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Abstract. We give a construction of non-malleable statistically hiding
commitments based on the existence of one-way functions. Our construc-
tion employs statistically hiding commitment schemes recently proposed
by Haitner and Reingold [1], and special-sound WI proofs. Our proof of
security relies on the message scheduling technique introduced by Dolev,
Dwork and Naor [2], and requires only the use of black-box techniques.

1 Introduction

A commitment scheme is an interactive protocol between two parties, the com-
mitter, who holds a value, and the receiver. It usually consists of two phases: the
commit phase and the reveal phase. During the commit phase, the committer
puts a value in a “locked box” and sends it to the receiver. In the reveal phase,
the committer sends the “key” to the receiver, then the receiver opens the box
and retrieves the value. Two basic properties of a commitment scheme are the
hiding property (the receiver cannot learn the committed value before the reveal
phase) and the binding property (the committer is bounded to one value after
the commit phase). There are two fundamental types of commitment schemes,
statistical hiding and statistical binding. In this work, we focus mainly on sta-
tistically hiding commitment schemes, where the hiding property holds against
unbounded receivers while the binding property is required to hold only against
polynomially bounded senders.

The concept of non-malleability was first introduced by Dolev et al. [2].
The basic properties of commitment schemes cannot prevent malleable attacks
mounted by a man-in-the-middle adversary who has full control of the commu-
nication channel between the committer and the receiver. Loosely speaking, a
commitment scheme is non-malleable if one cannot transform the commitment
of a value into a commitment of a related value. This kind of non-malleability
is called non-malleability with respect to commitment [3]. The notion of non-
malleability used by Di Crescenzo et al. [4] is called non-malleability with respect
to opening, i.e., the adversary cannot construct a commitment from a given one,
such that after having seen the opening of the original commitment, the adver-
sary is able to correctly open his commitment with a related value. In the rest
of this paper, when we say non-malleability, we actually mean non-malleability
with respect to opening.
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1.1 Related Work

Statistically hiding commitment schemes were first shown to exist based on
number-theoretic assumptions [5,6], or more generally, based on any collec-
tion of claw-free permutations [7] with an efficiently-recognizable index set [8].
Subsequent work on constructing statistically hiding commitment schemes are
based on collision-resistant hash functions [9], or based on any one-way permu-
tation [10], or based on regular one-way functions [11]. Nguyen et al. [12] and
Haitner and Reingold [1] made fundamental progress by constructing statisti-
cally hiding commitment schemes based on the minimal cryptographic assump-
tion that one-way functions exist.

Based on number-theoretic assumptions, non-malleable statistically hiding
commitment schemes were designed in [13,3] assuming the existence of a common
reference string that is shared by the two players before the protocol execution.
Thus, their schemes do not work in the plain model (i.e., without setup assump-
tions). More recently, Pass and Rosen [14] constructed a non-malleable commit-
ment scheme that was statistically hiding based on a family of collision-resistant
hash functions. Their scheme is round-efficient and needs only constant-round
communication. However, the security proof relies on non-black-box techniques
and is not efficient.

As one of the central goals of cryptography is to reduce complexity assumptions
for various cryptographic primitives and construct them under more standard as-
sumptions, there remain open questions as to whether or not non-malleable statis-
tically hiding commitment can be based solely on the existence of one-way functions,
and be shown secure relying only on black-box techniques.

1.2 Our Result

In this paper, we give affirmative answers to both of the questions posed above.
We show that the existence of one-way function is a sufficient condition for the
existence of non-malleable statistically hiding commitment.

Theorem 1. If one-way functions exist, then there exists a non-malleable sta-
tistically hiding commitment scheme.

Our commitment scheme uses the commitment scheme [1] to commit to the
desired value, but modify the opening process by adding a “trapdoor” that can
be extracted and used by the simulator to cheat in the reveal phase, and would
not be known to the committer in a real execution. Although the extraction
requires rewinding, we rely on the message scheduling technique of Lin et al. [15],
which is a slight modification of the message scheduling technique introduced
by Dolev et al. [2], to show this will suffice to prove the non-malleability. Our
proof requires only standard black-box techniques. As a tradeoff, however, our
protocol needs polynomial rounds of interaction.

The preliminaries and definitions are illustrated in section 2. Our non-malleable
statistically hiding commitment scheme is shown in section 3.
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2 Preliminaries and Definitions

For any NP languages L, note that there is a natural witness relation RL contain-
ing pairs (x, w) where w is the witness for the membership of x in L. A function
μ(·), where μ : N → [0, 1] is called negligible if for every positive polynomial
p(·), for all sufficiently large n ∈ N, μ(n) < 1

p(n) . A probability ensemble is a
sequence X = {Xi}i∈I of random variables, where I is a countable index set
and Xi is a random variable ranging over {0, 1}p(|i|) for some polynomial p(·).
Two probability ensembles X = {Xi}i∈I and Y = {Yi}i∈I are computationally
indistinguishable, if no probabilistic polynomial-time (PPT) algorithm distin-
guishes between them with more than negligible probability. For page limited,
we assume the readers are family with interactive proofs.

Special-sound proofs. A 3-round public-coin interactive proof for the language
L ∈ NP with witness relation RL is special-sound with respect to RL, if for any
two accepting transcripts (α, β, γ) and (α′, β′, γ′) for some statement x ∈ L, such
that α = α′ and β �= β′, a witness w such that (x, w) ∈ RL can be computed by
a polynomial-time deterministic procedure.

2.1 Witness Indistinguishability

The concept of witness indistinguishability was proposed by Feige and Shamir
[16]. An interactive proof system is witness indistinguishable (WI) if the verifier
cannot tell which of the witnesses is being used by the prover to carry out the
proof, even if the verifier knows both witnesses. We focus on NP languages L
with a corresponding witness relation RL. The readers are referred to [16] for
formal definition.

Special-sound WI proofs for NP languages can be based on the existence
of non-interactive commitment schemes. Assuming only one-way functions, 4-
round special-sound WI proofs for NP languages exist.1 More precisely, there is
a 3-round special-sound WI proof for the language of Hamiltonian Graphs [17],
assuming one-way permutation families exist. If the commitment scheme used
by the protocol [17] is replaced by Naor’s commitment scheme [18], then it
becomes a 4-round special-sound WI proof while the assumption is reduced to
the existence of one-way functions. For simplicity, we use 3-round special-sound
WI proofs in our protocol though our proof works also with 4-round special-
sound WI proofs.

2.2 Commitment Schemes

In this work, we consider statistically hiding commitment schemes.

Definition 1 (Commitment Scheme). A pair of PPT interactive machines
〈C, R〉 is said to be a commitment scheme if the following two properties hold:

1 A 4-round protocol is special sound if there exits polynomial-time deterministic
procedure to extract the witness from any two accepting transcripts (τ, α, β, γ) and
(τ ′, α, β, γ) such that τ = τ ′, α = α′ and β �= β′.
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Statistical hiding: For every unbounded interactive Turing machine R∗, it holds
that the ensemble

{
staR∗

〈C,R〉(v1, z)
}

v1∈{0,1}n,n∈N,z∈{0,1}∗ and the ensemble
{
staR∗

〈C,R〉(v2, z)
}

v2∈{0,1}n,n∈N,z∈{0,1}∗ have negligible statistical difference,2

where staR∗
〈C,R〉(v, z) denotes the random variable describing the output of R∗

after receiving a commitment to v using 〈C, R〉.
Computational binding: A malicious (expected) PPT committer S∗ can suc-

ceed in opening a given commitment in two different ways only with negligible
probability. The reader is referred to [19,1] for more details.

2.3 Non-malleable Commitments

As stated in [14], we formalize the notion of non-malleability by a comparision
between a man-in-the-middle execution and a simulated execution. Just as [2,15],
we consider a tag-based variant of non-malleability.

Let 〈C, R〉 be a commitment scheme. Let n ∈ N be a security parameter.
Let R ∈ {0, 1}n × {0, 1}n be a polynomial-time computable valid relation [13]
(i.e., for all v ∈ {0, 1}n, R(v,⊥) = 0.). In the man-in-the-middle execution,
the adversary A is simultaneously participating in a left and right interaction.
In the left interaction, the man-in-the-middle adversary A interacts with the
committer C to receive a commitment to a value v using tag tag. In the right
interaction, A interacts with the receiver R and tries to commit to a related value
using tag of its choice ˜tag. After commit phase execution in both interactions,
A receives decommitment keys from C and then generates the corresponding
decommitment key for ṽ. Prior to the interaction, the value v is given to C as local
input. A receives an auxiliary input z, which might contain a priori information
about v. If the right commitment or decommitment fails, or tag = ˜tag, ṽ is
set to =⊥. Let the boolean random variable mimA

open(R, v, z) denote whether A

succeeds. Note mimA
open(R, v, z) = 1 if and only if A decommits to a value ṽ such

that R(v, ṽ) = 1.
In the simulated execution, a simulator S directly interacts with honest re-

ceiver R. As in the man-in-the-middle execution, the value v is chosen prior
to the interaction, and S receives some a prior information about v as part of
its auxiliary input z. S also receives tag tag. S first executes the commitment
scheme with R. Once the commitment phase has been completed, S receives the
value v and attempts to decommit to a value ṽ with tag t̃ag. If tag = t̃ag, ṽ
is set to ⊥. Let the boolean random variable simS

open(R, v, z) denote whether S

succeeds. Note simS
open(R, v, z) = 1 if and only if S decommits to a value ṽ such

that R(v, ṽ) = 1.

Definition 2 (Non-malleable Commitment [14]). A commitment scheme
〈C, R〉 is said to be non-malleable with respect to opening if for every PPT
man-in-the-middle adversary A, there exists an expected PPT simulator S and a
negligible function μ : N → [0, 1], such that for every polynomial-time computable
2 The statistical difference between two ensembles {Xi}i∈I and {Yi}i∈I is defined by

1
2
·∑α

∣
∣Pr[Xi = α]− Pr[Yi = α]

∣
∣.
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valid relation R ⊆ {0, 1}n × {0, 1}n, for all tags of polynomial length, for every
v ∈ {0, 1}n and every z ∈ {0, 1}∗, the following holds:

Pr[mimA
open(R, v, z) = 1] < Pr[simS

open(R, v, z) = 1] + μ(n)

A commitment scheme that is non-malleable according to Definition 2 is liberal
non-malleable rather than strict non-malleable [2,3]. Note we follow [14] in that
non-malleability is guaranteed only if the commit phase and the reveal phase do
not overlap.

3 Construction

We begin by presenting a high-level overview of our protocol. Our protocol is based
on the statistically hiding commitment scheme [1] while relying on the messages
scheduling technique [15] which is a slight modification of the message schedul-
ing technique of [2]. The commit phase of our protocol is the same as that of
the commitment protocol in [1]. The reveal phase, however, comes in two parts.
Roughly, the reveal phase employs the two-witness technique by Feige [20] and the
well known FLS-technique [21]. First, the receiver proves that it knows one of the
preimages of either element s0 or element s1 computed by itself in the domain of a
one-way function. Then, the committer sends the committed value v and proves it
knows how to open the commitment or one of the preimages of either element s0

or element s1. The proofs used by the prover and the verifier are all tag-based WI
proofs elaborately scheduled as [15]. For simplicity of exposition, our description
relies on the existence of one-way functions with efficiently recognizable range.3

We also assume the one-way function is length-preserving. Since any one-way func-
tion can be transformed into length-preserving one-way function [19].

3.1 Tag-Based Witness-Indistinguishable Proof

First, we propose a tag-based WI proof for every NP language L which is used as
a basic tool in the final commitment scheme. The length of the tag is polynomial
bounded to the length of the security parameter n. Denote the polynomial by
t(·). In Fig. 1, both design0 and design1 contain two executions of special-sound
WI proofs for L but with elaborately designed scheduling. The tag-based WI
proof 〈Ptag, Vtag〉 for L is shown in Fig. 2. The protocol is composed of 4t-round
special-sound WI proofs for language L. More precisely, there are t rounds, where
in round j, the schedule designtagj

is followed by design1−tagj
. The properties of

〈Ptag, Vtag〉 are easy to verify. The details are omitted.
One basic technique in proving the security of most zero-knowledge and com-

mitment protocols is standard rewinding. However, the rewinding technique is
problematic when extending to concurrent (here one-left one-right) execution en-
vironment as an adversary may adaptively schedule its messages that withstand
any targeted simulator (i.e., the simulator may run super-polynomial time or is
3 The protocol can be easily modified to work with arbitrary one-way function by pro-

viding a witness hiding proof that an element is in the range of the one-way function.
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α1

β1

γ1

α2

β2

γ2

(a) design0

α2

α1

β1

γ1

β2

γ2

(b) design1

Fig. 1. Two schedules

Protocol 〈Ptag, Vtag〉
Security Parameter: 1n

Common Input: An instance x ∈ {0, 1}n
Tag string: tag ∈ {0, 1}t(n)

For j = 1 to t(n)
P ⇔ V : Execute designtagj

Execute design1−tagj

Fig. 2. Tag-based WI proof 〈Ptag,
Vtag〉

exposed to malleability attack.). Considering the non-malleability property for
commitment schemes, the pivot is to design the stand-alone simulator that sat-
isfying Definition 2. Here we also come up with the problem of how to simulate
when the adversary adaptively schedules its messages.

The scheduling in Fig. 1 which is identical to [15] is vital in achieving the non-
malleability. The main advantage of this scheduling is that for the proof given
by a man-in-the-middle adversary, there exists a point at which the adversary
cannot answer the challenge from the verifier by simply modifying the proof on
the other side (provided the tag of the proof is different from that of the proof
on the other side.).

Related to the above scheduling is a notion called safe-point, from which it is
possible to perform extraction by standard rewinding until we obtain a second
proof transcript, without “affecting” the other side interaction. Below is the
formal definition of safe-point, which is mainly taken from [15] and abridged to
our setting.

Definition 3 (Safe-point [15]). A prefix ρ of a transcript τ is called a safe-point,
if there exists an accepting proof (αr, βr, γr) in the right interaction, such that

1. αr occurs in ρ, but not βr (and γr).
2. For any proof (αl, βl, γl) in the left interaction, if only αl occurs in ρ, then

βl occurs after γr.

When protocol 〈Ptag, Vtag〉 is run concurrently, it is guaranteed there is a safe-
point for right interaction that has a tag different from the left interaction fol-
lowing from the next lemma.

Lemma 1 (Safe-point Lemma [15]4). In any one-one man-in-the-middle ex-
ecution of 〈Ptag, Vtag〉, if the right interaction has a different tag from the tag of
the left interaction, there exists a safe-point for the right interaction.

4 The safe-point lemma in [15] applies to any one-many concurrent execution environ-
ment, where the adversary participates in one left interaction and polynomial many
right interactions. Here we use a simpler version of the safe-point lemma, where the
adversary participates in one left interaction and one right interaction.
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3.2 Non-malleable Statistically Hiding Commitment Scheme

Let 〈SHC, SHR〉 be the statistically hiding commitment scheme[1] from any one-
way function 5 and let 〈Ptag, Vtag〉 be a tag-based WI proof for NP. The commit-
ment protocol is shown in Fig. 3. The length of the tag is m(n). Our construction
in fact compiles any statistically hiding commitment scheme with non-interactive
reveal phase into a non-malleable statistically hiding one with interactive reveal
phase, assuming the existence of one-way functions.

Protocol 〈C,R〉
Security Parameter: 1n

Tag string: tag ∈ {0, 1}m(n)

String to be committed: v ∈ {0, 1}n
Commit Phase:

C ⇔ R : Run the commit phase of commitment scheme 〈SHC, SHR〉, where C
runs SHC and R runs SHR.
R : Abort if the above commit phase fails.
Let com be the transcripts of messages obtained. C records the decommitment
key in dec.

Reveal Phase:
Stage 1:

R → C : Pick uniformly r0, r1 ∈ {0, 1}n, compute s0 = f(r0) and s1 = f(r1)
and send s0, s1.
R ⇔ C : R and C engage in an execution of 〈Ptag, Vtag〉 with tag tag, where
R uses rb as witness (b ∈ {0, 1}) and runs Ptag to prove to C (running Vtag)
knowledge of a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of the
verifier (i.e., C) is 2n.
C: Abort if either s0 or s1 is not in the range of f or the proof fails.

Stage 2: C → R : Send v.
Stage 3:

C ⇔ R : C and R engage in an execution of 〈Ptag, Vtag〉 with tag tag, where C
runs Ptag to prove to R (running Vtag) that there exists a value dec s.t. dec is
the valid decommitment key of com corresponding to v or there exists a value
r s.t. s0 = f(r) or s1 = f(r). The challenge length of the verifier (i.e, R) is 2n.

Fig. 3. Non-malleable statistically hiding commitment scheme 〈C, R〉

Theorem 2. Suppose that 〈SHC, SHR〉 is a statistically hiding commitment
scheme with non-interactive reveal phase and 〈Ptag, Vtag〉 is a tag-based WI proof.
Then 〈C, R〉 is a non-malleable statistically hiding commitment scheme.

Remark 1. The commitment scheme shown in Fig. 3 is tag-based non-malleable.
Compared with existing tag-based commitment schemes [2,15,22], it seems a bit

5 Note the commitment scheme [1] is only for a single bit. By running their scheme in
parallel, we obtain a commitment scheme of any polynomial length. Hence, we also
assume that the basic statistically hiding commitment scheme is for a string.
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strange that our construction uses tags only in the reveal phase. In fact, this
approach is inspired by the work of [14,15]. Even tag-based non-malleable com-
mitments can be transformed into content-based non-malleable commitments in
a standard way [2], we explicitly present one in Appendix A for reference.

Remark 2. The high level approach of our commitment scheme is to combine [14]
with [2,15]. That is, to commit to v, in the commit phase, a sender commits v
using the statistically hiding commitment scheme [1], and in the reveal phase,
a sender sends v and proves using a “simulation-extractable” argument [2,15]
that the commit phase transcript opens to v. The simulation strategy at a high
level is from [14]. For technical reasons, naively using the simulation-extractable
arguments from [2,15] does not work. We need to modify the opening process by
adding a “trapdoor” that can be extracted and used by the simulator to cheat
in the reveal phase. This is the reason why we add one more phase (i.e., Stage
1). Whereas in [2,15], the trapdoor is only used in the hybrid experiment for
analysis and may therefore hard-wired via a different analysis.

Proof (sketch). We need to prove the scheme satisfies the following three proper-
ties: statistical hiding, computational binding and non-malleability with respect
to opening. We start by proving the hiding and non-malleability properties and
then return to the proof of the binding property.

Statistical hiding. The hiding property follows directly from the hiding property
of the commitment scheme 〈SHC, SHR〉. Note that 〈SHC, SHR〉 is statistically
hiding, and so 〈C, R〉 is also statistically hiding.

Non-malleability. We show that for every PPT man-in-the-middle adversary
A, there exists a probabilistic expected polynomial-time simulator S and a
negligible function μ such that for every polynomial-time computable relation
R ⊆ {0, 1}n × {0, 1}n, for every tag tag of length m(n), for every v ∈ {0, 1}n

and every z ∈ {0, 1}∗, it holds that

Pr[mimA
open(R, v, z) = 1] < Pr[simS

open(R, v, z) = 1] + μ(n) (1)

Denote by Arev the state of A after the the commit phase, i.e., Arev contains A’s
description along with its configuration at that time just before the reveal phase
starts.

We proceed to describing the simulator S. S on input z and security parameter
1n interacts with an honest receiver R and runs the adversary A internally. Dur-
ing the commit phase, on a high level, S internally incorporates A and emulates
the commit phase of the left execution for adversary A by honestly commit-
ting to 0n, while externally relaying messages in the right execution between A
and R.

Once the commit phase is finished, S receives a value v and has to perform
the reveal phase internally with Arev. In Stage 1, S plays as an honest sender in
the left reveal phase and as an honest receiver in the right reveal phase. Once
the simulation of Stage 1 completes, S applies the safe-point lemma to find a
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safe-point and extract a witness w to the statement proved by Arev in the left
reveal phase by standard rewinding.6 In Stage 2, S just sends v to Arev in the
left reveal phase. Then the simulation for Stage 3 begins. S uses a fake witness
(i.e. the trapdoor w) to simulate the left interaction for Arev, while emulating
the right interaction as an honest receiver. When the simulation for Stage 3
completes, S again applies the safe-point lemma to find a safe-point and ex-
tract a witness w̃ (i.e., the decommitment keys of A) in the right interaction.
Finally, by using w̃, S can complete the reveal phase of the external execution
with R.

More formally, S proceeds as follows on auxiliary input z and tag tag:

1. S internally incorporates A(z).
2. During the commit phase S proceeds as follows:

(a) S internally emulates left interaction for A by honestly committing to
0n.

(b) Messages from right execution are forwarded externally to R.
3. Once the commit phase has finished, S receives the value v. Let com, c̃om

denote the left and right execution transcripts respectively.
4. During the reveal phase S internally incorporates Arev and proceeds as fol-

lows:
(a) Stage 1 Main Execution Phase: S emulates a one-one man-in-the-

middle execution by playing as honest sender with tag tag on the left
and as honest receiver on the right. After completing the execution,
denote by Δ the transcripts of messages obtained. Denote the right
tag by ˜tag. We emphasize here that S can emulate left interaction
independent of v in Stage 1.

Stage 1 Rewinding Phase: Next, S attempts to extract the witness
used by Arev on the left if tag �= ˜tag.
i. In Δ, find the first point ρ that is a safe-point. Let the associated

proof be (αρ, βρ, γρ).
ii. Repeat until a second proof transcript (αρ, β

′
ρ, γ

′
ρ) is obtained:

Emulate the left interaction as in the Stage 1 Main Execution
phase. For the right interaction:
– If Arev expects to get a new proof from the right receiver, S

then emulates the proof by generating design0 himself. Forward
one of the two proofs internally.

– If Arev sends a challenge for a proof whose first message occurs
in ρ: cancel the execution, rewind to ρ and continue.

iii. If βρ �= β′
ρ, extract and record the witness w from (αρ, βρ, γρ)

and (αρ, β
′
ρ, γ

′
ρ). Otherwise halt and output fail.

Finally, if the above (i.e. step 4a) runs for more than 2n steps, halt and
output fail.

6 In Stage 1, the committer acts as a prover and the receiver acts as a verifier. The
safe-point and safe-point lemma still work by interchanging right and left.
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(b) Stage 2: Send v to the adversary Arev.
(c) Stage 3 Main Execution Phase: By using w as witness, S can easily

simulate left interaction for Arev. The right interaction is emulated by
S adopting honest receiver strategy. After completing the execution,
denote by Δ′ the transcripts of messages obtained in the execution
of Stage 2 and Stage 3 .

Stage 3 Rewinding Phase: S attempts to extract the decommitment
key of Arev on the right:
i. In Δ′, find the first point ρ̃ that is a safe-point. Let the associated

proof be (α̃ρ̃, β̃ρ̃, γ̃ρ̃).
ii. Repeat until a second proof transcript (α̃ρ̃, β̃

′
ρ̃, γ̃

′
ρ̃) is obtained:

Emulate the right interaction as in the Stage 3 Main Execution
Phase. For the left interaction:
– If Arev expects to get a new proof from the committer, S is free

to answer the request by using the witness w, except when Arev

sends a challenge for a proof whose first message occurs in ρ̃,
S cancels the execution, rewinds to ρ̃ and continues.

iii. If β̃ρ̃ �= β̃′
ρ̃, extract a witness w̃ from (α̃ρ̃, β̃ρ̃, γ̃ρ̃) and (α̃ρ̃, β̃

′
ρ̃, γ̃

′
ρ̃).

Otherwise halt and output fail.
iv. If w̃ is a valid decommitment key for 〈SHC, SHR〉, i.e., (c̃om, w̃,ṽ)

is a legal transcript for 〈SHC, SHR〉, set r̃ev = w̃. Otherwise halt
and output fail.

Finally, if the above (step 4b) runs for more than 2n steps, halt and
output fail.

(d) If the right interaction is accepting and tag �= t̃ag, and r̃ev contains a
valid decommitment key, run the honest committer strategy on input
c̃om and decommitment key r̃ev, value ṽ with tag t̃ag.

Running time of S. We show that the running time of S is expected PPT.
Note the time spent by S in the commit phase is poly(n). After S extracts the
witness w̃, the time spent by S in step 4d is also poly(n). Next, we show that the
expected time spent by S in the reveal phase (except running time in step 4d) is
also poly(n). For simplicity, we assume that S does not check the fail condition
and may run for more than 2n steps (since this only increases the total running
time).

Recall that in the reveal phase, S rewinds A from two safe points. We need
to show the time spent in step 4a and step 4c are all expected PPT. We first
analyze the time spent in step 4a during the simulation. Then using the same
method, we show that the time spent in step 4c is also expected PPT.

Note the time spent by S in the Stage 1 Main Execution Phase is poly(n). We
then show the time spent in Stage 1 Rewinding Phase is expected PPT. The anal-
ysis hereafter is similar to that in [15] but is simpler. Let T (i) be the random vari-
able that describes the time spent in rewinding a proof after i messages have been
exchanged. We show that E[T (i)] ≤ poly(n) and then by linearity of expectation,
we conclude that the expected time spent by S in the Stage 1 Rewinding Phase
is

∑
i E[T (i)] ≤ ∑

i poly(n) ≤ poly(n).
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Next we will bound the time E[T (i)]. Given a partial transcript of messages
ρ, let Pr[ρ] denote the probability that ρ occurs as a prefix of the execution
emulated in Stage 1 Main Execution Phase. Let pρ denote the probability that ρ
is a safe-point7 and is rewound. From the construction of S, we know that S
keeping rewinding until it finds another accepting transcript (αρ, β

′
ρ, γ

′
ρ) for ρ,

canceling each rewinding for which ρ is not a safe-point, i.e., Arev requests the
second message of a proof in the right-interaction whose first message occurs in ρ.
As the emulated committer and receiver act identically as real committer and real
receiver in this stage, conditioned on ρ, a view occurring in a rewinding from ρ is
same as occurring in the Stage 1 Main Execution Phase. Thus, the probability of
canceling a rewinding from ρ is at most 1−pρ. Furthermore, the expected number
of rewindings is at most 1

pρ
. Therefore, the expected number of rewindings from

ρ is at most pρ · 1
pρ

= 1 and each rewinding takes at most poly(n) steps, i.e.,
E[T (i)|ρ] ≤ poly(n). Thus,

E[T (i)] =
∑

ρ of length i

E[T (i)|ρ] · Pr[ρ] ≤ poly(n) ·
∑

ρ of length i

Pr[ρ] ≤ poly(n)

The expected running time of S in step 4c is also polynomial-time using similar
analysis as above. We omit the details.

Analysis of the simulator S. In order to show equation (1), we define a hy-
brid stand-alone simulator HYB1 that also receives v as auxiliary input. HYB1

proceeds exactly as S except that in the commit phase, instead of feeding A a
commitment to 0n, HYB1 feeds A a commitment to v.

Since both the experiment S and HYB1 are efficiently computable, the follow-
ing claim follows directly from the hiding property of 〈SHC, SHR〉.

Claim 1. There exits some negligible function μ′ such that
∣
∣
∣Pr[simS

open(R, v, z) = 1] − Pr[simHYB1
open (R, v, z) = 1]

∣
∣
∣ < μ′(n)

Next we proceed to showing the following claim.

Claim 2. There exists some negligible function μ′′ such that

∣∣
∣Pr[mimA

open(R, v, z) = 1] − Pr[simHYB1
open (R, v, z) = 1|¬fail]

∣∣
∣ < μ′′(n)

Proof (sketch). Note the view of A in the commit phase in a real interaction is
identical to the view of A in HYB1. Furthermore, HYB1 feeds A messages ac-
cording to the correct distribution in Stage 1, the view of Arev in the simulation

7 Note the roles of C and R interchange in Stage 1 where C acts as a verifier and R
acts as a prover. The safe-point lemma will be used by interchanging the right and
the left.
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of Stage 1 by experiment HYB1 is identical to the view of Arev in a real interac-
tion. The view of Arev in the simulation of Stage 3 by HYB1 is computationally
indistinguishable following from the witness-indistinguishability of 〈Ptag, Vtag〉.
As the safe-point lemma shows, when the right interaction has a different tag
from the left interaction, there is a safe-point. Hence, according to the actions
of HYB1, it will either output fail or succeed in the extraction from Arev. Con-
ditioned on HYB1 not outputting fail, by the computational-binding property of
〈SHC, SHR〉, except with negligible probability, the witness w̃ and the value ṽ
extracted by HYB1 are the valid decommitment key and committed value of A,
respectively.

We next show
∣
∣
∣Pr[simHYB1

open (R, v, z) = 1] − Pr[simHYB1
open (R, v, z) = 1|¬fail]

∣
∣
∣ is negli-

gible by proving that the probability that event fail happens is negligible. This
together with Claim 1 and Claim 2 conclude Eq. (1).

Claim 3. HYB1 outputs fail with negligible probability.

Proof. The proof of this claim is similar to that of [15]. More precisely, HYB1

outputs fail only in three cases: HYB1 runs for more than 2n steps; or the same
proof transcript is obtained from some safe-point; or the witness extracted is
not a valid decommitment. The arguments of the first two cases are almost
the same as those in [15]. The main difference lies in the analysis of the third
case.

HYB1 runs for more than 2n steps: We know that the expected running time
of HYB1 and S are same, i.e., poly(n). Using Markov inequality, we con-
clude that the probability that HYB1 runs more than 2n steps is at most
poly(n)

2n .
The same proof transcript is obtained from some safe-point: This case

occurs if HYB1 picks some challenge β (resp. β̃) in Stage 1 (resp. Stage 3)
Rewinding Phase that appeared as a challenge in the Stage 1 (resp. Stage
3 ) Main Execution Phase. As HYB1 runs for at most 2n steps, it picks
at most 2n challenges. Furthermore, the length of each challenge is 2n.
By applying the union bound, we obtain that the probability that a β
(resp. β̃) is picked twice is at most 2n

22n . Since there are at most polyno-
mial many challenges in Stage 1 (resp. Stage 3), using union bound again,
we conclude that the probability that it outputs fail in this case is negligi-
ble.

The witness extracted is not a valid decommitment: 8 Suppose, on the
contrary, the witness extracted is not the decommitment key for 〈SHC, SHR〉,
then by the special-sound property, it follows that it must be a value r′

8 The proof in this case heavily relies on the “simulation-extractability” property of
〈Ptag, Vtag〉 in Stage 1. An ordinary WI proof of knowledge is not suffice here, as
the problem in this case is reduced to the security of one-way functions or witness-
indistinguishability of underlying subprotocols, in the presence of an expected PPT
adversary who can rewind the same subprotocols.
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such that f(r′) = sb′ for some b′ ∈ {0, 1}. Denote by rb (b ∈ {0, 1}) the
witness used by HYB1 in Stage 1 of right interaction. If b′ = 1 − b, then
we can break the one-way function f . Given A, z and v, we construct an
algorithm B that inverts f . The input to B is an n-bit string y = f(x)
where x was chosen randomly from {0, 1}n. B wants to output a pre-image
of y under f . B proceeds as follows: B runs identically as HYB1 with in-
puts z, v with the exception that when simulating the right receiver for A
in Stage 1 of reveal phase, it picks a random bit b ∈ {0, 1} and a ran-
dom string rb ∈ {0, 1}n, and sets sb = f(rb), s1−b = y. By using rb as
witness, it can simulate the right interaction with Arev easily. Finally, if
B extracts a witness r′ where f(r′) = y, then we break the one-wayness
of f . The probability that B inverts f is identical to the probability that
HYB1 inverts f which is non-negligible. This contradicts the one-wayness
of f .

We therefore have only to deal with the case that B always outputs r′

such that f(r′) = sb, i.e., B always outputs same preimage it knows. Then
we can break the witness indistinguishability of the underlying special-sound
proofs as follows: Recall that the proof 〈Ptag, Vtag〉 in Stage 1 of right interac-
tion contains 4m number of special-sound WI proofs. The above assumption
is that B always extracts the same preimage used by itself in Stage 1 of right
interaction. We know that if the 4m number proofs use r0, B outputs r0,
and if the 4m number proofs use r1, B outputs r1. Applying standard hybrid
arguments, there exists i ∈ [4m], by using r0 for the first i− 1 proofs and r1

for the last 4m− i proofs, the witness used in the i-th special-sound proof is
the same as that of the witness extracted by B. We can use this session to
break the witness-indistinguishability of special-sound WI proof. The prob-
ability we break the witness-indistinguishability property of the underlying
special-sound proof is 1

4m times the probability that HYB1 inverts f which
is non-negligible. This contradicts the witness-indistinguishability property
of the underlying special-sound proof.

Computational binding. The binding property intuitively follows from the bind-
ing property of the underlying commitment scheme 〈SHC, SHR〉 and the special-
sound property (or more precisely proof of knowledge property) of the underlying
proof in 〈Ptag, Vtag〉. A formal proof proceeds along the lines of the proof of non-
malleability. More precisely, suppose, there exists an adversary A that can violate
the binding property of 〈C, R〉, then we design an algorithm A′ that violates the
binding property of 〈SHC, SHR〉. A′ incorporates A and relays the commit phase
messages to an external honest receiver SHR. In the reveal phase, there is no
need of A′ to simulate the left interaction for A. Note in the non-malleability
proof, two extraction are executed. Here, we only execute one extraction by
standard rewinding, and obtain the decommitment key. Using this information,
A′ can easily complete the reveal phase with SHR. It follows from the witness-
indistinguishability property of 〈Ptag, Vtag〉 that the probability that A′ breaks



316 Z. Zhang et al.

the binding property of 〈SHC, SHR〉 is negligible close to the probability that A
breaks the binding property of 〈C, R〉.

Schedule of messages: In the non-malleability proof, the design of S is based on
an unspecified assumption, i.e., in the reveal phase, Stage 3 on both interactions
will not start unless the simulations for Stage 1 are completed. Without loss of
generality, this assumption is reasonable.

Consider the scenario where the simulation for Stage 1 of the left interaction
and Stage 3 of the right interaction overlap. The simulation goes well as the
adversary runs as a prover in Stage 3 of the right interaction, and the rewinding
of Stage 1 of the left interaction will not “rewind” the Stage 3 of the right inter-
action (i.e., the adversary can only answer the left challenge by itself, without
the help from the right interaction). By using the safe-point lemma, the simula-
tor can still find a safe-point and extract the witness to the statement proved
by the adversary by standard rewinding. Furthermore, the adversary also runs
as a prover in Stage 1 of the left interaction, and the rewinding of Stage 3 of
the right interaction will not “rewind” the Stage 1 of the left interaction. Due
to a more simpler but similar reason, when the simulation for Stage 3 of the
left interaction and Stage 1 of the right interaction overlap, the simulator has
no difficulty and the two extractions also performs well. We take a special note
of the fact that the safe-point lemma depicts the existence of safe-point in any
one-one concurrent execution environment, and considers an environment where
one-side of the interaction is empty as a special case.
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A A Content-Based Non-malleable Commitment Scheme

Let 〈SHC, SHR〉 be the statistically hiding commitment scheme [1] from any one-
way function and let 〈Ptag, Vtag〉 be a tag-based WI proof for all NP. Let SS =
(SG, Sig, SVer) be a secure signature scheme. The content-based non-malleable
statistically hiding commitment scheme is shown in Fig. 4. Due to page limit,
the formal proof is omitted here.
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Protocol 〈C, R〉
Security Parameter: 1n

String to be committed: v ∈ {0, 1}n
Commit Phase:

C ⇔ R : Run the commit phase of commitment scheme 〈SHC, SHR〉.
R : Abort if the above commit phase fails.
Denote the above transcript as com. C records the decommitment key in dec.

Reveal Phase:
Stage 1:

R→ C : Set (pk0, sk0)← SG(1n) and send pk0.
R → C : Pick uniformly r0, r1 ∈ {0, 1}n, compute s0 = f(r0) and s1 = f(r1)
and send s0, s1.
R⇔ C : R and C engage in an execution of 〈Ppk0 , Vpk0〉 with tag pk0, where
R uses rb as witness (b ∈ {0, 1}) and runs Ppk0 to prove to C (running Vpk0)
that there exists a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of
the verifier (i.e., C) is 2n. C aborts if either s0 or s1 is not in the range of f
or the proof fails.
R→ C : Let tr0 be the transcript so far. Set σ0 ← Sig(tr0, sk0) and send σ0.
C : Abort if Sver(pk0, tr0, σ0) �= 1.

Stage 2: C → R : Send v.
Stage 3:

C → R : Set (pk1, sk1)← SG(1n) and send pk1.
C ⇔ R : C and R engage in an execution of 〈Ppk1 , Vpk1〉 with tag pk1, where
C uses witness dec and runs Ppk1 to prove to R (running Vpk1) that there
exists a value dec s.t. dec is the decommitment key of com corresponding to v
or there exists a value r s.t. s0 = f(r) or s1 = f(r). The challenge length of
the verifier (i.e., R) is 2n.
C → R : Let tr1 be the transcript so far. Set σ1 ← Sig(tr1, sk1) and send σ1.
R : Abort if Sver(pk1, tr1, σ1) �= 1.

Fig. 4. Non-malleable statistically hiding commitment scheme 〈C, R〉
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