On-Line Model Checking as Operating System
Service*

Franz J. Rammig, Yuhong Zhao, and Sufyan Samara

Heinz Nixdorf Institute, University of Paderborn
Fiirstenallee 11, D-33102 Paderborn, Germany
franz@upb.de

Abstract. A complementary verification method for real-time applica-
tion with dynamic task structure has been developed. Here the real-time
application is developed by means of Model-Driven Engineering. The ba-
sic verification technique is given by model checking. However, the model
checking is executed at run-time whenever some reconfiguration of the
task set takes place. Instead of exploring the entire state space of the
model to be checked, only a partial state space at model level covering
the execution trace of the checked task is explored. This on-line model
checking can be seen as an extension to the traditional schedulability
acceptance test which is needed anyway in systems with dynamic task
set. Therefore this runtime verification is implemented as a service of the
underlying operating system. In this paper we describe this method in
general, explain some design and implementation decisions and provide
experimental results.

Keywords: On-line model checking, Verification service, Real-time
operating system.

1 Introduction

Real-time applications are safety critical in many cases. A careful quality assur-
ance process therefore is mandatory. This process includes more and more formal
verification techniques like model checking. Model checking has the advantage
of being fully automated and inherently includes means for diagnosis in case of
errors. On the other hand, model checking is substantially confronted with the
so called state explosion problem. This means that the state space to be explored
grows very quickly to an unmanageable size whenever problems of practical rele-
vance are to be handled. Numerous approaches to overcome this deficiency have
been developed, like partial order reduction [I], compositional reasoning [2],
and other simplification and abstraction techniques, which aim to reduce the
state space to be explored by over-approzimation [3] or under-approzimation

* This work is developed in the course of the Collaborative Research Center 614 -
Self-Optimizing Concepts and Structures in Mechanical Engineering - Paderborn
University, and is published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft (DFG).

S. Lee and P. Narasimhan (Eds.): SEUS 2009, LNCS 5860, pp. 131 2009.
© IFIP International Federation for Information Processing 2009

132 F.J. Rammig, Y. Zhao, and S. Samara

[4] techniques. Over-approximation techniques generate an abstract model by
adding redundant behaviors to the original one (weaken constraints) such that
the correctness at the abstract level implies the correctness of the original model.
Under-approximation techniques generate an abstract model by removing irrele-
vant behaviors from the original one (strengthen constraints) so that the falseness
at the abstract level implies the falseness of the original model. Applying these
techniques can relieve the state explosion problem to some degree, but can not
resolve it totally. That is, the correctness of a complex system with respect to
some properties could not always be verified completely.

In this paper we propose a complementary technique, namely on-line model
checking (or model-based runtime verification) [5l6]. Deferring formal verification
to the execution phase of a real time application seems to be a strange idea,
especially in real-time computing where one prefers to execute off-line as many
activities related to a task as possible. However, we are looking at real-time
applications with a highly dynamic task set. For a software system with self-
adaptive capability, the task set consists of instances that are activated under
various profiles. It is based on the actual environmental conditions to decide
which profile to be used, i.e, which tasks to be activated. In such real-time
applications with dynamic task sets an acceptance test concerning schedulability
has to be executed whenever a new task is added to the task set. It seems to
be natural to extend this acceptance test by a logical safety test, which may be
implemented by means of model checking. But we would be confronted with the
state explosion problem again, now even under real-time constraints.

To make on-line model checking feasible, we suppose that the real-time ap-
plication is developed by means of Model-Driven Engineering (MDE) [7], which
is an efficient software engineering approach to complex systems development.
According to MDE, we can follow three steps to develop a software system:

1. model the system according to the system specification,
2. verify the system model against the system specification, and
3. synthesize the system implementation (source code) from the system model.

Theoretically speaking, the following assertions are supposed to be true:

— The system model is consistent with the system specification.
— The system implementation is consistent with the system model.

However, are they really true under any specific running environment? We try to
answer this question by doing model checking at runtime. The basic idea (as shown
in Fig.[I)) is to check on-line whether the monitored execution trace of the system

system consistenc system model system

implementation - model : specification|
P checking checking P

Fig. 1. On-line model checking framework

On-Line Model Checking as Operating System Service 133

Implementation level model level

{
&
Y

|

N\

Fig. 2. Partial system model to be explored

conforms to the system model on the one hand and if a partial system model that
covers the execution trace satisfies the system properties on the other hand.

Here the partial system model is obtained by exploring only such kind of states
that can be reached from those current states monitored at runtime as shown in
Fig. Bl Intuitively, if this partial system model is checked safe against the system
specification, and the monitored states conform to the corresponding states in
the partial system model, then we have more confidence to the correctness of
the actual execution trace. It doesn’t matter even if the rest of the system model
might still contain some errors.

Of course, sophisticated techniques have to be used to let it really fly, which
will be detailed in the sequel. In this way, we obtain a natural solution to the
state explosion problem. Instead of looking at the entire state space, we pay
our attention only to a partial state space covering the execution trace. As a
result, we do not need to simplify or abstract value domains of system variables
at all. It is worth mentioning that off-line model checking is usually valid un-
der the assumption that the platform, on which the real-time application runs,
should behave correctly. This assumption is no longer needed for on-line model
checking.

Commonly used services at run-time are usually provided by the underly-
ing Operating System. This is exactly our approach. We provide on-line model
checking as a service of the underlying Real-time Operating System (RTOS).
The verification service is implemented as isolated task in user space. This iso-
lates model checking from the task to be verified and makes sure that errors in
the task cannot infect the verification service. To enhance efficiency the verifica-
tion service runs in its own address space which is attached to the kernel address
space. The address space of the application is mapped into this verification ad-
dress space as “read only” partition. This avoids cache refilling in case of the
context switching between verification service and the task to be checked and
allows fast access to the task’s state variables by the verification service.

134 F.J. Rammig, Y. Zhao, and S. Samara

The state-of-the-art runtime-verification is discussed in the literature (see sec-
tion M) since years. The basic idea is to monitor the execution of the source code
and afterwards to check the so far observed execution trace against the given
properties specified usually by LTL formulas. The checking progress always falls
behind the system execution because the checking procedure can continue only
after a new state has been observed. In contrast, our runtime verification is ap-
plied to the model level. The states observed from the execution trace are mainly
used to reduce the state space to be explored at the model level. That is, the
checking progress is not strictly bound to the progress of the system execution,
i.e., our on-line model checking might run ahead or behind the execution of the
source code. If the processing speed is fast enough, our runtime verification could
keep looking certain time steps ahead of the system execution and then tell the
real-time application how many time steps ahead are safe.

2 Problem Statement

Without loss of generality, let M = {M;, M, ---, M,,} model a real-time recon-
figurable system which consists of n (> 0) components My, My, - - -, M,, running
in parallel. M may reconfigure itself at runtime either by adding a new compo-
nent M/ to or by removing an existing component M; from M. This also includes
replacing one component with another one as shown in Fig.[Bl which can be done
by consecutively removing and adding operations.

The components in M can communicate with each other only through the
underlying RTOS. This forms a dependency relationship between the compo-
nents in M. Without doubt, system reconfiguration might more or less affect
the behavior of the related components in the system. What’s more, the impact
of the RTOS on the inter-process communication also might affect the behav-
iors of the related components in the system. For instance, the component B
might be affected most by replacing the component C with the component E
in Fig. Bl Could these effects violate some safety conditions associated to the
related components in the system?

o o, coc !
T e
=255 | Lo | | substitution E:component|
B o [T &= e | Qi

Information on System models)
Properties to be checked
_#"| Timing constraint required

Model basedRuntime
Verification Service

[[Yes/No/Unknown)

Fig. 3. A reconfiguration example

On-Line Model Checking as Operating System Service 135

Since the reconfiguration might occur according to the actual running envi-
ronment, it is hard to answer this question only by off-line verification techniques
due to the unpredictable indefinite factors. Therefore, it is necessary to on-line
check at model level if the most affected component in M still maintains safety
after the system reconfiguration.

In doing so, we suppose that whenever the real-time application needs to do
reconfiguration, the RTOS is informed about this in advance. As any modifi-
cation of the task set can happen only under the control of the RTOS, this
requirement is rational. With the information given by the real-time applica-
tion, the RTOS will trigger the verification service as isolated task in user space
and then schedule the verification service as earlier than the component to be
checked as possible without violating the real-time deadlines.

To achieve this, we follow a deterministic approach by reserving a fixed time
slot at the beginning of each scheduling cycle of the RTOS. This time slot is
mainly reserved for the verification service. In case of no active on-line model
checking task, the scheduler is allowed to allocate this slot to such preemptive
low priority tasks that can be moved and replaced by on-line model checking at
any time the verification service is triggered. In this way, if the checking process
is efficient enough, we can always check at model level what might happen in the
near future relative to the current state of the component’s execution. In case
that an error is detected or the checking progress falls behind the execution of
the checked task, then the real-time application is informed in order to allow it
undertaking appropriate counter means.

The properties to be checked are safety conditions that might be sensitive
to the context of the related component. LTL (or ACTL) formulas are used to
formally specify the safety properties, as the discrete time extensions to LTL
(or ACTL) formulas are just shorthand notations to the usual LTL (or ACTL)
formulas [g].

3 On-Line Model Checking

3.1 Overview

As mentioned in Section 1, we suppose that the real-time application is developed
following the MDE approach. In this way, we can model the system in UML with
real-time extensionl] on the one hand and specify constraints in OCL with real-
time extension on the other hand. From the real-time UML model, we can derive
an FSM model and synthesize a source code respectively. Since the FSM model
and the source code come from the same origin, there exists a mapping function
o from concrete states (derived from the source code) to abstract states (derived
from the FSM model). From the real-time OCL constraints, we can derive the
LTL (or ACTL) formulas and then transform them into Biichi automata. Having
the concrete model (source code), the abstract model (FSM model) and the
properties (Bichi automata) at hand, our on-line model checking aims to check

! http://wwwes.uni-paderborn.de/cs/fujaba/

136 F.J. Rammig, Y. Zhao, and S. Samara

. hecki
Safety Checking Consistency Checking

confornf?

----- r:a_pﬂ'ﬂg_ﬂ_l hetion ,

b3t saig

conforn?

Biichi automato

.SOnCrete State

Safety| Property System|Model
Reaktime
ACTLILTL AL

Realtime OCLI

Constraint

Realtime UML Model

Fig. 4. Overview

if the execution trace conforms to the FSM model (consistency checking) and
meanwhile if a partial state space of the FSM model conforms to the Bichi
automaton (safety checking) as shown in Fig. @l Here the partial state space
reflects a near future relative to the current state observed from the execution
trace of the system running.

3.2 Model Checking Paradigm

Recall that we have reserved a fixed time slot at the beginning of each scheduling
cycle for on-line model checking. Without loss of generality, let the time slot be
tq time units. After verification service is triggered, in each scheduling cycle
we have t; time units to do on-line model checking from the current state of
the task to be checked, which is obtained at the previous scheduling cycle as
shown in Fig. Bl Of course, the current (concrete) state should be mapped to
the corresponding abstract state at model level to be used by model checking.
If the current state could not be mapped to an appropriate abstract state, it
means that the execution trace no longer conforms to the behavioral model. In
this case, the verification service will terminate the checking process and inform
the RTOS to deal with this problem. Otherwise, the on-line model checking will
continue until one of the following two cases happens:

Case No: if at some time point an error is detected, the verification service
terminates with the answer No to the real-time application via RTOS.
Case Yes: if a sufficient partial state space that covers the execution trace of the
task is successfully checked, the verification service reports definitely Yes to
the real-time application via RTOS and then terminates the safety checking

process (while the consistency checking can continue if necessary).

Notice that the “No” case only means that the detected errors might happen
in the future, because we check at model level and thus do not know whether

On-Line Model Checking as Operating System Service 137

verification

. o o o
service

CurrentState(s;)

task to
be checked _® ® ®

Fig. 5. Scheduling of verification service and task to be checked

the errors are spurious or not. To avoid the errors really to happen, we have
to conservatively choose to inform the real-time application that an error might
emerge in the future. That is, the RTOS might raise an exception together with
a counterexample (if necessary). How to handle the exception is application
domain specific, thus we do not discuss this here.

The implementation of a component is in fact a refinement of the model of
the component, i.e., the model is an abstraction of the implementation of the
component. Thus, an ACTL/LTL formula being ¢rue at the model level implies
that it is also true at the implementation level, while its being false at the
model level does not imply that it is also false at the implementation level. In
this sense, our runtime verification is conservative due to its being applied to the
model level. However, the advantage of predicting and thus avoiding potential
errors are gained just due to its being applied to the model level.

Experimental Results. A stand-alone prototype for on-line model checking
invariants, LTL and ACTL properties is implemented. We have done some ex-
periments for BEEMA benchmark set derived from mutual exclusion algorithms,
communication protocols and so on in research or industry area. The bench-
mark set contains only FSM models, so we generate randomly the execution
traces from the same FSM models. This can simplify the monitoring procedure
of capturing the runtime information (current states) to be used by on-line model
checking. In this way, we can estimate the performance of our verification service
to some degree. Two experiments are done on a Pentium-IV 3.00Ghz processor
with 1GB memory running Linux.

One experiment is on-line invariant checking. This experiment can help find
out the influence of the out-degrees of the states on the look-ahead performance,
i.e., how far away the model checking can look ahead from each state of the given
model within a predefined time interval. 16 typical models are selected from the
BEEM benchmark set to perform on-line invariant checking. The features of these
models are given in the number of states, the number of transitions, the average
degrees of states, the height of BFS, and the maximal stack of DFS as well as the
number of Boolean (state) variables. In this experiment, each transition in the
models is set to represent 1 millisecond, i.e., it takes 1 millisecond from one state
to next state. We also say one transition being one time step. For each model, this

2 http://anna.fi.muni.cz/models/

138 F.J. Rammig, Y. Zhao, and S. Samara

- Transition| . .
Model Type State | Transition|Averagd Maximal [BFS | Max. [Boolean | J{ERSIAR | Minimal | Maximal | Average
Degree| 0 ght| Stack L L
(ms)

sorter_1 Controller 20544| 30607 | 1.5 5 198 | 617 36 1 40 209 103
collision_1 g&’(“o'zgl"‘“am"s 5503 | 10792 1,9 5 57 | 617 25 1 26 81 48,7
synapse_2 Protocol 61048] 125334 | 2.1 18 41 | 2349 46 1 7 28 21,5
driving_phils_2 m;;"rﬁ'ﬁr’:‘dus"’" 33173| 81854 25 9 150 | 3702 27 1 31 97 65,7
blocks_1 St 7057 | 1sss2 | 26 6 19 | a263| 23 1 8 21 14
peterson_1 m‘;‘o“ﬂfr’;f'“s‘“" 12498| 33369 27 5 54 | 1862 30 1 13 39 31,7
szymanski_1 m;‘:ﬁ:ﬁf““m 20264 56701 28 3 72 | 2064 27 1 13 90 49,7
hanoi_1 Puzzle 6561 | 19680 3 3 256 | 4376 36 1 56 103 75,9
iprotocol_2 g&’l“o'zgl"‘“am"s 29994| 100489 | 3.4 7 91 443 39 1 18 451 50
phils_3 m‘;‘g’ﬁ"ﬁ:ﬁ'“ﬁm 729 2916 4 6 17 | s18 18 1 156 357 265
cyclic_scheduler_{ Protocol 4606 | 20480 | 4.4 8 55 | 1819 40 1 23 437 278
rushhour_1 Puzzle 1048 | 5446 5.2 9 73 | s35 28 1 66 248 150,7
rushhour_2 Puzzle 2242 | 12603 | 56 10 80 | 906 32 1 36 408 116,4
pouring_1 Puzzle 503 | 4481 8.9 9 13 | 348 16 1 42 101 71,9
reader_writer_2 | Protocol 4104 | 49190 12 19 13 | a007| 25 1 4 16 9.9
pouring_2 Puzzle 51624 1232712 | 239 25 15 | 44500 18 1 1 4 2

Fig. 6. Experimental result of on-line invariant checking

experiment is designed to compute how many time steps model checking could
look ahead from each state in the model within one time step (i.e. 1ms). So the
invariant to be checked is a Boolean formula derived from the set of the states
in each model. The experimental results in Fig. [flshow the minimal, the maximal
and the average look-ahead from the states of each model. It is easy to see that the
maximal out-degree of a model has a larger influence on look-ahead performance
than the average degree of the model.

The other experiment is on-line LTL model checking. The model driving phils

2 is derived from a mutual exclusion algorithm of processes accessing several
resources, motivated by “The Driving Philosophers” in [9]. The property to be
checked is G(aco — Fgro), where the proposition acy denotes that process 0
requests a resource and the proposition gry denotes that the resource is granted
to process 0. In other words, if process 0 requests a resource, it will be granted to
him eventually. The experimental result in Fig.[7is obtained by setting t; = 5ms
and running 2000 scheduling cycles. That is, at each scheduling cycle the verifi-
cation service is allocated 5ms to perform on-line model checking. The property
is not violated at least up to this 2000 checking rounds. Fortunately, the ver-
ification service can always run enough time steps earlier than the simulated
execution of this model. The minimal look-ahead is 23 time steps, the maximal
look-ahead is 74 time steps and the average look-head is 57.2 time steps rela-
tive to the corresponding current states monitored from the randomly generated
execution trace.

Compared to the usual (off-line) model checking, our on-line model checking
can reduce the state space to be explored by using the monitored states obtained
while the system is running. On this view, the computational complexity of
the on-line model checking is less than that of the traditional model checking.
Compared to the usual runtime verification, our runtime verification checks the

On-Line Model Checking as Operating System Service 139

t";oe steps ! On-line LTL model checking I—

70

60 -

50 - J 1 |

. | LRRRILIEA L N i

30

20

Reaktime Application

10

0

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901 2001
time

Fig. 7. Experimental result of on-line LTL checking

system properties at the model level while just using the monitored states to
do consistency checking and then to shrink the state space to be explored. As a
result, the computational complexity of the model-based runtime verification is
greater than that of the conventional runtime verification. However, if we make
our model-based runtime verification look ahead only several time steps at each
checking round, then its computational complexity in terms of time and memory
overhead will be closer to that of the state-of-the-art runtime verification. In
addition, our model-based runtime verification can check more general properties
specified by ACTL and/or LTL formulas, since [I0] shows that the property
patterns to be checked in practice are usually not very complex.

3.3 Pre-checking and Post-checking

Ideally, we wish that on-line model checking could always run enough (time)
steps ahead the execution of the task to be verified. This depends on the com-
plexity of the behavioral model of the task as well as the underlying hardware
architecture. Therefore, we have to face the reality that the verification service
might fall behind the execution of the task to be checked. As a result, we in-
troduce two checking modes: pre-checking and post-checking. We say that the
verification service is in pre-checking mode, if it runs ahead of the execution of
the task to be checked; otherwise, it is in post-checking mode as shown in Fig.

In pre-checking mode, the verification service can naturally predict violations
before they really happen. In post-checking mode, it seems that the violations
could only be detected after they have already happened. Fortunately, it is still
possible to “predict” violations even in post-checking mode because our on-line
verification works at the model level. In case that an error is found at some place

140 F.J. Rammig, Y. Zhao, and S. Samara

Modetbased Runtime
Verification Service

Prgichecking Poskchecking

B g o 8 e g
CU eV
1 I—u?. 1 I.Z

Fig. 8. Pre-checking and Post-checking

other than the monitored execution trace in the partial state space being checked,
then we can “predict” that there might be an error in the model which has not
happened yet. In this sense, both checking modes are useful for safety-critical
systems.

Notice that our on-line model checking can observe the actual execution trace
of the task being checked once it falls behind. This means that only a rather small
state space needs to be explored in post-checking mode. Thus, there still exists
chance for the verification service to pass over the task being checked again. On
this view, it seems as if the verification service and the task are involved into a
two-player game. In the course of the game, we say that the verification service
wins against the task being checked, if the verification service takes the leading
position for a longer time than the task does.

Without doubt, we need to find an improved strategy to make the verification
service have more chance or higher probability to win against the task to be
checked. Recall that the source code of the system implementation is usually
validated by simulation and testing. Therefore, in the future we are going to
learn some heuristic knowledge at the system testing phase so that the system
model can be enriched with more useful information. The heuristic information
can thus guide on-line model checking to reduce the state space to be explored
whenever necessary.

4 Related Work

Unlike our on-line model checking, the state-of-the-art runtime verification takes
the system implementation and the system specification into account. The basic
idea is to monitor the execution of the source code and afterwards to check the
so far observed execution trace against the system properties specified usually
by LTL formulas. This kind of runtime verification can only do post-checking,
i.e., the checking progress always falls behind the system execution because the
checking procedure can continue only after a new state has been observed. Con-
sequently, property violations are usually detected after they have already hap-
pened. Notice that even if a property is checked correct with this approach, it

On-Line Model Checking as Operating System Service 141

does not imply that the monitored execution trace conforms to the system model
and the system model satisfies the same property as well. The former depends
on the consistency between the system implementation and the system model,
while the latter depends on the granularity of the system model and the property
automaton to be checked.

Typically, [TT] presents runtime checking for the behavioral equivalence be-
tween a component implementation and its interface specification by writing the
interface specification in the executable AsmL so that one can synchronously run
the interface specification and the component implementation while monitor if
they are equivalent on the observed behaviors; [12] presents runtime certified
computation whereby an algorithm not only produces a result for a given input,
but also proves that the result is correct with respect to the given input by de-
ductive reasoning; [I3] presents runtime checking for the conformance between
a concurrent implementation of a data structure and a high-level executable
specification with atomic operations by first instrumenting the implementation
code to extract the execution information into a log and then executing a ver-
ification thread concurrently with the implementation while using the logged
information to check if the execution conforms to the high-level specification;
[14] presents monitoring-oriented programming (Mop) as a light-weight formal
method to check conformance of implementation to specification at runtime by
first inserting specifications as annotations at various user selected places in pro-
grams and then translating the annotations into an efficient monitoring code in
the same target language as the implementation during a pre-compilation stage.
Similar to Mop, Temporal Rover [I5] is a commercial code generator allowing
programmers to insert specifications in programs via comments and then gener-
ating from the specifications the executable verification code, which are compiled
and linked as part of the application under test. In addition, Java PathExplorer
(JPaX) [I6] is a runtime verification environment for monitoring the execution
traces of a Java program by first extracting events from the executing program
and then analyzing the events via a remote observer process.

What’s more, [I7] extends the usual runtime verification techniques to on-line
verify and steer a Discrete Event System (DES) by looking ahead into a partial
system model to predict violations and then applying steering actions to prevent
them. This method requires that the time delay for the DES to move from the
current state to the next state must be long enough so that the runtime checking
has sufficient time to explore a partial system model, which is generated after
the current state is known.

Our on-line model checking can explore the system model even before the
current state is known and then shrinks the state space after the current state
is known. That is, the progress of our runtime verification is not strictly bound
to the execution of the source code, i.e., it may run before or after the system
execution. If the processing speed is fast enough, our runtime verification could
keep running certain time steps before the system execution and then tell the
system how many time steps ahead are safe. Also, our runtime verification can
check more general properties specified by ACTL and/or LTL formulas.

142 F.J. Rammig, Y. Zhao, and S. Samara

5 Conclusion

On-line model checking has the potential to serve as a powerful complementary
verification technique for real-time applications with dynamic task sets. It is
complementary in the sense that we have to assume that the newly accepted task
has been verified off-line under the assumptions necessary for such a verification.
The on-line model checking then can be restricted to verify whether the actual
execution trace is correct under the real environmental conditions. As our on-
line model checking reduces dramatically the state space to be verified, a much
finer granularity concerning value domains of system variables can be handled.
By this and due to the fact that a priori unknown run-time conditions can
be considered as well, our run-time verification establishes an additional safety
level. This method can also be seen as a complementary attempt to overcome
the well known state explosion problem of model checking. Whenever the state
space is reduced, it is essential to reduce it to the states that are relevant. Our
method automatically and dynamically reduces the state space to exactly those
states that are relevant for the actual execution trace. The resulting verification
method can be implemented as an operating system service comparable to the
schedulability acceptance test which is part of any RTOS being able to handle
dynamic task sets. This service is triggered whenever some reconfiguration of
the task set to be handled takes place. In contrary to traditional a posteriori
runtime verification methods published so far, our approach can look into the
future, i.e., a partial state space at model level relative to the current state of
the execution trace. Experimental results show that run-time model checking is
possible when the approach as outlined in this paper is followed. Although these
experiments have been carried out based on simulations up to now, there is a
strong indication that also systems of practical relevance can be handled.

References

1. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032. Springer, Heidelberg (1996); Foreword By-Wolper, Pierre

2. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional reasoning in model
checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997.
LNCS, vol. 1536, pp. 81-102. Springer, Heidelberg (1998)

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512-1542 (1994)

4. Lee, W., Pardo, A., Jang, J.Y., Hachtel, G., Somenzi, F.: Tearing based auto-
matic abstraction for ctl model checking. In: ICCAD 1996: Proceedings of the 1996
IEEE/ACM international conference on Computer-aided design, Washington, DC,
USA, pp. 76-81. IEEE Computer Society, Los Alamitos (1996)

5. Zhao, Y., Oberthiir, S., Kardos, M., Rammig, F.J.: Model-based runtime ver-
ification framework for self-optimizing systems. Electr. Notes Theor. Comput.
Sei. 144(4), 125-145 (2006)

6. Zhao, Y., Rammig, F.J.: Model-based runtime verification framework. In: Proceed-
ings of the Formal Engineering Approaches to Software Components and Archi-
tectures (FESCA 2009), New York, UK (March 2009)

10.

11.

12.

13.

14.

15.

16.

17.

On-Line Model Checking as Operating System Service 143

. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM

2002. LNCS, vol. 2335, pp. 286-298. Springer, Heidelberg (2002)

. Clark, E.M., Grumberg Jr., O., Peled, D.A.: Model Checking. MIT Press,

Cambridge (1999)

. Baehni, S., Baldoni, R., Guerraoui, R., Pochon, B.: The driving philosophers. Tech-

nical report. In: Proceedings of the 3rd IFIP International Conference on Theoret-
ical Computer Science (TCS 2004) (2004)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: ICSE 1999: Proceedings of the 21st international
conference on Software engineering, pp. 411-420. IEEE Computer Society Press,
Los Alamitos (1999)

Barnett, M., Schulte, W.: Spying on components: A runtime verification technique.
In: Leavens, G.T., Sitaraman, M., Giannakopoulou, D. (eds.) Workshop on Speci-
fication and Verification of Component-Based Systems (October 2001)

Arkoudas, K., Rinard, M.: Deductive Runtime Certification. In: Proceedings of the
2004 Workshop on Runtime Verification (RV 2004), Barcelona, Spain (April 2004)
Tasiran, S., Qadeer, S.: Runtime Refinement Checking of Concurrent Data Struc-
tures. In: Proceedings of the 2004 Workshop on Runtime Verification (RV 2004),
Barcelona, Spain (April 2004)

Chen, F., Rosu, G.: Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation. In: Proceedings of the 2003 Work-
shop on Runtime Verification (RV 2003), Boulder, Colorado, USA (2003)
Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323-330. Springer, Heidelberg
(2000)

Havelund, K., Rosu, G.: Java PathExplorer — a runtime verification tool. In:
Proceedings 6th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (ISAIRAS 2001), Montreal, Canada (June 2001)

Easwaran, A., Kannan, S., Sokolsky, O.: Steering of discrete event systems: Control
theory approach. Electr. Notes Theor. Comput. Sci. 144(4), 21-39 (2006)

	On-Line Model Checking as Operating System Service
	Introduction
	Problem Statement
	On-Line Model Checking
	Overview
	Model Checking Paradigm
	Pre-checking and Post-checking

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

