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Abstract. The limited computational resources available in RFID tags
implied an intensive search for lightweight authentication protocols in
the last years. The most promising suggestions were those of the HB-
familiy (HB+, HB#, TrustedHB, ...) initially introduced by Juels and
Weis, which are provably secure (via reduction to the Learning Parity
with Noise (LPN) problem) against passive and some kinds of active
attacks. Their main drawbacks are large amounts of communicated bits
and the fact that all known HB-type protocols have been proven to be
insecure with respect to certain types of active attacks. As a possible al-
ternative, authentication protocols based on choosing random elements
from L secret linear n-dimensional subspaces of GF(2)n+k (so called
CKK-protocols) were introduced by Cichoń, Klonowski, and Kutyłowski.
These protocols are special cases of (linear) (n, k, L)-protocols which we
investigate in this paper. We present several active and passive attacks
against (n, k, L)-protocols and propose (n, k, L)++-protocols which we
can prove to be secure against certain types of active attacks. We obtain
some evidence that the security of (n, k, L)-protocols can be reduced to
the hardness of the learning unions of linear subspaces (LULS) prob-
lem. We then present a learning algorithm for LULS based on solving
overdefined systems of degree L in Ln variables. Under the hardness
assumption that LULS-problems cannot be solved significantly faster,
linear (n, k, L)-protocols (with properly chosen n, k, L) could be inter-
esting for practical applications.

Keywords: Lightweight Cryptography, RFID Authentication, Algebraic
Attacks, HB+, CKK, CKK2.

1 Introduction

In lightweight cryptography one tries to solve the problem of determining the
minimal amount of computational resources which have to be invested for reach-
ing certain security goals. This problem implies a lot of interesting and nontriv-
ial theoretical questions. Since weak computational devices (e.g., mobile devices,
RFIDs) are used in practice to a rapidly growing extent, results in lightweight
cryptography are highly desired also from a practical point of view.
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RFID (radio frequency identification) tags are small devices that are equipped
with only little memory and computational power. Their main application is the
identification of objects. In order to prevent cloning and tracing attacks and to
preserve the tagged object’s privacy, RFID tags should reveal their identities only
to legitimate readers. Since most practically relevant RFID tags are too weak to
execute standard authentication protocols, alternative measures are necessary.
Besides technical approaches based on blocking or disturbing the communica-
tion, lightweight authentication protocols and corresponding security models are
intensively discussed (see, e.g., [13,15]).

One of the most promising proposals was the HB+ protocol due to Juels and
Weis [14], which is provable secure (via reduction to the learning parity with
noise (LPN) problem) with respect to passive and some kinds of active attacks.
A severe drawback of the protocol is that presumably secure parameter combina-
tions imply large amounts of transmitted data. Together with the small available
bandwidth in RFID communication, this may add up to authentication times
that are unacceptable for many applications. Another disadvantage is that HB+

and all its variants suggested so far have been broken by man-in-the-middle
(MITM) attacks. Particularly, the HB+-protocol was broken by Gilbert, Rob-
shaw and Sibert in [12], the HB#-protocol introduced by Gilbert, Robshaw and
Seurin in [11] was recently broken by Ouafi, Overbeck and Vaudenay in [16], and
Trusted-HB introduced by Bringer and Chabanne in [3] was broken by Frumkin
and Shamir in [10].

As a possible alternative to HB-type protocols, another class of lightweight
authentication protocols (so called CKK-protocols) were introduced by Cichoń,
Klonowski, and Kutyłowski [4]. These protocols can be generalized to linear
(n, k, L)-protocols, in which the secret key (the identification information in
the RFID tag) consists of the specification of L n-dimensional linear subspaces
V1, . . . , VL of GF(2)n+k, while the identification is performed by collaboratively
generating an element v ∈ Vl for a random l ∈ {1, . . . , L}. In [4], the CKK2-
protocol, a special linear (n, k, 2)-protocol, and the CKKσ,L-protocol, a special
linear (n, k, L)-protocol, were suggested for practical application.

Compared with HB-type protocols, the advantages of (n, k, L)-protocols are
that fewer bits have to be communicated, computational effort and memory
requirements are lower on the prover’s side (essentially, the prover has to generate
random elements from L different n-dimensional subspaces of GF(2)n+k), and
that (n, k, L)-protocols seem to be more resistant against active attacks. The
drawback is that we can not yet prove the security of (n, k, L)-protocols by
reduction to a well-established problem like the LPN-problem. However, in this
paper we show that, similarly to HB-type protocols, the security of (n, k, L)-
protocols can be related to the hardness of a certain learning problem, in this
case the Learning Unions of L linear subspaces (LULS) problem.

Our strategy for designing a lightweight authentication protocol is the same
as in the context of HB-type protocols and consists of the following two steps.

1. Define an appropriate lightweight symmetric encryption function E : X ×
K −→ Y , the basis operation, which guarantees that that the basic
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E-protocol is secure against a passive adversary. Hereby, X denotes an ap-
propriate input-, K an appropriate key-, and Y an appropriate output space.

2. Define a protocol structure P over E such that the security of P with respect
to active adversaries can be reduced to the security of the basic E-protocol
against a passive adversary.

The basic E-protocol is defined as follows: Alice and Bob share a secret key
k ∈ K. In one round, the verifier Alice sends hello to the prover Bob. Receiving
hello, Bob chooses a random element x ∈ X , which is distributed according to
a publicly known probability distribution PrB , and sends Ek(x) back to Alice.
After a predefined number of rounds, Alice decides about accepting or rejecting
by applying a verification operation to the messages sent by Bob. The definition
of the verification operation depends on the definition of E. A passive adversary
has only passive access to the insecure channel between Alice and Bob, i.e., she
has to reach her goal on the basis of a set of observations Fk(x1), . . . , Fk(xm),
where for all i = 1, . . . , m, xi is randomly and independently choosen according
to PrB.

Note that for HB-type protocols, K = GF(2)n, X = Y = GF(2)n × GF(2),
y = GF(2), and the basis operation is defined by

E((x, ν), k) = (x, y) ,

where y = x · k ⊕ ν. Bob chooses x with respect to the uniform distribution and
sets the noise bit ν to one with probability p < 0.5. Alice accepts if the number
of rounds in which yi = xi · k is satisfied exceeds a certain threshold.

Obviously, basic E-protocols are vulnerable to replay attacks. In both cases,
HB-type- and linear protocols, the basic E-protocol is also vulnerable to active
key recovery attacks (see [14] and the attack described in subsection 2.4, respec-
tively). Consequently, solving challenge (2.) is an important task, which could
not be done in a satisfactory way so far in the case of HB-type protocols.

Our results and the outline of this paper are as follows. In Subsect. 2.1 we
define the basis operation of linear protocols and specify the adversary models.
In Subsect. 2.2 we take a look at CKK-protocols [4], the first type of linear
protocols occuring in the literature. We present a fast passive (polynomial time)
attack against the CKK2-protocol which allows to recover the secret key for the
proposed parameters (n, k) = (128, 30) in less than a second on a standard PC,
while an earlier (exponential time) attack on CKK2 published in [7] requires a
couple of hours on comparable hardware.

In Subsect. 2.3 we describe special active key recovery attacks against linear
protocols, so called equality attacks, and show that the basic linear (n, k, L)-
protocol and the linear (n, k, L)+-protocol (which is based on the same design
principle as HB+) are vulnerable to these attacks.

In Subsect. 2.4 we introduce (n, k, L)++-protocols and prove their security
against equality attacks.

In Subsect. 2.5 we list some generic attacks against linear protocols. Moreover,
we introduce the Learning Unions of L linear subspaces (LULS) problem. The
complexity of the LULS-problem characterizes the security of linear protocols
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with respect to passive adversaries. We give a generic exponential time algorithm
to solve this problem, and we show that active adversaries that are able to
efficiently solve the LULS-problem can break the (n, k, L)+-protocol.

In Sect. 3 we present a nontrivial learning algorithm for the LULS-problem.
We outline the algorithm in all details for the case L = 2 and describe how the
ideas can be generalized to the case L > 2. The algorithm is based on generating
and solving k

s special overdefined systems of degree-L equations over GF(2s) for
appropriate s ≤ k. Our hardness assumption is that the running time of this
learning algorithm characterizes the complexity of the LULS-problem and the
complexity of actively attacking (n, k, L)++-protocols.

In Sect. 4 we discuss some aspects of the practical use of (n, k, L)++-protocols.
General (n, k, L)-protocols have a huge keylength of L · n · n + k. One idea
could be to use CKKσ,L-protocols (see [4]), a special (n, 1, L)-protocol which
is still unbroken. Other ideas for reducing the keylength in similar cases were
discussed in the literature, e.g., using keys defined by Toeplitz matrices instead of
random matrices [11], or defined by special Toeplitz matrices generated by Linear
Feedback Shift Registers (LFSRs) [3]. The security analysis of the corresponding
types of special (n, k, L)-protocols remains a matter of further research.

We have experimentally confirmed the correctness and efficiency of our attacks
and algorithms with the computer algebra system Magma [2].

2 Linear (n, k, L)-Protocols

2.1 The Basis Operation and the Adversary Models

In a linear (n, k, L)-protocol, Alice (the verifier, e.g., an RFID reader) and Bob
(the prover, e.g., an RFID tag) share a common secret information (the tag’s ID)
from a certain keyspace. As usual, we assume that the secret key is hardwired in
the RFID tag, while Alice has legal access to a database containing Bob’s secret
information.

We define now the basis operation of linear (n, k, L)-protocols and denote for
a positive integer N the set {1, . . . , N} by [N ].

The secret keys of the protocols consist of the specifications of L n-dimen-
sional injective linear functions F1, . . . , FL : GF(2)n −→ GF(2)n+k. The inputs
are pairs (x, l), where x ∈ GF(2)n and l ∈ [L].

Let us denote by V1, . . . , VL the n-dimensional linear subspaces of GF(2)n+k

corresponding to the images of F1, . . . , FL, respectively.
In the basic linear protocol, Alice accepts a message w ∈ GF(2)n+k coming

from Bob if w ∈ Vl for some l ∈ [L].
We analyze the security of (n, k, L)-protocols with respect to passive and

active adversaries. A passive adversary is able to read the messages exchanged
by Alice and Bob. His aim is (partial) key recovery, i.e., to try to compute
nontrivial information about the secret key from a set of messages produced by
the honest parties Alice and Bob.
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An active adversary has the additional abilities

– To corrupt or to replace messages sent from Alice to Bob,
– To corrupt or to replace messages sent from Bob to Alice,
– To retrieve the information whether a (possibly corrupted) transcript has

been accepted or rejected by Alice.

We assume that neither of the adversaries is able to read nor modify the keybits
nor the inner state bits nor the private random bits of Alice or Bob.

2.2 The CKK-Protocols

The protocols CKK1, CKK2 and CKKσ,L suggested by Cichoń, Klonowski and
Kutyłowski in [4] are restricted types of (n, k, L)-protocols.

The protocol CKKσ,L is an (n, k, L)-protocol with the restriction Fl(u) =
σl(u||f(u)) for all l ∈ [L], where σ denotes a secret permutation σ ∈ Sn+k and
f a secret linear function f : GF(2)n −→ GF(2)k. Hence, the secret keys have
the form (f, σ).

The protocol CKK2 is an (n + k, k, 2)-protocol with the additional properties
that F1(u, a) = (u, f(u), a) and F2(u, a) = (u, a, f(u)) for all u ∈ GF(2)n and
a ∈ GF(2)k, where f denotes a secret linear function f : GF(2)n −→ GF(2)k.

CKK2 and CKKσ,L protocols were suggested for practical application in [4],
with the parameters n = 128 and k = 30.

So far, the only nontrivial cryptanalytic result concerning linear (n, k, L)-
protocols is due to Gołebięwski, Majcher and Zagórski [7]. They present an
attack against the CKK2-protocol, which cannot be applied to the general case.
Its running time is proportional to

∑k−1
s=0

(
n
s

)
, i.e., of order nΘ(k).

We now describe a very fast attack against the CKK2-protocol with parameters
(n, k) whose running time is dominated by the effort required for inverting k
(n × n)-matrices.

Let f : GF(2)n −→ GF(2)k denote the secret key, recall that

V1 = {(v, f(v), a), v ∈ GF(2)n, a ∈ GF(2)k} ,

V2 = {(v, a, f(v)), v ∈ GF(2)n, a ∈ GF(2)k} .

Let the functions f1, . . . , fk : GF(2)n −→ GF(2) denote the component func-
tions of the secret function f , i.e., f(v) = (f1(v), . . . , fk(v)) for all v ∈ GF(2)n.
The attack is based on the simple fact that if an observation (v, a, b) satisfies
ar = br for some r ∈ [k], which is true with probability 1/2, then we know that
f r(v) = ar = br.

The attack works as follows.

1. Let e1, . . . , en denote the standard basis of GF(2)n.
2. FOR r ∈ [k]

2.1 Consider a set of messages produced by Bob and extract from it a set
Or = ((vr,1, ar,1, br,1), . . . , (vr,n, ar,n, br,n)) such that vr,1, . . . , vr,n form a
basis of GF(2)n and ar,i(r) = br,i(r) = f r(vr,i) for all i ∈ [n].

2.2 Derive f r(e1), . . . , fr(en) from Or.
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Table 1. Performance of the passive attack on CKK2

(n, k) approx. number of observations approx. attack time
(128, 30) 311 0.3 s

(1024, 256) 2197 179 s

The correctness of the attack follows straightforwardly from the definitions. The
expected number of messages needed for constructing Or can be estimated based
on the following experiment.

1. Set B := ∅.
2. REPEAT

2.1 Choose a random v ∈ GF(2)n (w.r.t. the uniform distribution).
2.2 V := V ∪ {v}.

3. UNTIL V is a generating system of GF(2)n.

Let p(n) denote the probability that the experiment stops after n iterations (i.e.,
V is a basis of GF(2)n), and E(n) denote the expected number of iterations
of the experiment. It is known that p(n) ≈ 0.2887 and E(n) ≈ n + 1.6067
(see, e.g., [7]). Hence, an estimate for the expected number of messages for
constructing Or is 2 · E(n) ≈ 2n + 3.2134. For the parameter choices proposed
for practical applications, the attack is very efficient already on standard PC
hardware (Magma V2.15-9 [2] on a 3.4 GHz Intel Pentium IV with 4 GB RAM),
see Table 1.

2.3 Basic Protocol Types and Equality Attacks

In the basic linear protocol, Alice starts the communication by sending some
signal triggering Bob to compute a proof w of his identity. In particular, Bob
computes w = Fl(u) for randomly (independently and uniformly) chosen l ∈ [L]
and u ∈ GF(2)n. Alice accepts a proof w̃ if there is an l ∈ [L] such that w̃ ∈ Vl

(see Fig. 1).
Obviously, this protocol is vulnerable to replay attacks, since an adversary can

store a number of proofs and then impersonate Bob by presenting these proofs
to Alice.

Verifier Prover
Alice Bob

RFID reader RFID tag

challenge choose l ∈R [L],

w = Fl(u)
accept if
∃l ∈ {1, . . . , L}
with w ∈ Vl

u ∈R GF(2)n

Fig. 1. Basic Communication Mode
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Verifier Prover
Alice Bob

RFID reader RFID tag

a ∈R GF(2)n/2
choose l ∈R [L],

w = Fl(a, b)
b ∈R GF(2)n/2

let (ã, b̃) = F−1
l (w)

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

Fig. 2. (n, k, L)+ Communication Mode

Moreover, an active adversary can successfully recover the key as follows.

1. Collect a set of messages O = {v1, . . . , vs} sent by Bob. The parameter s
should be chosen in such a way that O contains a basis for Vl for all l ∈ [L]
with high probability (This can be achieved for s ∈ Θ(L · E(n)) = Θ(Ln),
see Sect. 2.2.)

2. Construct an s × s-matrix M over {0, 1}, where Mi,j = 1 iff Alice accepts
vi ⊕ vj .

Note that if vi and vj belong to the same subspace Vl, the probability for Mi,j = 1
is one. If {vi, vj} 	⊆ Vl for all l ∈ [L] then the probability that Mi,j = 1 equals
the probability that vi ⊕ vj ∈ ⋃L

l=1 Vl, which is at most (L − 2)2−k. Hence, it
is possible to efficiently compute specifications of V1, . . . , VL and to impersonate
Bob by replying with w ∈ Vl for arbitrary l ∈ [L].

To prevent this kind of attack we consider the following distributed com-
munication mode, which, analogously to the HB+-protocols, defines (n, k, L)+-
protocols. Alice starts by sending a random a ∈ GF(2)n/2 to Bob. Bob chooses
random values b ∈ GF(2)n/2 and l ∈ [L] and sends w = Fl(a, b) to Alice. Alice
accepts w ∈ GF(2)n+k if there is some l ∈ [L] with w ∈ Vl and the prefix of
length n/2 of F−1

l (w) equals a (see Fig. 2).
However, also (n, k, L)+-protocols can be broken by an MITM attack:

1. Fix a1 	= 0 in GF(2)n/2.
2. Send a1 to Bob and receive w1 ∈ Vl for some l ∈ [L].
3. FOR r = 2, . . . , s

3.1 REPEAT
3.1.1 Catch a from Alice.
3.1.2 Send a′ := a ⊕ a1 to Bob and receive w′.

UNTIL Alice accepts w′ ⊕w1 (which happens with probability at least
1/L).

3.2 Define ar := a′ and wr := w′.

The parameter s is chosen such that {w1, . . . , ws} contains a basis of Vl with high
probability (see Sect. 2.2). This procedure will be repeated until specifications
of V1, . . . , VL have been computed.
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In the next subsection we propose linear (n, k, L)++-protocols, a slightly mod-
ified version of (n, k, L)+-protocols, and show that they are secure against a
certain type of MITM-attack.

2.4 Linear (n, k, L)++-Protocols and Provable Security against
MITM-Attacks

The parameters n, k, L as well as Vl, Fl for l ∈ [L] are defined as above. Let
n = 2N . The (n, k, L)++-protocol works similarly to the (n, k, L)+-protocol, but
uses an additional publicly known invertible function f : GF(2)n −→ GF(2)n,
which we call connection function (see Fig. 3).

1. Alice chooses a random a ∈ GF(2)N , a 	= 0, moves to the inner state a and
sends a to Bob.

2. Bob chooses random values b ∈ GF(2)N and l ∈ [L] and sends w = Fl(f
(a, b)) back to Alice.

3. Alice accepts a message w ∈ GF(2)n in inner state a if
– w 	= 0, and
– ∃l ∈ [L] such that w ∈ Vl, and
– f−1(F−1

l (w)) has the form (a, b) for some b ∈ GF(2)N .

Note that choosing f to be the identity yields the (n, k, L)+-protocol.
We construct now a connection function f which yields provable security of

(n, k, L)++-protocols with respect to a certain type of MITM-attack which we
call (x, y)-equality attack.

The aim of an (x, y)-equality attacker Eve is to generate two messages w 	=
w′ ∈ GF(2)n+k and to efficiently test by MITM-access to the protocol if w and
w ⊕ w′ belong to the same linear subspace Vl for some l ∈ [L]. As described
above, such an attack can be used to efficiently compute specifications of the
subspaces V1, . . . , VL.

Eve works in three phases:

1. Send a message y ∈ GF(2)N to Bob and receive w′ = Fl(f(y, b′)).
2. Observe a challenge a ∈ GF(2)N sent by Alice.

Verifier Prover
Alice Bob

RFID reader RFID tag

a ∈R GF(2)N
choose l ∈R [L],

w = Fl(f(a, b))
b ∈R GF(2)N

let (ã, b̃) = f−1(F−1
l (w))

accept if ã = a

if ∃l ∈ {1, . . . , L}
with w ∈ Vl

Fig. 3. (n, k, L)++ Communication Mode
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3. Compute a value x = x(y, w′, a) ∈ GF(2)N , send it to Bob, receive the
message w = Fr(f(x, b)) and send w ⊕ w′ to Alice.

The success probability of the attack is given by the probability that Alice ac-
cepts w ⊕ w′ given that l = r.

Note that if f is GF(2)-linear (as in the (n, k, L)+-protocol), then setting
x = a ⊕ y yields an attack with success probability one.

We define now a connection function which yields provable security against
(x, y)-equality attacks. In the following we identify {0, 1}N with the finite field
K = F2N and denote by +, · the addition and multiplication in K. Let the
function value f(a, b) for all a, b ∈ K be defined by

f(a, b) = (ab, ab3) .

Thus, Alice accepts a message w with F−1
l (w) = (u, v) ∈ K2 in inner state

a ∈ K∗ if (a−1u)3 = a−1v, which is equivalent to u3 = a2v.

Theorem 1. The success probability of an (x, y)-equality attacker against the
(n, k, L)++-protocol is at most 3

2N−1 .

Proof. For given y, a ∈ K∗, Eve has to choose an element x ∈ K∗ such that
w + w′ = (u, v) ∈ K × K will be accepted by Alice in inner state a, where
w = Fl(x, b) and w′ = Fl(y, b′) for some l ∈ [L], and b, b′ ∈ K∗. Note that Eve
has no information about b, b′, and that u = xb + yb′ and v = xb3 + yb′3.

Consequently, Eve’s choice for the value x has to satisfy

(xb + yb′)3 = a2(xb3 + yb′3) .

This is equivalent to
(x + yc)3 = a2(x + yc3) ,

where c = b′(b−1), which is equivalent to P (x, c) = 0, where the polynomial
P (x, d) is for all d ∈ K∗ defined as

P (x, d) = x3 + (yd)x2 + (y2d2 + a2)x + d3(y3 + y2a2) .

Note that there are |K∗| = 2N − 1 different polynomials of type P (x, d) with
respect to the variable x (Look at the coefficient yd of x2).

For all x ∈ K∗ let P (x) = {d, P (x, d) = 0}. Note that P (x, d) is a polynomial
of degree 3 also in the unknown d. This implies that for all x ∈ K∗ it holds
|P (x)| ≤ 3.

Eve has to choose an x that satisfies c ∈ P (x). Since she does not have any
information about c, her success probability is bounded by 3

2N−1 . ��

2.5 Security of (n, k, L)-Protocols and the LULS-Problem

There are several exhaustive search strategies for computing specifications of the
secret subspaces V1, . . . , VL, see, e.g., the search-for-a-basis heuristic described
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in Appendix A. The parameters (n, k) should be chosen in such a way that
these attacks become infeasible. Moreover, k should be large enough such that
the probability p of a random v ∈ GF(2)n+k belonging to

⋃L
l=1 Vl is negligibly

small. Note that p < L2−k.
The subspaces V1, . . . , VL should have the property Vi ⊕ Vj = GF(2)n+k for

all i 	= j ∈ [L], otherwise the effective keylength would be reduced. This implies
n ≥ k.

The Learning Unions of L Linear Subspaces (LULS) Problem refers
to the following communication game between a learner and an oracle. The
oracle holds the specifications of L n-dimensionial linear subspaces V1, . . . , VL

of GF(2)n+k. The learner can send requests hello to the oracle. If the oracle
receives hello, it chooses randomly and uniformly an l ∈ [L] and v ∈ Vl and sends
the (positive) example v to the learner. The aim of the learner is to compute
specifications of V1, . . . , VL from a sufficiently large set v1, . . . , vs of examples
produced by the oracle. Note that this corresponds to a passive key recovery
attack against (n, k, L)-type protocols. As described above, a possible strategy
is the search-for-a-basis heuristic, which we outline in Appendix A together with
implied suggestions on how to choose n and k.

An active adversary who is able to solve the LULS-problem efficiently can
break the (n, k, L)+-protocol. In particular, knowing specifications of the secret
subspaces V1, . . . , VL, he can generate specifications of the subspaces Vl(a) (i.e.,
the image of Fl(a, ·)), for arbitrary a ∈ GF(2)n/2 and l ∈ [L] by repeatedly
sending a to Bob. Then the adversary uses N = n/2 subspaces Vl(ai), . . . , Vl(aN )
for {a1, . . . , aN} linearly independent to forge a response for a challenge a =
∑N

i=1 αiai by computing

w =
N∑

i=1

αivi with vi ∈R Vl(ai)

=
N∑

i=1

αiFl(ai, bi)

= Fl(a, b′) with b =
N∑

i=1

bi .

In the case of the (n, k, L)++-protocol, the adversary cannot just return a random
w ∈ Vl(a), but has to make sure that the first half of f−1(F−1

l (w)) corresponds
to a. How such a w can be found efficiently (possibly based on the specifications
of the subspaces Vl(a)) is a matter of further research.

In Sect. 3 we present and discuss an algebraic learning algorithm for LULS.

3 On Solving the LULS-Problem
3.1 A Learning Algorithm for the LULS-Problem

Recall that the LULS-problem with parameters n, k, L consists in computing
specifications of L secret n-dimensional linear subspaces of GF(2)n+k from
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positive examples v produced by an oracle which chooses randomly and uni-
formly l ∈ [L] and v ∈ Vl. In this paper we treat the case L = 2 and consider
the special case that Vl = {(v, f(v)), v ∈ GF(2)n}, l ∈ {1, 2} for secret linear
functions f1, f2 : GF(2)n −→ GF(2)k. Our algorithm computes for all i ∈ [k]
specifications of the i-th component functions f i

1, f
i
2 : GF(2)n −→ GF(2) sepa-

rately, i.e., it suffices to consider the case k = 1. The learning algorithm is based
on the following reasoning.

1. Take a set O = {(v1, w1), . . . , (vn, wn)} ⊆ GF(2)n+1 of examples such that
B = {v1, . . . , vn} forms a basis of GF(2)n. For all i ∈ [n] let xi and yi denote
the variables corresponding to f1(vi) and f2(vi), respectively.

2. For b ∈ {0, 1} let Ib = {i ∈ [n], wi = b}.
3. For all i ∈ [n] let ti = xi ⊕ yi, and for all i < j ∈ [n] let ti,j = xiyj ⊕ xjyi.
4. Observe that for all i ∈ [n] the equality (wi ⊕ xi)(wi ⊕ yi) = 0 holds. This

implies
xiyi = 0 if i ∈ I0 and xiyi = 1 ⊕ ti if i ∈ I1 . (1)

5. Observe that for each example (v, w) ∈ GF(2)n+1, v 	∈ B, the following
holds: If v =

⊕
i∈I vi, (i.e., I ⊆ [n] defines the unique representation of v

w.r.t. B), then (

w ⊕
⊕

i∈I

xi

)(

w ⊕
⊕

i∈I

yi

)

= 0 . (2)

Observe that relation (2) can be rewritten as a relation TB(I, w) in the
variables ti and ti,j in the following way. If w = 0 then relation (2) is equiv-
alent to

⊕
i∈I xiyi ⊕

⊕
i<j∈I ti,j = 0. Together with relation (1) this implies⊕

i∈I1∩I(ti ⊕ 1) ⊕ ⊕
i<j∈I ti,j = 0 for w = 0. Consequently, for w = 0 we

define TB(I, w) as

⊕

i∈I∩I1

ti ⊕
⊕

i<j∈I

ti,j =
{

0 if |I ∩ I1| is even
1 if |I ∩ I1| is odd .

If w = 1 then relation (2) is equivalent to 1 ⊕ ⊕
i∈I ti ⊕

⊕
i∈I∩I1

(ti ⊕ 1) ⊕⊕
i<j∈I ti,j = 0. Hence, for w = 1 we define TB(I, w) as

⊕

i∈I∩I0

ti ⊕
⊕

i<j∈I

ti,j =
{

0 if |I ∩ I1| is odd
1 if |I ∩ I1| is even .

Note that a relation similar to relation (2) was also exhibited in [1] for designing
an algebraic attack against so-called Ff -protocols.

The learning algorithm now proceeds as follows.

1. Let initially the system LES of linear equations in the 1
2 (n2 + n) variables

ti (i ∈ [n]) and ti,j (i < j ∈ [n]) be empty.
2. REPEAT

2.1 Choose an observation (v, w), v 	∈ B ∪ {0}, and compute the unique
subset I ⊆ [n] with v =

⊕
i∈I vi.
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2.2 Enlarge the system LES by the linear equation TB(I, w).
3. UNTIL the system LES has 1

2 (n2 + n) linearly independent equations.
4. Compute by Gaussian elimination the unique solution θ of the system LES.
5. Compute from θ the unique correct assignments to xi, yi for all i ∈ [n].

The correct assignments to the xi and yi variables (step 5 of the algorithm) can
be computed from θ = (θi)i∈[n] (θi,j)i<j∈[n] as follows.

For b = 0, 1 let Kb denote the set Kb = {i ∈ [n], θi = b}. We know that for all
i ∈ K0 it holds that xi = yi = wi, and for all i ∈ K1 it holds that yi = xi ⊕ 1.
This implies that for all i < j in K1, θi,j satisfies

θi,j = xi(xj ⊕ 1) ⊕ xj(xi ⊕ 1) = xi ⊕ xj .

This yields a system LES∗ of 1/2|K1|(|K1|−1) linear equations in the variables
xi, i ∈ K1, of rank |K1|− 1. As it does not matter which of the two secret linear
subspaces we denote by V1 and which by V2, we have the freedom to set xk = 0
for some fixed k ∈ K1. The system LES∗ together with xk = 0 yields a system
of full rank and allows to compute the correct assigment to the xi-variables by
Gaussian elimination.

3.2 Analysis and Experimental Results

The background for the fact that the repeat cycle of the algorithm is left after
a finite number of rounds is that the following (2n − (n + 1)) × (n(n + 1)/2)-
matrix M(n) over GF(2) has full row rank (which is not hard to show). The
row indices of M(n) are all subsets I ⊆ [n] with |I| ≥ 2, the column indices are
[n] ∪ {(i, j), 1 ≤ i < j ≤ n}. We have M(n)I,i = 1 iff i ∈ I and M(n)I,(i,j) = 1
iff {i, j} ⊆ [n].

We do not give here a theoretical analysis of the expected number of rounds
of the repeat cycle. Our experiments show that the algorithm needs only slightly
more than 1

2 (n2 + n) + n observations to compute the secret functions f1 and
f2. Particularly for n = 128, we need approx. 8390 examples and 4 minutes on
a 3.4 GHz Intel Pentium IV with 4 GB RAM and Magma V2.15-9 [2].

How severe is the restriction that the secret subspaces have the special form
V = {(v, f(v)), v ∈ GF(2)n} for some surjective linear mapping f : GF(2)n −→
GF(2)k? Let us consider the general case V = {A ◦ v, v ∈ GF(2)n} for an
(n + k)×n matrix A. V can be written in the special form iff the first n rows of
A are linearly independent. For randomly chosen A this is true with probability
p(n) ≈ 0.2887 (see Sect. 2.2).

We have seen that we could solve the LULS-problem with parameters (n, k, 2)
by solving k LULS-problems with parameters (n, 1, 2).

For the special LULS-problem with parameters (n, 1, L), L > 2, we can define
a similar system LES consisting of degree-L equations in the variables xl

i, i ∈ [n],
l ∈ [L], induced as above by equations of the form

(

w ⊕
⊕

i∈I

x1
i

)

. . .

(

w ⊕
⊕

i∈I

xL
i

)

= 0 . (3)
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The problem is that for L > 2 the equations have several symmetries such that
the system can not be solved uniquely. The way out is to

– Choose an appropriate parameter s < k which divides k, let k = s · p,
– Write vectors w ∈ GF(2)k as vectors w ∈ GF(2s)p, and
– Solve the corresponding p LULS-problem with parameters (n, 1, L) over

GF(2s).

How to find the best choices of s is a matter of further theoretical and
experimental research.

We are convinced that there is no faster way to solve an (n, k, L)-LULS-
problem other than solving a system of degree-L equations in Ln variables (if
n, k, L are appropriately chosen). Such a system is defined over at least Φ(n, L) =
(

n
L

)
+ 2

∑L−1
k=1

(
n
k

)
different monomials, i.e., solving it by linearization means to

solve a system of linear equations of size Φ(n, L). This will cost O(Φ(n, L)3) oper-
ations, which can be considered infeasible already for (n, L) ∈ {(128, 5), (256, 4)},
since Φ(128, 5) ≈ 228 and Φ(256, 4) ≈ 227.

4 Summary

We have seen that the secret key of CKK2-protocols can be computed very quickly
from a sufficiently large set of messages sent by Bob. This kind of protocol should
not be used in practice.

The parameters of (n, k, L)++-protocols have to be chosen in such a way that
solving the LULS problem with parameters (n

2 , k, L) is infeasible. We recommend
to use n = 256, k = 64 and L = 5.

Another interesting question is to search for simpler nonlinear connection
functions f , for which a security proof can be found. In our proposal, for com-
puting f(a, b) Bob has to perform three multiplications in the finite field of order
2n/2.

It is another interesting open question whether the very symmetrically struc-
tured systems of degree-L equations arising in our LULS-algorithm in Sect. 3
can be more efficiently solved by more advanced techniques like the F4- or F5-
algorithm or cube attacks [8,9,5,6]. If one could generate convincing evidence that
such algorithms cannot beat our linearization attack, then (n, k, L)++-protocols
with the above parameters could be seriously considered for practical use.

A problem of (n, k, L)-protocols is the large key length in the case that ran-
dom mappings F1, . . . , FL are used. It is an important task to look for secure and
efficient ways to generate pseudorandom keys. In this context, the (still unbro-
ken) CKKσ,L-protocols could become interesting. However, we conjecture that
CKKσ,L-protocols can be efficently broken.

Interesting suggestions for keylength reductions have been made in [11] and
[3]. Adapting these ideas to (n, k, L)-protocols would mean

– To consider special forms of secret subspaces Vl = {(Al ◦ v), v ∈ GF(2)n},
where Al denotes a secret (n + k) × n Toeplitz matrix [11], and
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– To define the Toeplitz matrix Al to be generated by a secret Linear Feedback
Shift Register [3].

Checking the feasibility and security of these constructions should be a matter
of further research.
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A The Search-for-a-Basis Heuristic

The search-for-a-basis heuristic tries to construct a set Q of examples which form
a basis of Vl for some l ∈ L. For all linearly independent sets Q of n examples
let p(Q) denote the probability that an example coming from the oracle belongs
to the linear span < Q > of Q. It is quite obvious that p(Q) is maximal if Q
is a basis of Vl for some l ∈ L. If p(Q) is not too small, we can compute an
approximation p̃(Q) of p(q) by testing for w ∈< Q > for a sufficiently large
number of examples w.

For v ∈ Q and w 	∈ Q we denote by Q(v, w) the set obtained by replacing v
by w in Q.

The idea of the heuristic is to start with an arbitrary linear independent set
Q of n examples and to try to improve this set by finding v ∈ Q and w 	∈ Q such
that p̃(Q) < p̃(Q(v, w)). Iterating this at most n times yields a basis for Vl for
some l ∈ [L].

This kind of heuristic is infeasible if the following condition is fulfilled. For a
random linear independent set Q of n examples the probability p(Q) is negligibly
small with probability 1 − ε, ε negligibly small. The parameters n, k should be
chosen in such a way that this condition is guaranteed.

We estimate the probability p(Q) for the case L = 2. For a linear independent
set Q of n examples let Q = Q1 ∪Q2, where Q1 ⊆ V1 and Q2 ⊆ V2 \V1. W.l.o.g.
let |Q1| = n/2 + s and |Q2| = n/2 − s. The event w ∈< Q > happens iff
w ∈ V1∩ < Q1 > or w ∈ V2 and w ∈ V2∩ < Q1 >, i.e.,

p(Q) ≤ 1
2

(
2s−n/2 + 2−k

)
.

(Note that dim(V1 ∩ V2) = n − k for random n-dimensional subspaces V1, V2).
If n, k are chosen in such a way that 2−k, 2−n/4 and the probability that |v| 	∈
[n/4, 3n/4] are negligibly small, then the above condition is fulfilled (note that
the expected value of s is 2−kn/2).
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