client peer promotes

80 A. Brogi, S. Corfini, and T. Fuentes

as super peer. In [25] super-peers are elected considering mainly the distance
(measured as communication latency). Moreover, [25] deactivates super peers
when they do not register clients, but (active) super peers advertise themselves
even if they are not receiving queries from their clients. Instead, our proposal
deactivates super peers when they do not receive service discovery messages for a
while, thus saving network traffic. Differently from [24] and [25], we choose super
peers by taking into account their matching functionalities mainly, but also our
super peers do not register their clients to save memory consumption. Differently
from [25], our proposal also dynamically sets the advertisement radius of super
peers (i.e., the radius within which the super peers advertise themselves) with
respect to their current capabilities, helping to keep bounded the ratio between
client peers and super peers, similar to [24]. In the approaches [3] and [6], peers
are organised into a semi-structured network similar to [25]. Super peers store
service contracts and match them syntactically [3] and semantically [6]. The
main novelty of our proposal with respect to [3] and [6] is that our architecture
supports any matching approach, strengthened by the introduction of assistant
peers, which are the key ingredient to implement an efficient and accurate service
discovery mechanism capable of matching any type of query.

Last, but not least, we mention [26] that provides a high-level service discov-
ery architecture enabling the coexistence of different contracts languages and
(legacy) matching algorithms and allowing low-level communication among dif-
ferent (multi-radius) networks.

Different contract and query description languages and different matching
algorithms are used in pervasive environments, ranging from syntactic [5], to
semantics-based [8,27], to behaviour-based [28] service discovery. [26] provides a
high-level service discovery architecture enabling the coexistence of such (legacy)
matching algorithms. Our proposal can be integrated as a (vertical) middle-
layer in multi-tiered architectures like[26]: We locate –and route messages to–
devices capable to perform required matching functionalities, abstracting on the
underlying multi-radius network –provided by [26]– and perimetrically w.r.t.
both the contract (query) languages and the (legacy) matching algorithms, which
will be locally provided by systems like [26].

7 Concluding Remarks

We have presented a two-tiered approach to enabling enhanced service discov-
ery in embedded P2P systems. As we have seen, the proposed service discov-
ery protocol exploits an overlay network featuring a matching capability aware
routing of messages to suitably distribute service contracts on devices capable
of analysing them, thus enabling enhanced service discovery even in nets mainly
formed by low-capacity devices. We have also analysed the collected experimen-
tal data to assess the level of achievement of the three objectives that we set in
the Introduction —(o1) saving the resource consumption of low-capacity devices,
(o2) keeping the overall network traffic low, and (o3) suitably distributing service
contracts on devices capable of analysing them— yielding a confirmation of the
viability of the proposed approach.

A Two-Tiered Approach to Enabling Enhanced Service Discovery 81

Our plans for future work include to integrate first in our overlay network
key-based data filters (such those employed in [6,8]) to drive message routing, as
we already mentioned in Section 5. Then we plan to develop a full-fledged ser-
vice discovery system where existing (both ontology-based and behaviour-aware)
matchers can be plugged-in, so as to be able to start a thorough assessment of
the versatility of the proposed overlay network and a comparative assessment at
the service discovery level.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 24–28 (2003)

2. Benigni, F., Brogi, A., Corfini, S., Fuentes, T.: Contracts in a Secure Middleware
for Embedded Peer-to-Peer Systems. In: Proc. of the 2nd Workshop on Formal
Languages and Analysis of Contract-Oriented Software (FLACOS) (2008)

3. Sailhan, F., Issarny, V.: Scalable Service Discovery for MANET. In: 3rd IEEE Int.
Conf. on Pervasive Computing and Communications (PerCom), pp. 235–244. IEEE
Computer Society, Los Alamitos (2005)

4. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison
of Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys and
Tutorials 7(2), 72–93 (2005)

5. Louati, W., Zeghlache, D.: SPSD: A Scalable P2P-based Service Discovery Archi-
tecture. In: IEEE Wireless Communications and Networking Conference (WCNC),
pp. 2588–2593 (2007)

6. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semAntic Service discoverY in pervasive computing environments with
QoS and context support. Journal of Systems and Software 81(5), 785–808 (2008)

7. Garcia-Molina, H., Crespo, A.: Semantic Overlay Networks for P2P Systems. Stan-
ford InfoLab, Technical Report 2003-75 (2003)

8. Skoutas, D., Sacharidis, D., Kantere, V., Sellis, T.K.: Efficient Semantic Web Ser-
vice Discovery in Centralized and P2P Enviroments. In: Sheth, A.P., Staab, S.,
Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 583–598. Springer, Heidelberg (2008)

9. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: Proc. of the
19th Int. Conf. on Data Engineering (ICDE), pp. 49–60. IEEE Computer Society,
Los Alamitos (2003)

10. Pujol Ahulló, J., Garćıa López, P., Sànchez Artigas, M., Arrufat Arias, M., Paŕıs
Aixalà, G., Bruchmann, M.: PlanetSim: An extensible framework for overlay net-
work and services simulations. Universitat Rovira i Virgili, Tech. Rep. DEIM-RR-
08-002 (2008)

11. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: ACM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM), pp. 149–160 (2001)

12. Gnutella team, Gnutella discovery protocol,
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf

13. JXTA team, Jxta specification, https://jxta-spec.dev.java.net/
14. Srirama, S.N., Jarke, M., Zhu, H., Prinz, W.: Scalable Mobile Web Service Discov-

ery in Peer-to-Peer Networks. In: 3rd Int. Conf. on Internet and Web Application
and Services (ICIW), pp. 668–674. IEEE Computer Society, Los Alamitos (2008)

http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
https://jxta-spec.dev.java.net/

82 A. Brogi, S. Corfini, and T. Fuentes

15. Liang, Q.A., Chung, J.-Y., Lei, H.: Service Discovery in P2P Service-oriented En-
vironments. In: Proc. of the 8th Int. Conf. on E-Comemerce Technology and of the
3rd Int. Conf. on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE).
IEEE Computer Society, Los Alamitos (2006)

16. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

17. He, Q., Yan, J., Yang, Y., Kowalczyk, R., Jin, H.: Chord4S: A P2P-based Decen-
tralised Service Discovery Approach. In: IEEE Int. Conf. on Services Computing,
pp. 221–228. IEEE Computer Society, Los Alamitos (2008)

18. Kobayashi, H., Takizawa, H., Inaba, T., Takizawa, Y.: A Self-Organizing Overlay
Network to Exploit the Locality of Interests for Effective Resource Discovery in
P2P Systems. In: Proc. of the 2005 Symposium on Applications and the Internet
(SAINT), pp. 246–255. IEEE Computer Society, Los Alamitos (2005)

19. Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: DESENT: decentralized and dis-
tributed semantic overlay generation in P2P networks. IEEE Journal on Selected
Areas in Communications 25(1), 25–34 (2007)

20. Thilliez, M., Delot, T.: A Localization Service for Mobile Users in Peer-to-Peer
Environments. In: Crestani, F., Dunlop, M.D., Mizzaro, S. (eds.) Mobile HCI In-
ternational Workshop 2003. LNCS, vol. 2954, pp. 271–282. Springer, Heidelberg
(2004)

21. Hofstätter, Q., Zöls, S., Michel, M., Despotovic, Z., Kellerer, W.: Chordella – A
Hierarchical Peer-to-Peer Overlay Implementation for Heteregeneous, Mobile En-
vironments. In: 8th Int. Conf. on Peer-to-Peer Computing (P2P), pp. 75–76. IEEE
Computer Society, Los Alamitos (2008)

22. Ayorak, E., Bener, A.B.: Super Peer Web Service Discovery Architecture. In: Proc.
of the 23rd Int. Conf. on Data Engineering (ICDE), pp. 1360–1364. IEEE, Los
Alamitos (2007)

23. FastTrack team, FastTrack protocol,
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/

giFT-FastTrack/PROTOCOL?revision=1.19

24. Xiao, L., Zhuang, Z., Liu, Y.: Dynamic Layer Management in Superpeer Architec-
tures. IEEE Trans. on Parallel and Distributed Systems 16(11), 1078–1091 (2005)

25. Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-Aware Superpeer Overlay
Topology. IEEE Tran. on Network and Service Management 4(2), 74–83 (2007)

26. Caporuscio, M., Raverdy, P.-G., Moungla, H., Issarny, V.: ubiSOAP: A Service
Oriented Middleware for Seamless Networking. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 195–209. Springer, Heidel-
berg (2008)

27. Zhou, G., Yu, J., Chen, R., Zhang, H.: Scalable Web Service Discovery on P2P
Overlay Network. In: IEEE Int. Conf. on Services Computing (SCC), pp. 122–129.
IEEE Computer Society, Los Alamitos (2007)

28. Shen, Z., Su, J.: Web Service Discovery Based on Behavior Signatures. In: Proc.
of the 2005 IEEE Int. Conf. on Services Computing (SCC), pp. 279–286. IEEE
Computer Society, Los Alamitos (2005)

http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?revision=1.19
http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-FastTrack/PROTOCOL?revision=1.19

	A Two-Tiered Approach to Enabling Enhanced Service Discovery in Embedded Peer-to-Peer Systems
	Introduction
	Overlay Network
	Network Maintenance
	Message Routing Protocol

	Service Discovery Protocol
	Optimisations
	Evaluation
	Related Work
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

