
S. Lee and P. Narasimhan (Eds.): SEUS 2009, LNCS 5860, pp. 354–364, 2009.
© IFIP International Federation for Information Processing 2009

Overview of Multicore Requirements towards Real-Time
Communication

Ina Podolski and Achim Rettberg

Carl von Ossietzky University Oldenburg
ina.podolski@iess.org, achim.rettberg@iess.org

Abstract. For embedded systems multicores are becoming more important. The
flexibility of multicores is the main reason for this increasing extension. Con-
sidering embedded systems are often applied for real-time task, the usage of
multicores implicates several problems. This is caused by the architecture of
multicore chips. Usually such chips consist of 2 or more cores, a communica-
tion bus, I/O's and memory. Exactly the accesses to these resources from a core
make it hard to ensure real-time. Therefore, well known mechanisms for re-
source access must be used, but for sure this is not sufficient enough. Because, a
lot of design decisions depend on the applications. As a result, it is mandatory
to analyze the requirements of the applications in detail and from the targeted
multicore system. The aim of this analysis process is to derive a method for an
optimal system design with respect to real-time support. This paper gives an
overview of the requirement analysis for multicores and RT scheduling algo-
rithms. Additionally, existing scheduling strategies are reviewed and proposals
for new schedulers will be made.

1 Introduction

The trend of applying multicore systems in many embedded application the necessity
of real-time for such systems becoming more and more important. Typical multicores
are shown in figure 1.

Fig. 1. Three exemplary types of multicore architectures

The authors of [1] argue that the transactional memory concept within multicore
systems has attracted much interest from both academy [3] [4] and industry [5] as it
eases programming and avoids the problems of lock-based methods. Furthermore they
discuss, by supporting the ACI (Atomicity, Consistency and Isolation) properties of

 Overview of Multicore Requirements towards Real-Time Communication 355

transactions, transactional memory relieves the programmer from dealing with locks
to access resources, see [1]. Besides the locking problems it is necessary to find solu-
tions for deadlock avoidance and take care on the priority inversion problem. As
surely argued in [1], in the case of multicore systems, lock-based synchronization can
reduce the data bandwidth by blocking several processes that try to access critical
sections, thus reducing processors utilization. The resource access is one of the major
problems. Shared resources are controlled by lock-based methods with the well-
known disadvantages of serial access. Parallel access can be realized with transac-
tional memory, see also [1]. That means, a transaction is either aborted when a
conflict is detected, or committed in case of successful completion.

An exemplary mapping of functional modules to tasks is depicted in figure 2. The
tasks itself are mapped to cores of a multicore architecture. Some tasks require operat-
ing systems with a scheduler.

As we can see from literature and the authors of [1] argue, real-time scheduling of
transactions, which is needed for many real-time applications, is an open problem in
multicore systems. The idea is to look at existing solutions for real-time scheduling of
tasks in multiprocessor systems or transaction in systems are not suitable for multi-
core systems. The literature shows, real-time scheduling of tasks in multiprocessor
systems does not consider important features of multicore systems, such that the pres-
ence of on-chip shared caches, see [1]. Caches are a big problem. If each core has is
own cache the problems is the shared access from the caches to the main memory. In
case of shared caches again locking mechanism have been used with all it’s disadvan-
tages. Again as argued in [1] real-time scheduling of transactions in systems has been
around since the 80s but assuming either centralized or distributed systems, but both
solutions are not suitable for multicore systems as well.

In this paper, we give an overview of related work of existing scheduling methods
with resource access for multicore systems. We will briefly present a simple resource
access strategy to demonstrate the problems and will discuss the main challenges for
real-time scheduling in multicore systems.

Fig. 2. Exemplary mapping of functions to tasks and multicores

356 I. Podolski and A. Rettberg

2 Multiprocessor Scheduling Approaches with Resource Access
Protocols

In this section we will demonstrate with a small example the problems of shared re-
source access for multicore systems. We make the following assumptions. For each
task, a set of jobs is associated. At any time, each processor executes at most one job.
The task has a period and an execution requirement.

When a job is released, it executes during the execution requirement of the task,
and once the period is elapsed, another job of the task, is released.

On multiprocessors, EDF is not optimal either under the partitioned or the global
approaches [10], called respectively P-EDF and G-EDF, see also [1]. There exist
further classes of scheduling algorithms differs from the previous ones. A typical
example is the Pfair algorithm [11]. Pfair based on the idea of proportionate fairness
and ensures that each task is executed with uniform rate. All tasks are broken into
so-called quantum-length subtasks and the time is subdivided into a sequence of sub-
intervals of equal lengths called windows, see [1]. This means, a subtask has to be
executed within the associated window. Additionally, migration is allowed for each
subtask. As described in [1] an optimal Pfair variant is that from [12].

In figure 3 an example multicore architecture is shown with cores A and B. On
core A two tasks t1 and t2 are executed and on core B t3 and t4 are running. Addition-
ally, the tasks access resources R1 and R2. For example task t2 has access to R1.

As described in [1], the protocols managing resources in real-time systems are usu-
ally used in a hard real-time context, such as M-PCP and FMLP1 [13] under EDF. For
Pfair scheduling, a lock-free algorithm has been proposed [12] to ensure that some
task is always making progress. Indeed, classical lock-based algorithms cannot satisfy
this property.

Obviously, it can be figured out that resource access conflicts can occur. If task t1
on core A and task t4 on core B run at the same time and try to access R2 there is a
resource conflict. Those conflicts exist due to the parallelism implicated by multicore
architectures.

Fig. 3. Example multicore architecture with 2 cores A and B, 2 resources R1 and R2, and tasks
t1 to t4

 Overview of Multicore Requirements towards Real-Time Communication 357

Fig. 4. Task graph for t1 to t4

Table 1. Task characteristics

 ci di ai
t1 6 9 0
t2 6 16 0.5
t3 8 20 0
t4 5 22 9

Figure 4 shows a task graph consisting of four tasks t1 to t4. Data dependencies be-
tween the tasks are represented by edges. Arrival time ai, computation time ci and
deadline di for the tasks are given in table 1.

On uni-core architectures there exist different resource access protocols. The most
used one is the priority ceiling protocol (PCP) see [9]. The advantages of PCP are to
prevent chained blocking and deadlocks. Each resource has a semaphore. A sema-
phore sk is assigned a priority ceiling C(sk) equal to the priority of the highest-priority
job that can lock it. Note that C(sk) is a static value that can be computed off-line. Let
ti be a task with the highest priority among all tasks ready to run; thus, ti is assigned
the processor. Furthermore, let s* be the semaphore with the highest ceiling among all
the semaphores currently locked by tasks other than ti and let C(s*) be its ceiling.

To enter a critical section guarded by a semaphore sk, task ti must have a priority
higher than C(s*). If the priority Pi of task ti is greater equal C(s*), the lock on sk is
denied and ti is said to be blocked on semaphore s* by the job that holds the lock on
s*.

When a task ti is blocked on a semaphore, it transmits its priority to the task, say tk,
that holds that semaphore. Hence, tk resumes and executes the rest of its critical sec-
tion with the priority of ti. Task tk is said to inherit the priority of ti. In general, a task
inherits the highest priority of the jobs blocked by it.

When tk exits a critical section, it unlocks the semaphore and the highest-priority
job, if any, blocked on the semaphore is awakened. Moreover, the active priority of tk
is updated as follows: if no other jobs are blocked by tk, pk is set to the nominal prior-
ity Pk; otherwise, it is set to the highest priority of the jobs blocked by tk .

The schedule with PCP protocol for an uni-core processor is shown in figure 5. On
a uni-core 26 time units are needed for the schedule.

358 I. Podolski and A. Rettberg

Fig. 5. Uni-core scheduling with PCP

The question is, if the PCP is adaptable for multicores? PCP solves the resource
access within one core, but between cores is has to be modified, see the example in
figure 6. There we show an optimal but unrealistic schedule. One conflict is the paral-
lel access of to t1 and t3 on resource r2. Therefore, it is necessary to adapt PCP to
avoid conflicts caused by parallel access.

Fig. 6. Unrealistic schedule on a multicore with resource conflicts

A solution could be a globally controlled semaphore queue. With this queue we are
able to avoid parallel access to resources. Lets say a task t2 on core A access resource
r1, the semaphore s0 for r1 is included in the queue. Other tasks trying to access s0
have to check within the queue if the global semaphore is not set within the global
queue. Figure 7 shows the PCP solution with the global queue. The ceiling blocking is
now visible between the cores, see the resource access from t2 and t3 on s0.

In figure 7 we need 20 times units for the schedule in comparison to the 26 for the
uni-core schedule. To reduce the long blocking we suggested another modification of
PCP. Let us assume we have another resource r3 inside the system that is used by t2 on
core A, see figure 8.

This is a sub-optimal solution, because now we have again a blocking time. This
blocking time may be very long and lead to deadline misses. Another problem is the
reduction of concurrency within the system. We see that core B has idle times caused
by the blocking of t3 by access to s0.

 Overview of Multicore Requirements towards Real-Time Communication 359

Fig. 7. Resource conflicts of PCP within multicore architecture

The main idea of this modification is the following. A resource is released when-
ever a task is finished with the usage. Furthermore, if a task is pre-empted by another
task on the same core, the blocked resources of the pre-empted task are released. This
enables tasks running on others cores to block the resources and starts with executing
their critical sections. We have to ensure the fairness of our approach. First of all on
each core we use PCP and for all tasks running on this core we have therefore a fair
situation.

Fig. 8. Modified multicore example with additional resource R3

The inter-core PCP respectively our modified version has to ensure real-time re-
quirements on all cores. Let ti a task on core A that is pre-empted by a task with a
higher priority. In this case the semaphores blocked by ti are released. Let’s assume ti
hold only one semaphore sk. The time period ti is pre-empted is as long as the higher
priority task is running, let’s say this time-period is bi. Semaphores are released only
for the time-period bi. A task tj on core B needed sk for time bj can now block the
semaphore sk, but only if bi ≥ bj.

If ti and tj tries to access sk at the same time, the task with the earliest deadline will
get the allowance to block semaphore sk. Let di the deadline for ti and dj for tj. If di <
dj task ti will have access to sk first. Now it is necessary to calculate the new deadline
for tj as follows: dj = dj + li, whereas li is the time sk is needed by ti. This is a calcula-
tion for only one blocking. Figure 9 shows the schedule with the modified PCP.

360 I. Podolski and A. Rettberg

Fig. 9. Optimal schedule with the modified PCP

For evaluation the utilization factor for a schedule with our approach is as follows:

Whereas Ci is the computation time task ti and Ti is the period of the task. The block-
ing time Bi for all semaphores of the task is added to the Ci. Additionally we have to
update the deadline of ti, because due to the blocking. That means, if the ti is not
blocked di is not modified, otherwise the new deadline is added by the sum of all
blocking times of ti.

This short example demonstrates the shared resource access problem. It is well-
known that for uni-processor systems based on static or dynamic priority assignment
of task Earliest Deadline First (EDF) is optimal [9].

3 State-of-the-Art

In this chapter we will give a short overview of the related work in this research field
and enriches the discussion started in [1].

The authors of [2] claims also that the shared memory bus becomes a major per-
formance bottleneck for many numerical applications on multicore chips, understand-
ing how the increased parallelism on chip strains the memory bandwidth and hence
affects the efficiency of parallel codes becomes a critical issue. They introduce the
notion of memory access intensity to facilitate quantitative analysis of program’s
memory behavior on multicores, which employ stateof-the-art prefetching hardware.

The paper in [10] deals with the scalability of the scheduling algorithms presented
above, on multicore platforms. One main conclusion of the authors is that on multi-
core platforms bandwith have negative impact on the algorithms, allowing migrations.
The global approach, the scheduling overheads greatly depend on the way of imple-
menting the run queues. On the other hand, without resource sharing, P-EDF performs
well for this study, see also [1].

In [6] the authors present cache-efficient chip multiprocessor (CMP) algorithms
with good speed-up for some widely used dynamic programming algorithms. They

 Overview of Multicore Requirements towards Real-Time Communication 361

consider three types of caching systems for CMPs: D-CMP with a private cache for
each core, S-CMP with a single cache shared by all cores, and multicore, which has
private L1 caches and a shared L2 cache. Furthermore they derive results for three
classes of problems: local dependency dynamic programming (LDDP), Gaussian
Elimination Paradigm (GEP), and parenthesis problem.

For each class of these problems, they propose a generic CMP algorithm with an
associated tiling sequence.

A fundamentally new approach to increase the timing predictability of multicore
architectures aimed at task migration in embedded environments is described in [7]. A
task migration between two cores imposes cache warm-up overheads on the migration
target, which can lead to miss deadlines for tight real-time schedules. The authors
propose novel micro-architectural support to migrate cache lines. The developed
scheme shows dramatically increased predictability in the presence of cross-core
migration.

Another scheduling method for real-time systems implemented on multicore plat-
forms that encourages certain groups of tasks to be scheduled together while ensuring
realtime constraints is proposed in [8]. This method can be applied to encourage tasks
that share a common working set to be executed in parallel, which makes more effec-
tive use of shared caches.

Another good overview of resource access protocols can be found in [14] and is as
follows: “Rajkumar et al. [15] were the first to propose locking protocols for real-time
multiprocessor systems. They presented two multiprocessor variants of the priority-
ceiling protocol (PCP) [16] for systems where partitioned, static-priority scheduling is
used. In later work, several protocols were presented for systems scheduled by P-
EDF. The first such protocol was presented by Chen and Tripathi [17], but it is lim-
ited to periodic (not sporadic) task systems. In later work, Lopez et al. [18] and Gai et
al. [19] presented protocols that remove such limitations, at the expense of imposing
certain restrictions on critical sections (such as, in [19], requiring all global critical
sections to be non-nested). A scheme for G-EDF that is also restricted was presented
by Devi et al. [20]. More recently, Block et al. [21] presented the flexible multiproc-
essor locking protocol (FMLP), which does not restrict the kinds of critical sections
that can be supported and can be used under either G-EDF or P-EDF. In the FMLP,
resources are protected by either spin-based or suspension-based locks. The FMLP is
the only scheme known to us that is capable of supporting arbitrary critical sections
under G-EDF. Furthermore, the schemes in [20, 19, 18] are special cases of it. Thus,
given our focus on G-EDF and P-EDF, it suffices to consider only the FMLP when
considering lock-based synchronization.”

In [1] they discussed that pure global algorithms will not scale, and thus real-time
global policies need to be revisited for many-core architectures. More particularly, the
scheduler should be able to control more precisely the sharing of processor's internal
resources (i.e. cache levels) by real-time tasks with on-chip shared caches, both the
small size of the caches and the memory.

In [2] the overview of the memory access is as follows: “Memory bandwidth has
been a fundamental issue for decades and has now become a major limitation on mul-
ticore systems ([22], [23], [24]). In S. Carr’s paper ([25]), methods are proposed to
balance computation and memory accesses to reduce the memory and pipeline delays
for sequential code on uniprocessor machines. The authors statically estimate the

362 I. Podolski and A. Rettberg

ratio of memory operations and floating point operations for each loop and use them
to guide loop transformations (e.g. unroll and jam). The methodology from [2], which
is based on the new notion of the memory access intensity, targets parallel programs
on multicore systems which employ sophisticated prefetching hardware.

Several existing papers investigate the scalability problem on multicore ([26], [27],
[28]). They make observations that the memory bandwidth constraint can hamper
program performance. However, no quantitative analyses are performed in those
studies.”

The authors of [29] present cache-efficient chip multiprocessor (CMP) algorithms
with good speed-up for some widely used dynamic programming algorithms. They
consider three types of caching systems for CMPs: D-CMP with a private cache for
each core, S-CMP with a single cache shared by all cores, and Multicore, which has
private L1 caches and a shared L2 cache. They derive results for three classes of prob-
lems: local dependency dynamic programming (LDDP), Gaussian Elimination Para-
digm (GEP), and parenthesis problem. For each class of problems, they develop a
generic CMP algorithm with an associated tiling sequence. They then tailor this tiling
sequence to each caching model and provide a parallel schedule that results in a
cache-efficient parallel execution up to the critical path length of the underlying dy-
namic programming algorithm.

4 Summary

Within this paper we start the discussion of real-time scheduling approaches and the
resource access for multicore systems. Existing scheduling mechanisms have been
adapted for multicore systems. Obviously new rules and policies have been required,
which leads to new requirements depending on the features of the multicore architec-
ture. With this position paper we want to give an overview based on the given literature.

References

[1] Sarni, T., Queudet, A., Valduriez, P.: Real-time scheduling of transactions in multicore
systems. In: Proc. of Workshop on Massively Multiprocessor and Multicore Computers
(2009)

[2] Liu, L., Li, Z., Sameh, A.H.: Analyzing memory access intensity in parallel programs on
multicore. In: Proceedings of the 22nd Annual international Conference on Supercomput-
ing, ICS 2008, Island of Kos, Greece, June 7-12, pp. 359–367. ACM, New York (2008),
http://doi.acm.org/10.1145/1375527.1375579

[3] Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. In: Proc. the 20th Annual International Symposium on Computer Architecture,
May 1993, pp. 289–300 (1993)

[4] Shavit, N., Touitou, D.: Software transactional memory. In: Proc. the 12th Annual ACM
Symposium on Principles of Distributed Computing (PODC), pp. 204–213 (1995)

[5] Tremblay, M., Chaudhry, S.: A third-generation 65nm 16-core 32-thread plus 32-scout-
thread cmt sparc r processor. In: IEEE International Solid-State Circuits Conference (Feb-
ruary 2008)

 Overview of Multicore Requirements towards Real-Time Communication 363

[6] Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming algorithms
for multicores. In: Proceedings of the Twentieth Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA 2008, Munich, Germany, June 14-16, pp. 207–216.
ACM, New York (2008), http://doi.acm.org/10.1145/1378533.1378574

[7] Sarkar, A., Mueller, F., Ramaprasad, H., Mohan, S.: Push-assisted migration of real-time
tasks in multi-core processors. SIGPLAN Not. 44(7), 80–89 (2009),

 http://doi.acm.org/10.1145/1543136.1542464
[8] Anderson, J.H., Calandrino, J.M.: Parallel task scheduling on multicore platforms. SIG-

BED Rev. 3(1), 1–6 (2006),
 http://doi.acm.org/10.1145/1279711.1279713

[9] Buttazzo, Giorgio, C.: Hard real time computing systems. Kluwer Academic Publishers,
Dordrecht (2000)

[10] Calandrino, B.B.J., Anderson, J.: On the scalability of real-time scheduling algorithms on
multicore platforms: A case study. In: Proc. The 29th IEEE Real-Time Systems Sympo-
sium (December 2008)

[11] Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: A notion
of fairness in resource allocation. Algorithmica 15, 600–625 (1996)

[12] Leung, J.: Handbook of scheduling: algorithms, models, and performance analysis. Chap-
man & Hall/CRC, Boca Raton (2004)

[13] Brandenburg, B.B., Calandrino, J.M., Block, A., Leontyev, H., Anderson, J.H.: Real-time
synchronization on multiprocessors: To block or not to block, to suspend or spin? In:
IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 342–353.
IEEE Computer Society, Los Alamitos (2008)

[14] Brandenburg, B.B., Calandrino, J.M., Block, A., Leontyev, H., Anderson, J.H.: Real-
Time Synchronization on Multiprocessors: To Block or Not to Block, to Suspend or
Spin? In: Proceedings of the 2008 IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, RTAS, April 22-24, pp. 342–353. IEEE Computer Society, Wash-
ington (2008), http://dx.doi.org/10.1109/RTAS.2008.27

[15] Rajkumar, R.: Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, Dordrecht (1991)

[16] Sha, L., Rajkumar, R., Lehoczky, J.: Priority inheritance protocols: An approach to real-
time system synchronization. IEEE Transactions on Computers 39(9), 1175–1185 (1990)

[17] Chen, C., Tripathi, S.: Multiprocessor priority ceiling based protocols. Technical Report
CS-TR-3252, Univ. of Maryland (1994)

[18] Lopez, J., Diaz, J., Garcia, D.: Utilization bounds for EDF scheduling on real-time multi-
processor systems. Real-Time Systems 28(1), 39–68 (2004)

[19] Gai, P., di Natale, M., Lipari, G., Ferrari, A., Gabellini, C., Marceca, P.: A comparison of
MPCP and MSRP when sharing resources in the Janus multiple processor on a chip plat-
form. In: Proceedings of the 9th IEEE Real-Time and Embedded Technology Application
Symposium, pp. 189–198 (2003)

[20] Devi, U., Leontyev, H., Anderson, J.: Efficient synchronization under global EDF sched-
uling on multiprocessors. In: Proceedings of the 18th Euromicro Conference on Real-
Time Systems, pp. 75–84 (2006)

[21] Block, A., Leontyev, H., Brandenburg, B., Anderson, J.: A flexible real-time locking pro-
tocol for multiprocessors. In: Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pp. 71–80 (2007)

[22] Smith, A.J.: Cache Memories. Computing Surveys 14(3), 473–530 (1982)

364 I. Podolski and A. Rettberg

[23] Asanovic, K., et al.: The Landscape of Parallel Computing Research: A View from
Berkeley. EECS Department University of California, Berkeley Technical Report No.
UCB/EECS-2006-183 (December 18, 2006)

[24] Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th
edn. (2007)

[25] Carr, S., Kennedy, K.: Improving the Ratio of Memory Operations to Floating-Point Op-
erations in Loops. ACM Transactions on Programming Languages and Systems 16,
1768–1810 (1994)

[26] Zhang, Q., et al.: Parallelization and Performance Analysis of Video Feature Extractions
on Multi-Core Based Systems. In: Proceedings of International Conference on Parallel
Processing, ICPP (2007)

[27] Alam, S.R., et al.: Characterization of Scientific Workloads on Systems with Multi-Core
Processors. In: International Symposium on Workload Characterization (2006)

[28] Chai, L., et al.: Understanding the Impact of Multi-Core Architecture in Cluster Comput-
ing: A Case Study with Intel Dual-Core System. In: Cluster Computing and the Grid
(2007)

[29] Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming algorithms
for multicores. In: Proceedings of the Twentieth Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA 2008, Munich, Germany, June 14-16, pp. 207–216.
ACM, New York (2008), http://doi.acm.org/10.1145/1378533.1378574

	Overview of Multicore Requirements towards Real-Time Communication
	Introduction
	Multiprocessor Scheduling Approaches with Resource Access Protocols
	State-of-the-Art
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

